
Optimized Honest-Majority MPC for Malicious
Adversaries - Breaking the 1 Billion-Gate Per

Second Barrier
Toshinori Araki∗, Assi Barak† Jun Furukawa‡, Tamar Lichter§, Yehuda Lindell†,

Ariel Nof†, Kazuma Ohara∗, Adi Watzman¶ and Or Weinstein†

∗NEC Corporation, Japan
Email: t-araki@ek.jp.nec.com, k-ohara@ax.jp.nec.com

†Bar-Ilan University, Israel
Email: assaf.barak@biu.ac.il, lindell@biu.ac.il, nofdinar@gmail.com, oror.wn@gmail.com

‡NEC Corporation, Israel
Email: Jun.Furukawa@necam.com

§Queens College, New York, USA; work carried out at Bar-Ilan University
Email: tamar.d.lichter@gmail.com

¶Weizman Institute, Israel; work carried out at Bar-Ilan University
Email: adi.watzman@weizmann.ac.il

Abstract—Secure multiparty computation enables a set of
parties to securely carry out a joint computation of their private
inputs without revealing anything but the output. In the past
few years, the efficiency of secure computation protocols has
increased in leaps and bounds. However, when considering the
case of security in the presence of malicious adversaries (who
may arbitrarily deviate from the protocol specification), we
are still very far from achieving high efficiency. In this paper,
we consider the specific case of three parties and an honest
majority. We provide general techniques for improving efficiency
of cut-and-choose protocols on multiplication triples and utilize
them to significantly improve the recently published protocol of
Furukawa et al. (ePrint 2016/944). We reduce the bandwidth of
their protocol down from 10 bits per AND gate to 7 bits per AND
gate, and show how to improve some computationally expensive
parts of their protocol. Most notably, we design cache-efficient
shuffling techniques for implementing cut-and-choose without
randomly permuting large arrays (which is very slow due to con-
tinual cache misses). We provide a combinatorial analysis of our
techniques, bounding the cheating probability of the adversary.
Our implementation achieves a rate of approximately 1.15 billion
AND gates per second on a cluster of three 20-core machines with
a 10Gbps network. Thus, we can securely compute 212,000 AES
encryptions per second (which is hundreds of times faster than
previous work for this setting). Our results demonstrate that
high-throughput secure computation for malicious adversaries is
possible.

I. INTRODUCTION
A. Background

In the setting of secure computation, a set of parties with
private inputs wish to compute a joint function of their inputs,
without revealing anything but the output. Protocols for secure
computation guarantee privacy (meaning that the protocol
reveals nothing but the output), correctness (meaning that
the correct function is computed), and more. These secu-
rity guarantees are provided in the presence of adversarial
behavior. There are two classic adversary models that are
typically considered: semi-honest (where the adversary follows
the protocol specification but may try to learn more than

allowed from the protocol transcript) and malicious (where
the adversary can run any arbitrary polynomial-time attack
strategy). Security in the presence of malicious adversaries
provides much stronger security guarantees, but is far more
challenging with respect to efficiency.

Feasibility and construction paradigms. Despite its strin-
gent requirements, it has been shown that any polynomial-
time functionality can be securely computed with computa-
tional security [25], [12], [3] and with information-theoretic
security [5], [7]. These results hold both for semi-honest
and malicious adversaries, but an honest majority must be
assumed in order to obtain information-theoretic security even
for semi-honest adversaries. There are two main approaches to
constructing secure computation protocols: the secret-sharing
approach (followed by [5], [7], [12]) works by having the par-
ties interact for every gate of the circuit, whereas the garbled-
circuit approach (followed by [25], [3]) works by having the
parties construct an encrypted version of the circuit which can
be computed at once. Both approaches have importance and
have settings where they perform better than the other. On the
one hand, the garbled-circuit approach yields protocols with
a constant number of rounds. Thus, in high-latency networks,
they far outperform secret-sharing based protocols which have
a number of rounds linear in the depth of the circuit being
computed. On the other hand, protocols based on secret-
sharing have many rounds but can have much lower bandwidth
than protocols based on garbled circuits. Thus, in low-latency
networks, the secret-sharing approach can potentially achieve
a far higher throughput (and reasonable latency for circuits
that are not too deep).

