
Poster: Secure Computations of Trigonometric and
Inverse Trigonometric Functions

Fattaneh Bayatbabolghani∗, Marina Blanton†, Mehrdad Aliasgari‡ and Michael Goodrich§
∗Computer Science and Engineering, University of Notre Dame, Email: fbayatba@nd.edu

†Computer Science and Engineering, University at Buffalo (SUNY), Email: mblanton@buffalo.edu
‡Computer Engineering and Computer Science, California State University, Long Beach, Email: mehrdad.aliasgari@csulb.edu

§Computer Science, University of California, Irvine, Email: goodrich@uci.edu

Abstract—Secure computation has been receiving a lot of atten-
tion in recent years and has been used in a variety of applications
where protecting privacy of data throughout computation is
essential. Simple operations form fundamental building blocks
of secure computation and therefore proposing efficient and
novel protocols for such operations will benefit a wide variety
of applications such as secure biometric computation and mobile
computing. For that reason, we design new and efficient secure
protocols for trigonometric and inverse trigonometric functions
using fixed-point arithmetic, which are applicable to both two-
party and multi-party settings.

Index Terms—Secure sine, cosine, arctangent, garbled circuit
evaluation, secret sharing.

I. INTRODUCTION

The motivation of this work comes from the need to
compute trigonometric functions on private data in a number of
applications such as, for example, secure fingerprint recogni-
tion. Because performance of secure computation techniques is
of grand significance (as protecting secrecy of data throughout
the computation often incurs substantial computational costs),
besides security, efficient performance of secure trigonomet-
ric building blocks is crucial. Therefore, the focus of this
work is on building secure and cost-efficient constructions for
trigonometric and inverse trigonometric functions such as sine,
cosine, and arctangent. Because of the similarities between the
computation of sine and cosine functions, we primarily focus
on sine, and secure computation for the cosine function can
be implemented similarly.

II. SECURE SETUP

To build secure protocols, two secure computation frame-
works in the presence of semi-honest parties are of interest to
us: In the two-party setting, we build our solutions based on
garbled circuit (GC) evaluation techniques, while in the multi-
party setting, we employ linear secret sharing (SS) techniques.
Due to a lack of space, additional information about these
underlying techniques is provided in [1].

We use notation [x] to denote that the value of x is protected.
The computation takes place on fixed-point values which are
represented using ` bits, k of which are stored after the radix
point (and thus ` − k are used for the integer part). Each
function is evaluated on private input and no information is to
be revealed throughout protocol execution.

III. SECURE PROTOCOLS

In this section, we build secure protocols for trigonometric
and inverse trigonometric functions with efficiency of their
execution in mind in the chosen two-party and multi-party
settings. Our optimizations focus on the specific costs of the
underlying techniques for secure arithmetic and ensure that
we achieve efficiency together with precision and provable
security guarantees.

We denote secure protocols as [b] ← Sin([a]) and [b] ←
Arctan([a]), where a and b are fixed-point values. The input
a to sine and cosine is represented in degrees and additional
optimizations are possible if it is integer. The complexity of
the designed protocols can be found in Table I.

A. Sine protocol

There are a variety of different approximation algorithms
that can be used for trigonometric functions, many of which
take the form of polynomial evaluation. Upon examining the
options, we chose to proceed with the polynomials described
in [2, Chapter 6], as they achieve good precision using only
small degree polynomials. The polynomials used in [2] for
trigonometric functions take the form P (x2) or xP (x2) for
some polynomial P over variable x (i.e., use only odd powers
for sine), which requires one to compute only half as many
multiplications as in a polynomial with all powers present.

The approach used in [2] offers two types of polynomial
approximations. The first type uses a regular polynomial P (x)
of degree N to approximate the desired function. The second
type uses a rational function of the form P (x)/Q(x), where
P and Q are polynomials of degree N and M , respectively.
For the same desired precision, the second option will yield
lower degrees N and M and thus fewer multiplications to
approximate the function. This option, however, is undesir-
able when the division operation is much costlier than the
multiplication operation. In our setting, the rational form is
preferred in the case of GC evaluation (at least for higher
precisions) where multiplication and division have similar
costs. However, with SS, the cost of division is much higher
than that of multiplication, and we use the first option with
regular polynomial evaluation.

It is assumed in [2] that the input to sine/cosine is in
the range [0, π/2]. This means that input a given in degrees

Prot. Secret sharing Garbled circuits
Rounds Interactive operations XOR gates Non-XOR gates

Sin 2 logN + 16 2Nk + 8`+ 2N + 6k + 4
(max(N,M) +N +M + 2)× (4`2 (max(N,M) +N +M + 2)× (2`2

−4`) + 7`2 + 4`(N +M) + 31` −`) + 3`2 + `(N +M) + 11`

Arctan
2 logN + 3 log ` 1.5` log `+ 2` log(`

3.5
) + 2Nk

8N`2 + 3`2 − 4N`+ 43` 4N`2 + `2 −N`+ 15`
+2 log(`

3.5
) + 22 +18.5`+ 2N + 4 log(`

3.5
) + 6

TABLE I
PERFORMANCE OF PROPOSED SECURE BUILDING BLOCKS FOR FIXED-POINT VALUES.

needs to be reduced to the range [0, 90] and normalized to
the algorithm’s expectations. Note that it is straightforward to
extend the result of the computation to cover the entire range
[0, 2π] given the output of this function and the original input.
Furthermore, because evaluating trigonometric functions on a
smaller range of inputs offers higher precision, it is possible to
apply further range reduction and evaluate the function on even
a smaller range of inputs, after which the range is expanded
using an appropriate formula or segmented evaluation. We
refer the reader to [2] for additional detail.

