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Abstract—This work studies the entity-wise topical behavior
from massive network logs. Both the temporal and the spatial
relationships of the behavior are explored with the learning
architectures combing the recurrent neural network (RNN) and
the convolutional neural network (CNN). To make the behavioral
data appropriate for the spatial learning in CNN, several reduc-
tion steps are taken to form the topical metrics and place them
homogeneously like pixels in the images. The experimental result
shows both the temporal- and the spatial- gains when compared
to a multilayer perceptron (MLP) network. A new learning
framework called spatially connected convolutional networks
(SCCN) is introduced to more efficiently predict the behavior.

I. INTRODUCTION

Understanding and predicting the behavior of an entity over
a large domain of different actions is a challenging problem.
The problem is even more difficult when the behavioral data
is massively collected with lots of noise. There are various
studies in using behavioral data as a global indicator. For
instance, large scale activity data is used to measure and
track the user experience, to decide the advertisement to
be delivered, or to study the factors affecting the behavior,
which can be applied to improve advertisement targeting.
However, the aforementioned large scale behavioral analytics
use cases have one aspect in common: they heavily simplified
the response domain to have one or few learnable targets.

In this work, we predict the response whose space is the
same as the input space, using the historical behavioral data.
The input data is the network access log containing the entity
ID, the timestamp, and the meta data about the accessed
resource. First, we organize the activities into topics. The
topical activities on each topic is then quantified and measured
for each entity. Over several periods of time, we observe the
topical behavior over the same set of topics for all entities
in the experiment. The prediction task is as Figure 1(a).
Several combinations of deep neural network are explored to
predict topical behavior. Specifically, the RNN such as the long
short-term memory units (LSTM) [1] is employed to learn
the temporal variation patterns of the topical behavior. The
CNN and the locally-connected network (LCN) [2] are used
to learn the spatial composition of the topical behavior. The
relationship between topics needs to be abstracted and evenly
distributed like pixels for the CNN and the LCN to learn.

II. METHOD

To keep the behavior prediction within a trackable scope,
we summarize the input network activities into topics. Starting

(a) Topical behavior of an entity. The same grid position over time is the
metric of the same topic. Color means the intensity of the topical metric.

(b) TDRN

(c) LRCN

Figure 1. Different learning architecture for topical behavior prediction.

from the activity log of all entities over a benchmark period
of time, the latent latent Dirichlet allocation (LDA) algorithm
is applied to find the topics in a high dimension word vector
space. For each entity, the vectorized log entries are summa-
rized on these topics to form quantitative metrics. For example,
the topical volume over topic t of entity e can be measured as

V
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t = log(

∑
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ra + 1)), (1)

where ra is the relevancy for activity a to topic t, and B is
the set of activities defined by the unique content documents
of all activities logged within the time period T .

To better explored the intra-topic relationship in the behav-
ioral data, we want to capture the co-occurrence detail between
any pair of topics. Furthermore, we want to discriminate the
detail according to the distance between the topic pair - the
co-occurrence means more when the two topics are closer. In
order to arrange the topical metrics to be similar to the pixels
in an image into the CNN, the topical metrics need to go
through the following two steps, as illustrated in Figure 2.

1) Dimension reduction: use methods like PCA or t-SNE
to map the topical metrics into a 2D or 3D space, while
maintaining the spatial relationship among topics.

2) Homogeneous mapping: the topical metrics need to be
placed evenly over the visualization space for the CNN
to digest. The spatial relationship among the topics also
needs to be maintained. One way to achieve this goal is
the split-diffuse (SD) algorithm [3].
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Figure 2. Topical behavior. (a) data points in the high dimensional space, where topics are extracted; (b) topics after dimension reduction; (c) topics after
homogeneous mapping; (d) topical metrics for an entity

(a) RLE on training data (b) RLE on validation data (c) RLE on testing data

∆RLE

MLP −
TDRN 15.27%
LRCN 18.53%
SCCN 19.76%

Figure 3. Performance on various learning architectures; x-axis indicates the number of epochs.

III. TEMPORAL AND SPATIAL LEARNING

We adopt various architectures to study how the temporal
and the spatial information can help learning the topical
behavior. For the benchmark MLP, the topical metrics over
different time periods are cascaded into one single 1D vector
for each sample. For the time distributed recurrent network
(TDRN) in Figure 1(b), we use one layer of LSTMs to track
the topical metrics as a sequence for each time period, and
then another layer of LSTMs to track the output states.

The long-term recurrent convolutional networks (LRCN [4])
combines the convolutional layers with the long-range tem-
poral recursion. The LRCN in Figure 1(c) exploits both the
temporal and the spatial relationship among topics. LCN is
another option to explore spatially while being time efficient.
In the proposed spatially connected convolutional networks
(SCCN), the convolutional units in LRCN are replaced by the
LCNs. The LCNs do not share the trained weights between
different position. Instead, the same set of weights is applied
to the same position across samples.

In predicting the trending or risky topic, the cost of missed
future trend is higher than the cost of false positives. One
candidate loss metric, the risk loss error (RLE), is defined as

RLE =
1

|V|
∑
∀v∈V

v(v̂ − v)2, (2)

The data set comes from 150-million activity log entries
of 98, 881 network entities, split into 69, 407 training, 7, 712
validation and 21, 762 testing samples. Each log entry contains
the entity ID, timestamp, and the description of the accessed
network resource. For any sample over any time period, the
content of its log entries is summarized as in Equation 1 with
the pretrained LDA from the benchmark log content. Each
sample has the topical metrics over time as in Figure 1. The
predicted target values in the testing samples are from the
time periods that are later then all the training time periods.

This setup simulates the behavioral prediction for the future.
Regulations are adopted to generalize the models.

IV. RESULT AND CONCLUSION

Figure 3 shows the experimental result on loss metrics
RLE. Experiments were also conducted on other metrics (the
results being omitted). With only the temporal relationship
explored by the TDRN, the prediction gain against the MLP
ranging from 11.32% to 16.73% depending on the loss metric
and the evaluation scenario. The LRCN explores both temporal
relationship and spatial relationship over topics. The additional
spatial information among topics tracked by CNN further im-
prove the prediction gain from 13.73% to 19.92%. Replacing
the CNN spatial tracking with the LCNs, the SCCN provides
a comparable 14.20% to 19.85% prediction gain to the LRCN.
The locally customized patch dictionaries allows the SCCN to
be better regulated than the LRCN. Nevertheless, the SCCN is
1.5 to 3 times faster than the LRCN in the comparable setup.
This is similar to the observation in [5].

In conclusion, a new summarization framework is proposed
to predict the topical behavior for all network entities. Several
state-of-the-art learning architectures are tested to verify the
temporal- and the spatial-gain. Within this new framework, the
proposed SCCN is more efficient and better regulated.
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