
Poster: EPOXY—Enabling Robust Protection for
Bare-metal Systems

Abraham A. Clements∗, Naif Saleh Almakhdhub†, Khaled S. Saab‡, Prashast Srivastava†,
Jinkyu Koo†, Saurabh Bagchi†, Mathias Payer†

∗Purdue University and Sandia National Laboratories, clemen19@purdue.edu
†Purdue University, {nalmakhd, srivas41, kooj, sbagchi}@purdue.edu, mathias.payer@nebelwelt.net

‡Georgia Institute of Technology, ksaab3@gatech.edu

Abstract—Embedded systems are ubiquitous in every aspect of
modern life. As the Internet of Thing expands, our dependence
on these systems increases. Many of these interconnected systems
are and will be low cost bare-metal systems, executing without an
operating system. Bare-metal systems rarely employ any security
protection mechanisms and their development assumptions (un-
restricted access to all memory and instructions), and constraints
(runtime, energy, and memory) makes applying protections
challenging.

To address these challenges we present EPOXY, an LLVM-
based compiler. It uses a novel technique, called privilege
overlaying, wherein operations requiring privileged execution are
identified and only these operations execute in privileged mode.
This provides the foundation on which code-integrity, adapted
control-flow hijacking defenses, and protections for sensitive IO
are applied. We also design fine-grained randomization schemes,
that work within the constraints of bare-metal systems to provide
further protection against control-flow and data corruption
attacks. Our evaluation shows these defenses are effective and
operate within the constraints of bare-metal systems.

I. INTRODUCTION

Many of the devices in the Internet of Things are bare-
metal systems. These systems execute a single application
directly on its hardware, without the use of an Operating
System (OS). Some of these systems are: Amazon’s dash
button, smart locks, wireless systems on a chip, and memory
cards. As the prevalence of the Internet of Things increases,
such devices become increasingly connected, exposing them
to network based exploitation. We rely on these systems to
provide secure and reliable computation, communication, and
data storage. Yet they lack even basic defenses against code
injection or control-flow hijacking.

This lack of defenses arises from design assumptions, and
system constraints that make applying defenses particularly
challenging. In the design, of a bare-metal program, the
programmer needs access to all instructions and all memory
locations. This is necessary because a single program manages
the hardware and implements program logic. Managing parts
of the hardware, for example the Memory Protection Unit
(MPU), requires execution in privileged mode (.i.e., root level
access). Since there is only one program on the system it
executes exclusively in privileged mode. This prevents effec-
tive implementation of basic foundational defenses like DEP.
As the MPU which is used to enforce DEP can be trivially

disabled by a privileged memory corruption vulnerability.
Further complicating the application of defenses on bare-metal
systems are tight constraints on run-time, memory, and energy
consumption. Combined, these challenges have prohibited
adoption of any protection for bare-metal systems. Thus, in
practice bare-metal systems are vulnerable to manipulation
of sensitive IO, stack smashing [4], code injection, ROP
attacks [7], and data corruption attacks.

To address these challenges, we developed EPOXY (Embed-
ded Privilege Overlay on X hardware with Y software) [2],
an—LLVM based compiler that brings both generic and
system-specific protections to bare-metal programs. EPOXY
adds protection against code injection, control-flow hijack,
data corruption attacks, and direct manipulation of IO. Central
to our design is a lightweight privilege overlay, which solves
the dichotomy of allowing the developer to assume access to
all instructions and memory while restricting access at runtime.
To further protect the program, EPOXY applies, fine-grained
diversification techniques which use all available memory, and
strong stack protections, by adapting SafeStack [3] to bare-
metal systems.

II. EPOXY

EPOXY modifies device startup to reduce privileges of
the entire program and configure the MPU. The MPU’s
configuration enforces DEP and protects sensitive IO, thus
providing code-integrity. However, reducing privileges of the
entire program breaks functionality. Thus, EPOXY uses static
analysis to identify instructions requiring privileges and only
elevates those instructions. Conceptually, this is like overlaying
the original program with a mask which elevates just the
instructions requiring privileges. In some ways, the privilege
overlay is similar to a program making an operating system
call and transitioning from unprivileged mode to privileged
mode. However, here, instead of being a fixed set of calls
which operate in the operating system’s context, it creates
a minimal set of instructions that execute in their original
context (the only context used in a bare-metal application
execution). By elevating just those instructions, we simplify
the development process and limit the power of memory
corruption vulnerabilities.



EPOXY uses two static analyses to place instructions in the
privilege overlay. The first performs instruction matching to
identify instructions defined by the architecture that require
privileged execution. The second static analysis examines the
back slice of each load and store to determine if it may load
or store from a constant address. When found, loads and
stores to constant addresses, which are restricted by the MPU
configuration, are added to the privilege overlay. For each
instruction in the privilege overlay EPOXY emits additional
instructions that obtain privileges prior to the original instruc-
tion’s execution, and then reduces privileges immediately after.
To further protect the program, EPOXY adapts SafeStack [3]
to bare-metal systems, protecting against control-flow hijack
attacks. SafeStack is a split stack defense that uses static
analysis to move local variables which may be used in an
unsafe manner to a separate unsafestack, thereby protecting
return pointers and safe local variables. EPOXY employs
global data randomization with padding, function random-
ization with padding, and register selection randomization to
protect against data corruption and code reuse attacks. These
randomization techniques are adapted to use all of the memory
on the systems to maximize the entropy they produce.