Based on the desired precision, one can retrieve the mini-
mum necessary polynomial degree used in the approximation
to achieve the desired precision, then look up the polyno-
mial coefficients and evaluate the polynomial(s) on the input.
As mentioned before, sine is approximated as xP (x2) or
xP (x2)/Q(x2) and in the more general second case we obtain
the following secure protocol that takes input in degrees in the
range [0, 360):

[b]← Sin([a])

1) Compute [s] = LT(180, [a]).
2) If ([s]) then [a] = [a]− 180.
3) If (LT(90, [a])) then [a] = 180− [a].
4) Compute [x] = 1

90
[a] and then [w] = [x]2.

5) Lookup the minimum polynomial degrees N and M for which
precision of the approximation is at least k bits. Then, lookup
polynomial coefficients p0, . . ., pN and q0, . . ., qM for sine
approximation.

6) Compute ([z1], . . . , [zmax(N,M)])← PreMul([w],max(N,M)).
7) Set [yP] = p0 +

∑N
i=1 pi[zi] and [yQ] = q0 +

∑M
i=1 qi[zi].

8) Compute [y]← Div([yP], [yQ]).
9) If ([s]) then [b] = 0− [x] else [b] = [x].

10) Compute and return [b] = [b] · [y].

Cosine is implemented similarly and can be found in [1].
Recall that we recommend using a rational function in the
form of P (x)/Q(x) as in the above protocol for GCs-based
implementation of high precision. With SS, we modify the
protocol to evaluate only a single polynomial P of (a different)
degree N and skip the division operation in step 8.

B. Arctangent protocol

In the case of inverse trigonometric functions and arctangent
in particular, the function input domain is the entire (−∞,∞)
and the range of output is (−π/2, π/2). We recall that arctan-
gent is an odd function (i.e., arctan(−x) = − arctan(x)) and
for all positive inputs we have arctan(x)+arctan(1x) = π/2.
It is, therefore, sufficient to approximate arctangent over the
interval of [0, 1]. To this end, we use the technique introduced
by Medina in [3]. In particular, [3] defines a sequence of

polynomials over the input domain of [0, 1], denoted as hN (x),
with the property that|hN (x)−arctan(x)| ≤

(
1

45/8

)deg(hN)+1
.

We use this formula to determine the degree N for any k-bit
precision. This degree N is logarithmic with respect to the
desired precision. Afterwards, the coefficients of hN (x) are
computed from the recursive definitions in [3]. We choose this
approach over other alternatives such as [2] for its efficiency.

Another candidate for arctangent evaluation is the well-
known Taylor series of arctangent. However, it provides a
possibly reasonable precision if the input is bound to be very
close to one point from the input domain, which we cannot
assume. In addition, arctangent Taylor series converges very
slowly and we do not pursue this option.

Our secure protocol to approximate arctangent based on the
approach from [3] is given next:

[b]← Arctan([a])

1) Compute [s]← LT([a], 0).
2) If ([s]) then [x] = 0− [a] else [x] = [a].
3) Compute [c]← LT(1, [x]).
4) If ([c]) then [d] = π/2, [y] ← Div(1, [x]); else [d] = 0, [y] =

[x].
5) Lookup the minimum polynomial degree N for which precision

of the approximation is at least k bits. Then, lookup polynomial
coefficients p0, . . ., pN for arctangent approximation from [3].

6) Compute ([z1], . . . , [zN])← PreMul([y], N).
7) Set [z] = p0 +

∑N
i=1 pi[zi].

8) If ([c]) then [z] = [d]− [z] else [z] = [d] + [z].
9) If ([s]) then [b] = 0− [z] else [b] = [z].

10) Return [b].

ACKNOWLEDGMENTS

This work was supported in part by grants 1223699,
1228639, 1319090, and 1526631 from the National Science
Foundation and FA9550-13-1-0066 from the Air Force Of-
fice of Scientific Research, as well as DARPA agreement
no. AFRL FA8750-15-2-0092. Any opinions, findings, and
conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views
of the funding agencies or the U.S. Department of Defense.

REFERENCES

[1] F. Bayatbabolghani, M. Blanton, M. Aliasgari, and M. Goodrich. Secure
fingerprint alignment and matching protocols. arXiv Report 1702.03379,
2017.

[2] J. Hart, E. Cheney, C. Lawson, H. Maehly, C. Mesztenyi, J. Rice,
H. Thacher, and C. Witzgall. Computer approximations. John Wiley
& Sons, Inc., 1968.

[3] H. Medina. A sequence of polynomials for approximating arctangent.
The American Mathematical Monthly, 113(2):156–161, 2006.

	Introduction
	Secure Setup
	Secure Protocols
	Sine protocol
	Arctangent protocol

	References