As a result, the type of protocol preferred depends very
much on whether or not high throughput or low latency is the
goal. If low latency is needed (and the circuit being computed
is deep), then constant-round protocols like [25] outperform
secret-sharing based protocols, even on very fast networks.

However, these same protocols fail to achieve high throughput
due to the large bandwidth incurred. Due to this situation, it
is important to develop protocols for low and high latency
networks, with better response time and/or throughput.

In this paper, we focus on the task of achieving high-
throughput secure computation on low-latency networks, with
security for malicious adversaries.

Efficiency. The aforementioned feasibility results demonstrate
that secure computation is possible in theory, but do not
necessarily show how to achieve it efficiently. The problem
of constructing efficient protocols for secure computation has
gained significant interest recently and progress has been
extraordinarily fast, transforming the topic from a notion
of theoretical interest only, into a technology that is even
being commercialized by multiple companies. In order to
demonstrate this progress, it suffices to compare the first
implementation in 2004 of a semi-honest two-party protocol
based on Yao’s garbled circuits that computed at a rate of
approximately 620 gates per second [21], to more recent work
that processes at a rate of approximately 1.3 million gates per
second [13]. This amazing progress was due to a long series
of works that focused on all cryptographic and algorithmic
aspects of the problem, as well as the advent of ubiquitous
crypto hardware acceleration in the form of AES-NI and more.
See [15], [18], [8], [14], [9], [19], [4], [17], [24], [20], [26],
[16], [23] for just some examples.

Despite this extraordinary progress, we are still very far
away from the goal of achieving high throughput secure com-
putation, especially for malicious adversaries. In 2012, [19]
declared the age of “billion-gate secure computation” for
malicious adversaries; however, their implementation utilized
256-core machines and took over 2.5 hours to process a billion
AND gates, thereby achieving a rate of 100,000 AND gates
per second. More recently, two-party secure computation for
malicious adversaries was achieved at the rate of over 26,000
AND gates per second on standard hardware [23].

Due to the great difficulty of achieving high throughput for
the setting of two parties (and no honest majority in general),
we consider the three-party case with an honest-majority. This
is interesting in many applications, as described in [22], [1],
and is thus worth focusing on.

B. Our Contributions
In this paper, we present a high-throughput protocol for

three-party secure computation with an honest majority and
security for malicious adversaries. We optimize and imple-
ment the protocol of [11], that builds on the protocol of [1]
that achieves a rate of over 7 billion AND gates per second,
but with security only for semi-honest adversaries. The multi-
plication (AND gate) protocol of [1] is very simple; each party
sends only a single bit to one other party and needs to compute
only a few very simple AND and XOR operations. Security
in the presence of malicious adversaries is achieved in [11] by
using the cut-and-choose technique in order to generate many
valid multiplication triples (shares of secret bits (a, b, c) where
a, b are random and c = ab). These triples are then used to
guarantee secure computation, as shown in [2]. This paradigm
has been utilized in many protocols; see [20], [9], [16] for just
a few examples.

The cut-and-choose method works by first generating many
triples, but with the property that a malicious party can make

c 6= ab. Then, some of the triples are fully “opened” and
inspected, to verify that indeed c = ab. The rest of the triples
are then grouped together in “buckets”; in each bucket, one
triple is verified by using all the others in the bucket. This
procedure has the property that the verified triple is valid (and
a, b, c unknown), unless the unfortunate event occurs that all
triples in the bucket are invalid. This method is effective since
if the adversary causes many triples to be invalid then it is
caught when opening triples, and if it makes only a few triples
invalid then the chance of a bucket being “fully bad” is very
small. The parameters needed (how many triples to open and
how many in a bucket) are better – yielding higher efficiency –
as the number of triples generated overall increases. Since [1]
is so efficient, it is possible to generate a very large number
of triples very quickly and thereby obtain a very small bucket
size. Using this idea, with a statistical security level of 2−40,
the protocol of [11] can generate 220 triples while opening very
few and using a bucket size of only 3. In the resulting protocol,
each party sends only 10 bits per AND gate, providing the
potential of achieving very high throughput.

