

Poster: Security Analysis of HSTS Implementation in

Browsers

Yan Jia
1,2

, Yuqing Zhang
2,1

1
School of Cyber Engineering, Xidian University

2
National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences

E-mail: {jiay, zhangyq}@nipc.org.cn

Abstract—Currently, HTTP Strict Transport Security, used

to harden HTTPS, has gained increasing adoption in browsers

and servers. We conduct an in-depth empirical security study of

HSTS implementation in browsers, then successfully discover

several new flaws in storage implementation and interaction with

certificates. These flaws enable cookies theft, DoS, and bypassing

problems. Moreover, we point out some other concerns including

origin risk, entries missing, preload, and complex interaction.

Keywords—HTTPS; HSTS; security; browser.

I. INTRODUCTION

HTTPS is wildly used to provide confidentiality and
integrity to browsers and Web servers. However, it has
suffered many serious security problems for years. E.g. SSL
Strip techniques and the “clicking through” problem [1]. The
primary countermeasure to HTTPS stripping is strict transport
security (HSTS) [2]. With the use of HSTS, a server can notify
browsers that it wants to always be accessed by a secure
version connection, thus preventing user errors, lapses, or
redirection tricks. As of April 4, 2017, 83.79% browsers had
supported HSTS [3].

We conduct an in-depth empirical security study of HSTS
implementation in browsers. We successfully find a security
flaw in Chrome storage management allowing attackers to
bypass HSTS, which affects all platforms. Chromium
community has labeled the flaw as medium severity. Moreover,
we find cookies theft and DoS risks when HSTS interacts with
browser certificates management. Finally, other issues are
summarized. It is highlighted that implementing a mechanism
both securely and efficiently is difficult, and deploying a
conceptually simple security mechanism is complicated when
it interacts with many other features.

II. PREVIOUS WORK

Most previous studies focus on the server. [4] and [5]
analyze HSTS deployment on Alexa and Shodan domains.
They find basic pitfalls in HSTS configuration and cookies
scoped to non-HSTS domains, which makes stripping and
cookie theft possible. In 2014, Jose Selvi presented a tool,
Delorean, which takes advantage of weaknesses in the
implementation of the NTP protocol to invalidate HSTS by
making its maximum validity date expire [6].

Compared with the above studies, our study concentrates
on the user agent implementation and is more systematic than
[5]. Unlike [6], the methods we found to bypass HSTS are
based on the browser implementation, not other system
mechanisms that support HSTS.

III. STORAGE PROBLEM

Browsers must store offline HSTS status including domains,
expiry time and includeSubDomain directive etc. This storage
is as complicated as managing cookies, considering
performance, security and storage size. Firefox uses a “least
recently used” algorithm to store HSTS statuses of a maximum
of 1024 domains to gain an efficient IO. However, it is easy for
a patient attacker to overflow the list and cause the browser to
deny HSTS directives of later other sites. Though Chrome does
not limit the storage size, we find a bypass vulnerability.

A. Threat model

The adversary is a MITM attacker against HTTPS, who
intercepts HTTPS connections between the user’s browser and
the server. The MITM attacker can utilize a host of well-known
MITM techniques (e.g., ARP poisoning and DNS pharming
attacks) to re-route all the traffic of the victim to himself.
Moreover, the attacker owns an online website and valid
certificates of his domains.

B. Methodology

There are two main classes in Chrome managing HSTS.
Class TransportSecurityState maintains an in-memory database
containing the list of hosts that currently have transport security
enabled. Singleton class TransportSecurityPersister deals with
writing that data out to a disk as needed and loading it at
startup from the “TransportSecurity” file. The
TransportSecurityState object supports running a callback
function when it changes. This TransportSecurityPersister
object registers the callback, pointing at itself. Before creating
a HTTP request, in the factory of the class URLRequestHttpJob,
Chrome checks Transport_security_state of context to judge
whether to upgrade to HTTPS. At startup, Chrome needs to
load transport security states from the disk. However, it does
not delay startup for this load, allowing the
TransportSecurityState to run for a while without being loaded.
This means that it is possible for pages opened very quickly to

Fig. 1. HSTS process in Chrome.

not get the correct transport security information. The larger
the file, the more serious the problem.

C. Experiment and Result

We set up a HTTPS Web server with a valid wildcard
certificate, and set HSTS header for each domain. Then, we
create ten javascript webworkers to send HTTP requests in the
form of number.domain.com. The number is different in every
request, so the size of the TransportSecurity file will increase
quickly. When the browser loads a dynamic HSTS enabled
site (without the “https://” scheme) at startup, we can sniff the
HTTP request by Wireshark. Experiments show that 200MB is
large enough for a laptop with SSD and i7 CPU. This attack
works on all operating systems, but only non-preloaded sites
are affected. Chromium community accepted this vulnerability
and labeled it “Security Severity-Medium”. Developers must
use asynchronous file IO carefully, especially for
implementing security features.

