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Abstract—Machine learning is vulnerable to adversarial ex-
amples: inputs carefully modified to force misclassification.
Defending against such inputs remains an open problem.
In this work, we revisit defensive distillation to address its
limitations. We view our results not only as an effective way
of addressing some of the recently discovered attacks but also
as reinforcing the importance of improved training techniques.

1. Introduction

Deployed machine learning (ML) models are vulnerable
to inputs maliciously perturbed to force them to mispredict.
Such inputs, i.e., adversarial examples, are systematically
constructed through slight perturbations of otherwise cor-
rectly classified inputs [[1]], [2l]. These perturbations are cho-
sen to maximize the model’s prediction error while leaving
the semantics of the input unchanged. They are typically
found by evaluating gradients of the model’s output with
respect to its inputs [11], [3].

To defend against adversarial examples, two classes of
approaches exist. The first algorithmically improves upon
the learning to make the model inherently more robust: e.g.,
adversarial training [[1]], [3] or defensive distillation [4]. The
second is a set of detection mechanisms used to reject inputs
suspected to be malicious: e.g., with an outlier class [, [6].

However, most—if not all—of these defenses fail to
adapt to novel attack strategies. Distillation is no exception.
It is successful against attacks known at the time of writing,
such as the Fast Gradient Sign Method (FGSM) [3]] and the
Jacobian-based Saliency Map Approach (JSMA) [7].

As advancements found new ways to mount attacks
against ML [8], [9], defensive distillation can now be
evaded. Black-box attacks from [8] enable adversaries ca-
pable of training a surrogate model to generate adversarial
examples that transfer back to the distilled model (i.e., they
are misclassified). In addition, distillation can be evaded
with optimization attacks a la Szegedy et al. [1], which have
been revisited in [9]. This is because of a phenomenon called
gradient masking: the defense mechanism destroys gradients
used by attacks, including the FGSM and JSMA, instead of
reducing the model’s error.

Given the two failure modes identified above, we pro-
pose in this work a variant of defensive distillation to
address them. We demonstrate that our approach is much
less susceptible to gradient masking by attacking it using
a surrogate model. Like the original defensive distillation,
the technique does not require that the defender generate

adversarial examples. The applicability of our approach is
thus less likely to be limited to specific adversarial exam-
ple strategies. Unfortunately, it is currently impossible to
formally prove robustness guarantees for models like deep
neural networks, so we resort to experimental validation of
our approach and leave a formal analysis to future work.

2. Defensive distillation

Defensive distillation successively trains two instances
of a ML model. The first is trained with the original dataset
{(z,y)} where y indicates the correct class for x. Learning
is performed conventionally to the exception of the softmax
temperature, which is usually set to 1 and is here increased.
In the interest of space, we refer readers to the detailed
presentation in [4]. Briefly, the model outputs probabilities
that are closer to a uniform distribution at high temperatures.
This first model f is then used to label the data with its
probabilities, thus defining a new training set {(z, f(z))}.
The second model f¢ is trained on this newly labeled data.
When deployed with a temperature of 1, f is found to be
robust to the FGSM and JSMA attacks.

3. Extending defensive distillation

We revisit the defensive distillation approach by modify-
ing the labeling information used to train the distilled model
f¢. Our changes are motivated by previous work introducing
an outlier class to mitigate adversarial examples [3]], [6] and
providing uncertainty estimates in neural nets [10].

After training the first model at temperature 7' = 1, we

take IV passes with dropout to compute the uncertainty of its
2

logits: o(z) = % 2 me0.N—1 (Zjeo..nq (ng@c) - ZJ) )
Using this vector, we construct a labeling vector k(z) whose
components j € 0..n are defined by:

l-a- W if j =1 (correct class)
Ri(@) =4 o m if j = n (outlier class)
0 otherwise

ey
The uncertainty defines the probability of the outlier class,
and the remaining probability is assigned to the correct class.
Parameter o weights the importance given to the uncertainty
measure. When training the distilled model, the temperature
of its softmax may be raised in accordance to the value of
a. A penalty is then added to the training loss to prevent
the logits’ from exploding. At test time, the model always
infers with a normal temperature of 7' = 1.
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4. Evaluation

We evaluate the approach against attacks mounted both
in white-box and black-box threat models. We experiment
with MNIST [11]], using the model and attacks provided in
the cleverhans v.1 library. The strength and weakness of the
approach are characterized by three rates:

e Recovered: percentage of adversarial inputs whose
original class (i.e., correct label) was recovered.

e Detected: percentage of adversarial examples classi-
fied in the model’s outlier class.

e Misclassified: all other adversarial examples.

The distilled model was trained with N = 20 dropout
passes for 50 epochs at temperature 7' = 4 and a variance
coefficient = 0.9. Its accuracy on legitimate test inputs
is 98.63%, compared to a 99.19% accuracy for the same
architecture trained without defensive distillation.

In Figure [Ta] we attack the distilled model directly
with the FGSM (¢ = 0.20) [3], JISMA (T = 7%)
and AdaDelta (x = 7) [9] strategies. A large fraction of
adversarial examples is either recovered (i.e., correctly clas-
sified) or detected (i.e., classified as outliers). In comparison,
the undefended model misclassifies at 87.1%, 82.8% and
97.6% on the FGM, JSMA and AdaDelta attacks. The ISMA
and AdaDelta algorithms are more successful at evading
the defended model than the FGM. Although defensive
distillation does not completely prevent white-box attacks, it
increases the adversary’s effort: for ¢, I', k parameters values
smaller to the ones used in Figure [Ia] the defense detects or
recovers 60% to 90% of the adversarial examples produced
by the FGM, JSMA and AdaDelta.

We mount worst-case black-box attacks through trans-
ferability from a surrogate model trained with the same
architecture and data. We consider two types of surrogate
models: undefended (U) and defended (D). This allows us
to test for gradient masking (which would be indicated
by strong transferability of adversarial examples from the
surrogates to the distilled model). Our results, reported in
Figure [Tb] are comparable with those obtained in the white-
box setting (see Figure [Ta). One notable exception is the
large difference for the FGM attack from the undefended
(U) and defended (D) surrogates.

5. Conclusions

The defensive distillation variant proposed defends mod-
els in a comparable capacity in the face of white-box and
black-box attacks. This indicates that the defense does not
suffer from gradient masking. While the effectiveness of the
defense recedes as the adversary increases the perturbation,
it is able to improve the robustness in a vicinity of the
training data while paying a modest price in accuracy.

The approach’s most appealing aspect remains that it
does not require that the defender generate adversarial
examples. This leaves room for another line of work combin-
ing defensive distillation with other defenses. Although the
method is generic and applicable to any neural network and
input domain, the evaluation performed remains preliminary
given that our experimental setup is restricted to MNIST.

I Recovered [l Detected

AdaDelta I

Misclassified

0 25 50 75 100

(a) White-box FGSM, JSMA and AdaDelta

I Recovered [l Detected Misclassified

FGM (U) ]
FGM (D) -
AdaDelta (U) -
AdaDelta (D) .
0 25 50 75 100

(b) Black-box FGSM, JSMA and AdaDelta

Figure 1: Recovered, detected and misclassified rates for
white-box and black-box attacks against the distilled model.
Attacks marked with U are computed on an undefended
surrogate model and D the distilled model from Section El
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