We carried out a highly-optimized implementation of [11]
and obtained a very impressive rate of approximately 500
million AND gates per second. However, our aim is to obtain
even higher rates, and the microbenchmarking of our imple-
mentation pointed to some significant bottlenecks that must be
overcome in order to achieve this. First, in order for cut-and-
choose to work, the multiplication triples must be randomly
divided into buckets. This requires permuting very large arrays,
which turns out to be very expensive computationally due to
the large number of cache misses involved (no cache-aware
methods for random permutation are known and thus many
cache misses occur). In order to understand the effect of this,
note that on Intel Haswell chips the L1 cache latency is 4
cycles while the L3 cache latency is 42 cycles [27]. Thus, on
a 3.4 GHz processor, the shuffling alone of one billion items
in L3 cache would cost 11.7 seconds, making it impossible
to achieve a rate of 1 billion gates per second (even using
20 cores). In contrast, in L1 cache the cost would be reduced
to just 1.17 seconds, which when spread over 20 cores is not
significant. Of course, this is a simplistic and inexact analysis;
nevertheless, our experiments confirm this type of behavior.

In addition to addressing this problem, we design protocol
variants of the protocol of [11] that require less communica-
tions. This is motivated by the assumption that bandwidth is
a major factor in the efficiency of the protocol.

Protocol-design contributions. We optimized the protocol
of [11], both improving its theoretical efficiency (e.g., com-
munication) as well as its practical efficiency (e.g., via cache-
aware design). We have the following contributions:
1) Cache-efficient shuffling (Section III-A): We devise a cache-

efficient method of permuting arrays that is sufficient for
cut-and-choose. We stress that our method does not yield
a truly random permutation of the items. Nevertheless,
we provide a full combinatorial analysis proving that it
suffices for the goal of cut-and-choose. We prove that the
probability that an adversary can successfully cheat with
our new shuffle technique is the same as when carrying
out a truly random permutation.

2) Reduced bucket size (Section III-B): As we have described
above, in the protocol of [11], each party sends 10 bits to

one other party for every AND gate (when computing 220

AND gates and with a statistical security level of 2−40).
This is achieved by taking a bucket size of 3. We reduce
the bucket size by 1 and thus the number of multiplication
triples that need to be generated and used for verification by
one third. This saves both communication and computation,
and results in a concrete cost of each party sending 7 bits
to one other party for every AND gate (instead of 10).

3) On-demand with smaller buckets (Section III-C): As will be
described below, the improved protocol with smaller buck-
ets works by running an additional shuffle on the array of
multiplication triples after the actual circuit multiplications
(AND gates) are computed. This is very problematic from
a practical standpoint since many computations require
far less than 220 AND gates, and reshuffling the entire
large array after every small computation is very wasteful.
We therefore provide an additional protocol variant that
achieves the same efficiency but without this limitation.

All of our protocol improvements and variants involve an-
alyzing different combinatorial games that model what the
adversary must do in order to successfully cheat. Since the
parameters used in the protocol are crucial to efficiency, we
provide (close to) tight analyses of all games.

Implementation contributions. We provide a high-quality
implementation of the protocol of [11] and of our proto-
col variants. By profiling the code, we discovered that the
SHA256 hash function computations specified in [11] take a
considerable percentage of the computation time. We therefore
show how to replace the use of a collision-resistant hash func-
tion with a secure MAC and preserve security; surprisingly,
this alone resulted in approximately a 15% improvement in
throughput. This is described in Section III-D.

We implemented the different protocol variants and ran
them on a cluster of three mid-level servers (2.3GHz CPUs
with twenty cores) connected by a 10Gbps network. As we
describe in Section IV, we used Intel vectorization and a
series of optimizations to achieve our results. Due to the
practical limitations of the first variant with smaller buckets,
we only implemented the on-demand version. The highlights
are presented in Table I. Observe that our fastest variant
achieves a rate of over 1.1 billion AND-gates per second,
meaning that large scale secure computation is possible even
for malicious adversaries.

TABLE I
IMPLEMENTATION RESULTS; THROUGHPUT

Protocol Variant AND gates/sec %CPU Gbps
Baseline [11] 503,766,615 71.7% 4.55

Cache-efficient (SHA256) 765,448,459 64.84% 7.28
Smaller buckets, on-demand (SHA256) 988,216,830 65.8% 6.84

Smaller buckets, on-demand (MAC) 1,152,751,967 71.28% 7.89

Observe that the cache-efficient shuffle alone results in a
50% increase in throughput, and our best protocol version is
2.3 times faster than the protocol described in [11].

