Poster: Guard Sets in Tor Using AS Relationships

Mohsen Imani
UT Arlington
mohsen.imani @mavs.uta.edu

Abstract—The mechanism for picking guards in Tor suffers
from security problems like guard fingerprinting and from per-
formance issues. To address these issues, Hayes and Danezis
proposed the use of guard sets, in which the Tor system groups all
guards into sets, and each client picks one of these sets and uses
its guards. Guard sets need regular maintenance, however, due
to churn in the Tor network, and this creates opportunities for
malicious guards to join many guard sets by merely tuning the
bandwidth they make available to Tor. To address this problem,
we propose a new method for forming guard sets based on
location in the Internet AS topology. We construct a hierarchy
that keeps clients and guards together more reliably and prevents
malicious guards from easily joining arbitrary guard sets. This
approach also has the advantage of confining an attacker with
access to limited locations on the Internet to a small number of
guard sets. We simulate this guard set design using historical Tor
data in the presence of relay-level adversaries, and we find that
our approach is good at confining the adversary into few guard
sets and thus limiting the impact of attacks.

I. INTRODUCTION

Tor is one of the most popular tools for protecting privacy
online. It allows clients to create anonymous connections to
their desired destinations via three-hop encrypted channels
called circuits. A circuit is built over a path of three relays, an
entry, a middle, and an exit, selected from among the thousands
of volunteer relays distributed across the globe.

Tor fixes the client’s entry node to be the same in every
circuit for up to nine months. If this entry node, called a
guard, is honest and does not get compromised, then the
client’s identity cannot be directly discovered by malicious
relays while that guard is still being used.

A key design decision around the use of guards is how to
assign guards to users. If a user picks a guard with very low
bandwidth, for example, then not only will her performance be
poor, she may be the only user regularly using that guard and
can thus be profiled [4]. This is known as guard fingerprinting.
More generally, there are several anonymity and performance
considerations for picking guards that have only recently been
explored [1], [2].

One solution to the guard fingerprinting problem is to
group all guards into guard sets [1]. Then, each client picks
one of the guard sets and uses the guards in this set for
the first hop on all of its circuits. Hayes and Danezis [3]
proposed the first guard set algorithm for use in Tor. This
algorithm uses guards’ bandwidths as the key criterion in
forming guard sets, such that all sets have almost the same
amount of bandwidth. They also presented techniques for
maintaining the guard sets when there is churn in the network.

Armon Barton
UT Arlington
armon.barton @mavs.uta.edu

Matthew Wright
Rochester Institute of Technology
matthew.wright@rit.edu

Unfortunately, the algorithms proposed by Hayes and Danezis
have vulnerabilities that allow an attacker to compromise many
guard sets in the presence of churn over time. In particular,
churn among guards leads to guard sets needing to be repaired,
which is done by adding guards to the set with approximately
the same bandwidth as the guards already in the set. Since
the bandwidth that a malicious guard makes available to Tor
is under the control of the attacker, he can set his guards’
bandwidths so that they get selected for specific guard sets
that are about to be repaired. Using this technique, we found
(in as-yet unpublished work) that an adversary controlling just
1% of the total guard bandwidth in Tor can infiltrate around
40% of all guard sets within four months.

In this paper, we propose a new design (§II) for guard sets
that uses location in the Internet AS topology as the basis
for building a hierarchy on top of the sets. In particular, our
approach builds and maintains sets using guards that are close
to each other in the Internet topology. This limits an attacker’s
ability to compromise guard sets beyond whatever Internet
locations he has access to. While guards’ advertised bandwidth
can be easily manipulated, most attackers will have a limit on
the possible Internet locations of their guards.

II. DESIGN

In our design, a guard’s place in the hierarchy and guard set
assignment is based on the guard’s network location, meaning
the Autonomous System (AS) it is in and that AS’s corre-
sponding place in the customer cones, the set of ASes that can
be reached from the root AS by only following provider-to-
customer links. For an adversary with high bandwidth capacity
and a range of IP addresses, but only a few network locations,
this would substantially limit the number of guard sets he can
join and the number of users that he can compromise.

The hierarchy consists of three levels: 1) Root Sets, 2)
Branch Sets, and 3) Guard Sets. Below, we describe each part
of the system in detail.

Root Sets. To form Root Sets, we first build a Root Set
list — a list of ASes sorted based on customer cone size in
ascending order. Initially, the list contains all ASes with one
or more guards (guard ASes), and each guard AS is considered
as a Root Set. Then we choose the Root Set with the smallest
customer cone size and follow all customer-to-provider links
to discover providers for this Root Set that are also providers
to at least one other Root Set in the list. Among the providers
that satisfy this constraint, we select the provider with the
smallest customer cone size. This provider becomes the new

1072

‘ ‘ . T T o T T T T
o - -
s 1| ——BW de:mgn | 3 - .I <
§ —A— AS design : 0.4 .’_‘—‘ —@— BW design il ; 0.4 |
Single Guard g
o —— Single Guar @ —A— AS design 2 A bbb
= E —— Single Guard E
£ o o £ <]
205 : | = 02 = = 02 .
2 a o rl’" —@— BW design
% ¥ % i g —A— AS design
0 O O —jl— Single Guard
0"1"'1—"‘"‘"‘"‘"""""‘—'1 P N A O R N
Teb April June Aug Oct Dec Feb April June Aug Oct Dec Feb April June Aug Oct Dec

(a) Low-resource

(b) High-resource centralized

(©) Botnet

Fig. 1: Compromise rates in different attack scenarios. Lines show the median compromise rate over 50 simulations, while the

bands show the first and third quartiles.