IV. CERTIFICATE PROBLEM

RFC6797 specifies that when connecting to a known HSTS
host the user agent “MUST” terminate the connection if there
are any errors, whether "warning” or “fatal” or any other error
level, with the underlying secure transport. Failing secure
connection establishment on any errors should be done with
"no user recourse". Moreover, the user agent “MUST” only
accept HSTS directives on error-free secure transports. These
protection measures are designed to prevent “clicking through”
and DoS on browsers.

At the same time, browsers should support self-signed
certificates and custom root CAs. The interaction of other
existing mechanisms leads to the implementation of HSTS
becoming more complicated. We find two risks about HSTS
implementation caused by certificates management. Threat
model here is the same as section Ⅲ and we assume that the
victim is easily tricked when dealing with certificate prompts.

Bypassing Risk. By convention, browsers allow users to add
exception certificates for non-HSTS sites. If a user adds a fake
certificate in exception for the subdomain before HSTS (with
includeSubDomain directive) set on the larger domain, there
will be a conflict. In Chrome, HSTS cannot protect this
subdomain from MITM attackers with that fake certificate until
the certificates cache is deleted. It is possible for the attacker to
steal domain cookies from HSTS enabled sites. Fortunately,
Chrome only caches fake certificates for one week and Firefox
does not suffer this attack.

DoS Risk. If the attacker could convince the victim to install
the attacker’s version of a root CA certificate, he can sniff any
HSTS traffic. This type of attack leverage vector is outside of
the scope of HSTS, and HPKP is designed to mitigate the
problem. However, in this situation, the attacker can set HSTS
for any HTTP-only sites. The new mechanism provide the
attacker with a new method to implement DoS.

V. OTHER CONCERNS

Origin Risk. Browsers must process IDN correctly. FP errors
lead to DoS, and FN errors lead to bypassing risks. Firefox and
Chrome both had FN errors. Besides, server managers should
know the right-to-left host domain name-matching algorithm
that means a subdomain cannot disable its HSTS that is set by
the larger domain. It is inflexible to use includeSubDomain
directive in some situations.

Entries Missing. Browsers that support HSTS must check the
HSTS policy before sending each HTTP request. It is a
difficult job for developers facing more and more new Web
standards. E.g., Chrome missed checking HSTS policy when
creating WebSockets.

Preload. Because of the open Google preload list, the number
of preloaded domains in browsers has increased to 23539 in
2017, from just 1258 in 2015. It is growing fast. There are
many unpopular sites, but some popular sites like searching
main pages of Google and Baidu are not in the list.

Complex Interaction. Risks above all concentrate on the
process of HSTS. However, the browser is a complicated
application. It is a challenge to make all features work together
flexibly and securely. E.g., HSTS joined with CSP together
provide the attacker a new way to sniff the browser history [7].

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (No.61572460), National Key R&D
Program of China (No.2016YFB0800703), the Open Project
Program of the State Key Laboratory of Information Security
(No.2017-ZD-01), the National Information Security Special
Projects of National Development, the Reform Commission of
China [No.(2012)1424], and China 111 Project (No.B16037).

REFERENCES

[1] Akhawe, Devdatta, and Adrienne Porter Felt. "Alice in Warningland: A
Large-Scale Field Study of Browser Security Warning Effectiveness." U
senix Security. 2013.

[2] HSTS. https://tools.ietf.org/html/rfc6797

[3] Browser support tables for modern web technologies. http://caniuse.com
/#search=hsts

[4] Kranch, Michael, and Joseph Bonneau. "Upgrading HTTPS in mid-air:
An empirical study of strict transport security and key pinning." NDSS.
2015.

[5] de los Santos, Sergio, et al. "Implementation State of HSTS and HPKP
in Both Browsers and Servers." International Conference on Cryptology
and Network Security. Springer International Publishing, 2016.

[6] Selvi, Jose. "Bypassing HTTP strict transport security." Black Hat
Europe (2014).

[7] Yan: Weird New Tricks for Browser Fingerprinting. https://zyan.scripts.
mit.edu/presentations/toorcon2015.pdf

TransportSecurityState

URLRequestHttpJob

::Factory

TransportSecurityPersister

TransportSecurity File

DirtyNotify

Init enabled_sts_hosts_

Load

(slowly)

Yes/NoShouldUpgradeToSSL?

Memory HDD/SSD

Store