Offline/online. Our protocols can run in offline/online mode,
where multiplication triples are generated in the offline phase
and used to validate multiplications in the online phase. The
protocol variants with smaller bucket size (items (2) and (3)
above) both require additional work in the online phase to
randomly match triples to gates. Thus, although these variants
have higher throughput, they have a slightly slower online time

(providing an interesting tradeoff). We measured the online
time only of the fastest online version; this version achieves
a processing rate of 2.1 billion AND gates per second (using
triples that were previously prepared in the offline phase).

Combinatorial analyses. As we have mentioned above,
the combinatorial analyses used to prove the security of
our different protocols are crucial for efficiency. Due to this
observation, we prove some independent claims in Section V
that are relevant to all cut-and-choose protocols. First, we ask
the question as to whether having different-sized buckets can
improve the parameters (intuitively, this is the case since it
seems harder for an adversary to fill a bucket with all-bad
items if it doesn’t know the size of the bucket). We show
that this cannot help “much” and it is best to take buckets of
all the same size or of two sizes B and B + 1 for some B.
Furthermore, we show that it is possible to somewhat tune the
cheating probability of the adversary. Specifically, if a bucket-
size B taken does not give a low enough cheating probability
then we show that instead of increasing the bucket size to
B+1 (which is expensive), it is possible to lower the cheating
probability moderately at less expense.

C. Related work.
As we have described above, a long series of work has been

carried out on making secure computation efficient, both for
semi-honest and malicious adversaries. Recent works like [23]
provide very good times for the setting of two parties and
malicious adversaries (achieving a rate of 26,000 AND gates
per second). This is far from the rates we achieve here.
However, we stress that they work in a much more difficult
setting, where there is no honest majority.

To the best of our knowledge, the only highly-efficient
implemented protocol for the case of three parties with an
honest majority and (full simulation-based security) for mali-
cious adversaries is that of [22], which follows the garbled-
circuit approach. Their protocol achieves a processing rate of
approximately 480,000 AND gates per second on a 1Gbps
network with single-core machines. One could therefore ex-
trapolate that on a setup like ours, their protocol could achieve
rates of approximately 5,000,000 AND gates per second. Note
that by [22, Table 3] a single AES circuit of 7200 AND gates
requires sending 750KB, or 104 bytes (832 bits) per gate.
Thus, on a 10Gbps network their protocol cannot process more
than 12 million AND gates per second (even assuming 100%
utilization of the network, which is typically not possible, and
that computation is not a factor). Our protocol is therefore
at least two orders of magnitude faster. We stress, however,
that the latency of [22] is much lower than ours, which makes
sense given that it follows the garbled circuit approach.

The VIFF framework also considers an honest majority and
has an implementation [8]. The offline time alone for preparing
1000 multiplications is approximately 5 seconds. Clearly, on
modern hardware, this would be considerably faster, but only
by 1-2 orders of magnitude.

II. THE THREE-PARTY PROTOCOL OF [11] –
THE BASELINE

A. An Informal Description
In [11], a three-party protocol for securely computing any

functionality (represented as a Boolean circuit) with security in

the presence of malicious adversaries and an honest majority
was presented. The protocol is extremely efficient; for a
statistical cheating probability of 2−40 the protocol requires
each party to send only 10 bits per AND gate. In this section,
we describe the protocol and how it works. Our description is
somewhat abstract and omits details about what exact secret
sharing method is used, how values are checked and so on.
This is due to the fact that all the techniques in this paper
are general and work for any instantiation guaranteeing the
properties that we describe below. We refer the reader to
Appendix A for full details of the protocol of [11].

Background – multiplication triples. The protocol follows
the paradigm of generating shares of multiplication triples
([a], [b], [c]) where a, b, c ∈ {0, 1} such that c = ab, and [x]
denotes a sharing of x. As we have mentioned, this paradigm
was introduced by [2] and has been used extensively to achieve
efficient secure computation [20], [9], [16]. These triples have
the following properties: it is possible to efficiently validate
if a triple is correct (i.e., if c = ab) by opening it, and it is
possible to efficiently verify if a triple ([a], [b], [c]) is correct
without opening it by using another triple ([x], [y], [z]). This
latter check is such that if one triple is correct and the other is
not, then the adversary is always caught. Furthermore, nothing
is learned about the values a, b, c (but the triple ([x], [y], [z])
has been “wasted” and cannot be used again).

