
Poster: Design of Backdoor on Android Devices

Junsung Cho, Geumhwan Cho, Sangwon Hyun and Hyoungshick Kim
Department of Computer Science and Engineering, Sungkyunkwan University, Republic of Korea

Email: {js.cho, geumhwan, swhyun77, hyoung}@skku.edu

Abstract—This paper presents a practical design of backdoor
to permanently bypass the screen lock mechanisms (e.g., 4-digit
PIN) on Android devices.

1. Our goal and assumptions

We aim to give insights in designing backdoor that can
be used to provide persistent access to a victim’s Android
device by compromising the secret for user authentication
while effectively hiding its presence from the victim.

We assume that a victim uses the PIN scheme to protect
her smartphone. Moreover, the victim can often update her
PIN secret. Under these conditions, the attacker’s goal is
to continuously spy on the victim’s smartphone without
revealing her spying activities. In practice, many likely
attackers are such insiders rather than strangers in that the
people who most want to intrude on a victim’s privacy are
likely to be in the victim’s circle of acquaintances. We also
assume that the attacker’s backdoor is secretly installed on
the victim’s smartphone at the initial stage. Probably, an
insider attacker can often have some chances to install her
backdoor on a victim’s smartphone in a stealthy manner by
either physically accessing the device or performing a social
engineering method (e.g., sending a gift app).

2. Design and implementation

To validate the feasibility of the proposed attack, we
designed and implemented a proof-of-concept backdoor on
Android. Our implementation consists of three components:
trigger application, Firebase (https://firebase.google.com)
and backdoor application. Here, trigger application and
Firebase are controlled by an attacker.

The implementation of the remote triggering feature is
important for hiding the backdoor from the device owner
(i.e., the victim). We achieved this by using Firebase which
supports the communication between the attacker and the
backdoor through push notification services. The use of push
notifications makes it difficult to detect the malicious traffic
from Firebase because many normal applications are also
using Firebase for push notification services.

We used two Android devices; the rooted Nexus 5 with
Android 5.1 Lollipop which plays the role of the victim’s
device to run the backdoor application while Nexus 5X
with Android 6.0 Marshmallow which plays the role of the
attacker’s device to run the trigger application. For other An-
droid versions, our backdoor can also be adapted. We found

6. Execute cracking module

7. Show password
using notification

5. Receive “Open sesame”

1. Request token4. Obtain token
2. Receive token

3. Update token
5. Send “Open sesame”
with token
through Firebase

Figure 1. Overview of our backdoor implementation.

that our backdoor performs well on under Android 5.X with
just a slight modification of the code. As a result, 84.8% of
all Android devices could be vulnerable to our attack in
2016 (https://developer.android.com/about/dashboards).

We present the overall attack procedure shown in Fig-
ure 1. When the backdoor application is installed on the vic-
tim’s device, the application requests and receives a unique
token from Firebase (Step 1 and 2), and updates the real time
database of Firebase with the new token (Step 3). Then the
attacker retrieves the token from the database of Firebase
(Step 4). Whenever the attacker wants to unlock and access
the victim’s device, the attacker sends an “Open sesame”
message attached with the retrieved victim’s token to the
backdoor application via Firebase (Step 5). Once receiv-
ing the message, the backdoor application is automatically
triggered to execute the cracking module matching the PIN
scheme and eventually finds out the victim’s password (Step
6). Finally, the backdoor application informs the attacker
of the found password by showing up a notification popup
(Step 7).

To hide the backdoor application, we carefully designed
it to provide the following properties in terms of resilience
against detection. Firstly, we adopt the remote triggering
mechanism, thus our backdoor is executed only when there
is a request from the attacker while normally hiding its pres-
ence. Secondly, our backdoor only communicates with the
push messaging server without directly communicating with
the attacker. Therefore, network intrusion detection systems
cannot distinguish the network traffic of our backdoor from
that of other benign applications that are also using push
notification services. Thirdly, our backdoor requires the only
permissions that are needed to use Firebase. Hence, it is not
easy to recognize the potential risk of our backdoor even
for security conscious users because those permissions are



also required by normal applications for push notifications.
To crack the victims password, the backdoor ap-

plication reads the hash value of the password from
password.key. In particular, the corresponding salt
should also be retrieved from locksettings.db. The
hash values of PIN guesses are calculated, respectively, with
the salt and those hash values are eventually tested against
the hash value from password.key. To avoid unnecessary
computational efforts, our cracking procedure first checks
whether the password was updated.