III. EVALUATION

We evaluate EPOXY’s performance on 75 applications from
the BEEBs benchmark suite [5] and three representative IoT
applications. Overheads for the benchmarks average 1.6% for
runtime and 1.1% for energy. For the IoT applications, the
average overhead is 1.8% for runtime, and 0.5% for energy.
We also examine the memory usage on the IoT applications,
as shown in Table I. We find the IoT applications requires
less than 3,400 bytes of additional code space and under
200 bytes of additional RAM. Our results for execution time,
power usage, and memory usage show that our techniques
work within the constraints of bare-metal applications.

To understand the security protections of our system, we
compare with FreeRTOS-MPU [1], an embedded OS that
uses the MPU to isolate different threads of execution. We
compare the number of instructions executed and the number
of privileged instructions for the IoT applications. EPOXY
uses significantly fewer privileged instructions, see Table II.
To evaluate EPOXY’s diversification techniques, we use a
ROP compiler [6] to identify gadgets in 1,000 variants for
each of the three IoT applications. No gadget survives across
more than 107 binaries, as shown in Table III. This implies
that an adversary cannot reverse engineer a single binary to
create a ROP chain with a single gadget that scales beyond a
small fraction of devices, and shows the effectiveness of our
diversification techniques.

TABLE I
INCREASE IN MEMORY USAGE FOR THE IOT APPLICATIONS

Stack
App Text Global Data SafeStack Priv. Over.
PinLock 3,390 29% 14.6 1% 104 25% 0 0%
FatFs-uSD 2,839 12% 18.2 1% 128 3% 36 1%
TCP-Echo 3,249 8% 7.2 0% 128 29% 0 0%

TABLE II
COMPARISON FREERTOS VS. EPOXY SHOWING MEMORY USAGE,

NUMBER OF INSTRUCTIONS EXECUTED (EXE), AND NUMBER OF
PRIVILEGED INSTRUCTIONS (PI).

App Tool Code RAM Exe PI

PinLock EPOXY 16KB 2KB 823K 1.4K
FreeRTOS 44KB 30KB 823K 813K

FatFs-uSD EPOXY 27KB 12KB 33.3M 3.9K
FreeRTOS 58KB 14KB 34.1M 33.0M

TCP-Echo EPOXY 43KB 35KB 310.0M 1.5K
FreeRTOS 74KB 51KB 321.8M 307.0M

TABLE III
SURVIVAL OF ROP GADGETS OVER 1,000 VARIANTS.

Num. Surviving
App Total 2 5 25 50 Last
PinLock 294K 14K 8K 313 0 48
FatFs-uSD 1,009K 39K 9K 39 0 32
TCP-Echo 676K 22K 9K 985 700 107

IV. CONCLUSION

EPOXY enables the simple application of state-of-the-art
defenses to bare-metal systems. We maintain the develop-
ers assumption of access to all instruction and all memory
locations and apply the defenses within the constrains (run-
time, memory, and energy) of bare-metal systems. Our mech-
anisms provides code-integrity, protection of sensitive IO, and
defenses against control-flow hijacking and data corruption
attacks. In summary, EPOXY fast forwards bare-metal appli-
cations security several decades, providing necessary defenses
for today’s connected systems. The source code of EPOXY is
available at https://github.com/HexHive/EPOXY.

ACKNOWLEDGMENTS

This material is based in part on work supported by the
National Science Foundation under Grant Numbers CNS-
1464155 and CNS-1548114. Any opinions, findings, and
conclusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Science Foundation. This work is also
supported by Sandia National Laboratories, a multi-program
laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for
the U.S. Department of Energys National Nuclear Security
Administration under contract DE-AC04-94AL85000.

REFERENCES
[1] FreeRTOS-MPU. http://www.freertos.org/

FreeRTOS-MPU-memory-protection-unit.html
[2] A. A. Clements, N. S. Almakhdhub, K. S. Saab, P. Srivastava, J. Koo,

S. Bagchi, and M. Payer, Protecting bare-metal embedded systems with
privilege overlays, In IEEE Symp. on Security and Privacy. IEEE, 2017.

[3] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
Code Pointer Integrity, USENIX Symp. on Operating Systems Design
and Implementation, 2014.

[4] A. One, Smashing the stack for fun and profit, Phrack Magazine, vol. 7,
no. 49, pp. 14–16, 1996.

[5] J. Pallister, S. J. Hollis, and J. Bennett, BEEBS: open benchmarks for
energy measurements on embedded platforms, CoRR, vol. abs/1308.5174,
2013.

[6] J. Salwan, ROPgadget - Gadgets Finder and Auto-Roper, 2011.
http://shell-storm.org/project/ROPgadget/

[7] H. Shacham, The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86), In ACM Conf. on Computer
and Communications Security, 2007, pp. 552–561.