Protocol description: The protocol of [11] works in the
following way:
1) Step 1 – generate random multiplication triples: In this

step, the parties generate a large number of triples
([ai], [bi], [ci]) with the guarantee that [ai], [bi] are random
and all sharings are valid (meaning that the secret sharing
values held by the honest parties are consistent and of a
well-defined value). However, a malicious party can cause
ci 6= aibi. In [11] this is achieved in two steps; first
generate random sharings of [ai], [bi] and then run the
semi-honest multiplication protocol of [1] to compute [ci].
This multiplication protocol has the property that the result
is always a valid sharing, but an adversary can cause
ci 6= aibi and thus it isn’t necessarily correct.

2) Step 2 – validate the multiplication triples: In this step, the
parties validate that the triples generated are valid (meaning
that ci = aibi). This is achieved by opening a few of the
triples completely to check that they are valid, and to group
the rest in “buckets” in which some of the triples are used to
validate the others. The validation has the property that all
the triples in a bucket are used to validate the first triple,
so that if that triple is bad then the adversary is caught
cheating unless all the triples in the bucket are bad. The
triples are randomly shuffled in order to divide them into
buckets, and the bucket-size taken so that the probability
that there exists a bucket with all-bad triples is negligible.
We denote by N the number of triples that need to be
generated (i.e., output from this stage), by C the number
of triples opened initially, and by B the bucket size. Thus,
in order to output N triples in this step, the parties generate
BN + C triples in the previous step.

3) Step 3 – circuit computation: In this step, the parties
securely share their input bits, and then run the semi-honest
protocol of [1] up to (but not including) the stage where
outputs are revealed. We note that this protocol reveals

nothing, and so as long as correctness is preserved, then
full security is obtained.

4) Step 4 – validation of circuit computation: As we described
above, the multiplication protocol used in the circuit com-
putation always yields a valid sharing but not necessarily
of the correct result. In this step, each multiplication in the
circuit is validated using a multiplication triple generated in
Step 2. This uses the exact same procedure of validating
“with opening”; as explained above, this reveals nothing
about the values used in the circuit multiplication but
ensures that the result is correct.

5) Step 5 – output: If all of the verifications passed, the parties
securely reconstruct the secret sharings on the output wires
in order to obtain the output.

The checks of the multiplication triples requires the parties to
send values and verify that they have the same view. In order
to reduce the bandwidth (which is one of the main aims), in
the protocol of [11] the parties compare their views only at
the end before the output is revealed, by sending a collision-
resistant hash of their view which is very short. (A similar
idea of checking only at the end was used in [20], [9]). Note
that Steps 1–2 can be run in a separate offline phase, reducing
latency in the online phase of Steps 3–5.

Efficiency. The above protocol can be instantiated very
efficiently. For example, sharings of random values can be
generated non-interactively, the basic multiplications requires
each party sending only a single bit, and verification of
correctness of triples can be deferred to the end. Furthermore,
since multiplication triples can be generated so efficiently, it is
possible to generate a huge amount at once (e.g., 220) which
significantly reduces the overall number of triples required.
This is due to the combinatorial analysis of the cut-and-choose
game. Concretely, it was shown in [11] that for a cheating
probability of 2−40, one can generate N = 220 triples using
bucket-size B = 3 and opening only C = 3 triples. Thus,
overall 3N +3 triples must be generated. The communication
cost of generating each triple initially is a single bit, the cost
of each validation (in Steps 2 and 4) is 2 bits, and the cost
of multiplying in Step 3 is again 1 bit. Thus, the overall
communication per AND gate is just 10 bits per party (3 bits
to generate 3 triples, 4 bits to validate the first using the second
and third, 1 bit to multiply the actual gate, and 2 bits to validate
the multiplication).