Root Set and is added to the Root Set list, while the Root Sets
that are in the customer cone of this provider are removed from
the list. This process is repeated until all Root Sets in the list
contain guard bandwidths that sum to at least a threshold 7,
or the number of Root Sets in the list have decreased below
a threshold N.

Branch Sets. Root Sets often represent large customer cones
and many guards. To better isolate groups of guards from each
other and make it harder for a malicious guard to move into
targeted guard sets, we break each Root Set into a group of
Branch Sets. To this end, we put guard ASes that are close
to each other with respect to the AS relationship graph in the
same Branch Set as much as possible. For building the Branch
Sets, we first identify all customer cones within the Root
Set’s customer cone in which the guard bandwidth reaches
the threshold 7,,. Note that some cones will be contained
within other, larger cones, and there can be overlaps between
cones. Among all the possible customer cones, we should
pick cones such that their intersection with respect to guard
ASes is empty (A N B = (). There may be many possible
combinations of customer cones that are independent in this
way. Since our goal is to have smaller customer cones to make
it harder for an attacker to join a targeted Branch Set, we pick
the combination that has the maximum number of independent
cones and designate each cone as a Branch Set. At the end,
we place all guard ASes that do not meet the requirements for
building Branch Sets into one set.

Guard Sets. Once we have the Branch Sets, we can break
them up further into Guard Sets. To split a Branch Set, we first
randomly shuffle the guard ASes in the Branch Set. We then
add one guard at a time from the same AS to the current Guard
Set until the Guard Set’s bandwidth reaches the threshold 7.
If we use all the guards in a given guard AS without reaching
the threshold, we continue adding guards from the next guard
AS.

Assigning Clients to the Guard Sets. A newly-joined client
first selects a Root Set, then a Branch Set from her selected
Root Set, and finally a Guard Set from her selected Branch Set.
Each of these selections is random, weighted proportionally
by bandwidth. To create a circuit, the client picks one of the
guards in her guard set as the entry relay. The selection of
guards from a guard set can be weighted in favor of bandwidth

or can be done uniformly at random.

Maintenance. We have also designed mechanisms to main-
tain the hierarchy and guard assignment in the presence of
churn, and we elide these for space in this extended abstract.

ITII. SECURITY EVALUATION

In this section, we use simulations based on historical Tor
consensus files to evaluate the security of our design. In
particular, we model a relay-level adversary who adds guard
nodes in the network with the aim of compromising guard as
many clients as possible, which means joining as many guard
sets as possible.

If a guard set contains one compromised guard, we consider
the entire guard set to be compromised, since all clients
will select the compromised guard regularly for their circuits.
We compare our results to Hayes and Daneziss design [3],
which we refer to as "BW design”. We call our design "AS
design”. Single Guard refers to the Tor current guard selection
mechanism, the single guard proposal. For all of these, we
assume that the adversary runs some guard relays such that
their total bandwidth adds up to 10% of the total guard
bandwidth. Because AS design uses both bandwidth and AS
relationships, the adversary’s network (AS) matters as well.
Therefore, we consider three attack strategies:

Low-resource adversary: In this attack strategy, the adver-
sary injects only a single guard relay in the network. We
randomly choose an AS for this malicious guard.

High-resource centralized adversary: We assume that the
adversary is centralized, meaning that it injects all malicious
guards into a single AS. We randomly select one guard AS in
which to add the malicious guard relays, and we select their
bandwidths randomly based on live Tor guard bandwidths.

Botnet adversary: We assume that the adversary injects his
guard relays from different guard ASes instead of one guard
AS.

Figure 1 shows the compromise rate in the different guard
selection schemes. In all three attacks scenarios, our design
protects clients better than BW design.

IV. ACKNOWLEDGEMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 1423139.

(1]
(2]

(3]
(4]

(5]

REFERENCES

R. Dingledine and G. Kadianakis, “One fast guard for life (or 9 months.”
T. Elahi, K. Bauer, M. AlSabah, R. Dingledine, and I. Goldberg,
“Changing of the guards: A framework for understanding and improving
entry guard selection in tor,” in Proceedings of the 2012 ACM
Workshop on Privacy in the Electronic Society, ser. WPES ’12.
New York, NY, USA: ACM, 2012, pp. 43-54. [Online]. Available:
http://doi.acm.org/10.1145/2381966.2381973

J. Hayes and G. Danezis, “Guard sets for onion routing,” in Proceedings
on Privacy Enhancing Technologies, 2015.

N. Hopper, E. Y. Vasserman, and E. Chan-Tin, “How much anonymity
does network latency leak?” ACM Transactions on Information and
System Security, vol. 13, no. 2, February 2010.

M. K. Wright, M. Adler, B. N. Levine, and C. Shields, “Passive-logging
attacks against anonymous communications systems,” ACM Transactions
on Information and System Security (TISSEC), vol. 11, no. 2, 2008.