3. Evaluation

When casual users encounter this backdoor installation
on their Android devices, they cannot realize that the back-
door is installed and used because their unlock secrets are
not changed and all the activities of the backdoor can be
temporarily performed when a specific push notification is
triggered by an attacker.

To validate our backdoor’s resistance against malware
detection, we tested whether commercial anti-virus scanners
could successfully detect our backdoor implementation. We
used VirusTotal (https://www.virustotal.com) and SandDroid
(http://sanddroid.xjtu.edu.cn) that are popularly used for an-
alyzing Android APK files.

VirusTotal provides 55 anti-virus scanners in total to
detect various types of malicious applications. However, we
found that all those scanners failed to detect our backdoor
implementation.

SandDroid performs both static and dynamic analysis
on a given Android application to measure its potential risk
score between 0 and 100. In our experiment, SandDroid re-
ported 24 as its risk score for our backdoor implementation.
We note that this risk score is close to the mean for normal
Android applications. The mean risk score of 30 randomly
selected Google applications (e.g., YouTube and Gmail)
from the Google Play was 26.47 with a standard deviation
of 17.87. We also analyzed 30 malicious applications using
SandDroid to compare their resulting scores with those of
the normal applications. Unlike the normal applications,
SandDroid reported 100 as the risk scores for all the tested
malicious applications.

Significant changes on the Android application package
(APK) file after being repackaged with our backdoor could
be an important clue to detect the backdoor. To analyze this,
we repackaged a normal application using Firebase with
our backdoor implementation and compared the differences
between before and after the repackaging in terms of the
following aspects: required permissions, activities, services,
receivers, providers, intent filters, contained files and file
size. As a result, no difference was observed except the
increases in the APK file size and the number of files
contained in the APK file; specifically, the number of con-
tained files has increased by 8 and the APK file size has
increased by about 1.5 Mbytes due to the backdoor’s codes
and dictionary files.

To measure the execution time, we conducted the dic-
tionary attacks. We used the 4-digit PIN dictionary [1].

TABLE 1. AVERAGE POWER CONSUMPTION (J) TAKEN TO RUN OUR
BACKDOOR APPLICATION (µ: AVERAGE, σ: STANDARD DEVIATION).

Changed Not changed
µ 10.393J 0.050J
σ 1.944J 0.050J

Ratio 1.669% 0.008%

To avoid the selection bias, we randomly selected 5,000
password samples from real PIN datasets, respectively. We
measured the execution time taken from our backdoor im-
plementation. For 4-digit PIN dictionary attacks, 98.72% of
the tested PIN samples was cracked within 5 seconds.

To see the impact of our backdoor on power usage, we
measured the power consumption of our backdoor appli-
cation using PowerTutor [2]. We configured the victim’s
device to include only our backdoor, PowerTutor and default
system applications. We measured the power consumption
of our backdoor in three different circumstances; Idle rep-
resents the case that our backdoor has not yet been triggered,
Changed represents the case that the user changes the
password every time, and Not changed represents the
case that the user never changes the password. We note
that in Not changed case our backdoor just pops up a
notification of the password cracked before without the need
of executing the password cracking procedures. We used the
last password in our dictionaries as the victim’s password
to estimate the worst case execution time.

In Table 1, Ratio represents the influence of our attack
on battery. To take this, we measured the total power usage
of the device for an hour. The measurements in Idle
case indicate that our backdoor application consumes no
power before being triggered. Also, Not changed and
Changed results show that our implementation has only
a negligible effect on battery.

4. Conclusions

We presented a design of backdoor that makes an at-
tacker consistently unlock a victim’s Android device in a
stealthy manner. We believe that our backdoor design can
also be flexibly used to construct other types of malware
(e.g., botnet) by evading existing defense mechanisms such
as firewall and intrusion detection system.

Acknowledgment

This work was supported by Defense Acquisition Program
Administration and Agency (UD060048AD).

References

[1] H. Kim and J. H. Huh, “PIN selection policies: Are they really
effective?” Computers & Security, vol. 31, no. 4, pp. 484 – 496, 2012.

[2] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and
L. Yang, “Accurate online power estimation and automatic battery be-
havior based power model generation for smartphones,” in Proceedings
of Conference on Hardware/Software Codesign and System Synthesis,
2010.