Shuffling and generating buckets. The shuffling of Step 2
in [11] works by simply generating a single array of M =
BN + C triples and randomly permuting the entire array.
Then, the first C triples are opened, and then each bucket
is generated by taking B consecutive triples in the array.
In our baseline implementation, we modified this process.
Specifically, we generate 1 array of length N , and B−1 arrays
of length N+C. The arrays of length N+C are independently
shuffled and the last C triples in each of these arrays is
opened and checked. Finally, the ith bucket is generated by the
taking the ith triple in each of the arrays (for i = 1, . . . , N).
This is easier to implement, and will also be needed in our
later optimizations. We remark that this is actually a different
combinatorial process than the one described and analyzed
in [11], and thus must be proven. In Section III-A, we show
that this makes almost no difference, and an error of 2−40 is

Fig. 1. Microbenchmarking of the baseline implementation (the protocol of [11]), using the CxxProf C++ profiler

achieved when setting N = 220, B = 3 and C = 1 (practically
the same as [11]).

B. Implementation Results and Needed Optimizations

As we have discussed, the above protocol is highly efficient,
requiring only 10 bits of communication per AND gate, and
requiring only very simple operations. As such, one would
expect that a good implementation could achieve a rate that is
just a factor of 10 slower than the semi-honest protocol of [1]
that computes 7.15 billion AND gates per second. However,
our implementation yielded results which fall short of this.

Specifically, on a cluster of three mid-level servers (Intel
Xeon E5-2560 v3 2.3GHz with 20 cores) connected by a
10Gbps LAN with a ping time of 0.13 ms, our implementation
of [11] achieves a rate of 503,766,615 AND gates per second.
This is already very impressive for a protocol achieving
malicious security. However, it is 14 times slower than the
semi-honest protocol of [1], which is significantly more than
the factor of 10 expected by a theoretical analysis.

In order to understand the cause of the inefficiency, see the
microbenchmarking results in Figure 1. This is a slice showing
one full execution of the protocol, with two threads: the
first thread called run_BTG (Beaver Triples Generator) runs
Steps 1–2 of the protocol to generate validated triples; these
are then used in the second thread called MPC while loop
to compute and validate the circuit computation (Steps 3–4
of the protocol). Our implementation works on blocks of 256-
values at once (using the bit slicing described in [1]), and thus
this demonstrates the generation and validation of 256 million
triples and secure computation of the AES circuit approxi-
mately 47,000 times (utilizing 256 million AND gates).1

Observe that over half the time in run_BTG is spent on
just randomly shuffling the arrays in Step 2 (dwarfing all other
parts of the protocol). In hindsight, this makes sense since no
cache-efficient random shuffle is known, and we use the best
known method of Fisher-Yates [10]. Since we shuffle arrays of
one million entries of size 256 bits each, this results in either
main memory or L3 cache access at almost every swap (since
L3 cache is shared between cores, it cannot be utilized when
high throughput is targeted via the use of multiple cores). One
attempt to solve this is to work with smaller arrays, and so a
smaller N . However, in this case, a much larger bucket size
will be needed in order to obtain a cheating bound of at most
2−40, significantly harming performance.

Observe also that the fourth execution of MPC while
loop of the second thread is extremely long. This is due

1The actual times in the benchmark figure should be ignored since the
benchmarking environment is on a local machine and not on the cluster.

to the fact that MPC while loop consumes triples gen-
erated by run_BTG. In this slice, the first three execu-
tions of MPC while loop use triples generated in pre-
vious executions of run_BTG, while the fourth execution
of MPC while loop is delayed until this run_BTG con-
cludes. Thus, the circuit computation thread actually wastes
approximately half its time waiting, making the entire system
much less efficient.

III. PROTOCOL VARIANTS AND OPTIMIZATIONS

In this section, we present multiple protocol improvements
and optimizations to the protocol of [11]. Our variants are all
focused on the combinatorial checks of the protocol, and thus
do not require new simulation security proofs, but rather new
bounds on the cheating probability of the adversary.

Our presentation throughout will assume subprotocols as
described in Section II-A: (a) generate random multiplication
triples, (b) verify a triple “with opening”, (c) verify one triple
using another “without opening”, and (d) verify semi-honest
multiplication using a multiplication triple.

A. Cache-Efficient Shuffling for Cut-and-Choose

As we have discussed, one of the major bottlenecks of
the protocol of [11] is the cost of random shuffling. In this
section, we present a new shuffling process that is cache
efficient. We stress that our method does not compute a true
random permutation over the array. However, it does yield a
permutation that is “random enough” for the purpose of cut-
and-choose, meaning that the probability that an adversary can
obtain a bucket with all bad triples is below the required error.

Informal description. The idea behind our shuffling method
is to break the array into subarrays, internally shuffle each
subarray separately, and then shuffle the subarrays themselves.
By making each subarray small enough to fit into cache (L2
or possibly even L1), and by making the number of subarrays
not too large, this yields a much more efficient shuffle. In
more detail, recall that as described in Section II-A, instead
of shuffling one large array in the baseline protocol, we
start with 1 subarray ~D1 of length N , and B − 1 subarrays
~D2, . . . , ~DB each of size N +C, and we shuffle ~D2, . . . , ~DB .
Our cache-efficient shuffling works by:

1) Splitting each array ~Dk into L subarrays ~Dk,1, . . . , ~Dk,L.
2) Shuffling each subarray separately. (i.e., randomly permut-

ing the entries inside each ~Dk,i).
3) Shuffling the subarrays themselves.
This process is depicted in Figure 2.

Fig. 2. Cache-efficient shuffling method

We remark that in order to further improve efficiency, we
do not shuffle the actual data but rather just the indices.2 This
is much more efficient since it saves many memory copies;
we elaborate on this further in Section IV.

As we will show, in order for this to be secure, it is
necessary to open C triples in each subarray. Thus, N/L+C
triples are needed in each subarray, the size of each ~Dk (for
k = 2, . . . , B) is L · (N/L+ C) = N + CL, and the overall
number of triples needed is N+(B−1)(N+CL). In addition,
overall we execute a shuffling (B−1)(L+1) times: (B−1)L
times on the subarrays each of size N/L+C and an additional
B − 1 times on an array of size L. Interestingly, this means
that the number of elements shuffled is slightly larger than
previously; however, due to the memory efficiency, this is
much faster. The formal description appears in Protocol 3.1.

Intuition – security. It is clear that our shuffling process
does not generate a random permutation over the arrays
~D2, . . . , ~DB . However, for cut-and-choose to work, it is seem-
ingly necessary to truly randomly permute the arrays so that
the adversary has the lowest probability possible of obtaining
a bucket with all-bad triples. Despite this, we formally prove
that our method does suffice; we first give some intuition.

Consider the simplistic case that the adversary generates one
bad triple in each array ~Dk. Then, for every k, the probability
that after the shuffling a bad triple in ~Dk will be located in
the same index as the bad triple in ~D1 is 1

N/L ·
1
L = 1

N

(after opening C triples, there are N/L in the subarray and L
subarrays; the bad triples will match if they match inside their
subarrays and the their subarrays are also matched). Observe
that this probability is exactly the same as in the naive shuffling
process where the entire array of N is shuffled in entirety.

A subtle issue that arises here is the need to open C triples in
each of the sub-arrays ~Dk,j . As we have mentioned, this means
that the number of triples that need to be opened increases as
L increases. We stress that this is necessary, and it does not
suffice to open C triples only in the entire array. In order to see
why, consider the following adversarial strategy: choose one
subarray in each ~Dk and make all the triples in the subarray
bad. Then, the adversary wins if no bad triple is opened
(which happens with probability 1− C

N+C) and if the B bad

2The protocol is highly efficient when using vectorization techniques, as
described in Section IV. Thus, each item in the array is actual 256 triples and
the data itself is 96 bytes.

PROTOCOL 3.1 (Generating Valid Triples – Cache-Efficiently):
• Input: The number N of triples to be generated.
• Auxiliary input: Parameters B,C,X,L, such that N = (X−
C)L; N is the number of triples to be generated, B is the
number of buckets, C the number of triples opened in each
subarray, and X = N/L+ C is the size of each subarray.

• The Protocol:
1) Generate random sharings: The parties generate 2M shar-

ings of random values, for M = 2(N + CL)(B − 1) + 2N ;
denote the shares that they receive by [([ai], [bi])]

M/2
i=1 .

2) Generate array ~D of multiplication triples: As in Step 1 of
the informal description in Section II-A (see Protocol A.1).

3) Cut and bucket: In this stage, the parties perform a first
verification that the triples were generated correctly, by
opening some of the triples.
a) Each party splits ~D into vectors ~D1, . . . , ~DB such that

~D1 contains N triples and each ~Dj for j = 2, . . . , B
contains N + LC triples.

b) For k = 2 to B: each party splits ~Dk into L subarrays
of equal size X , denoted by ~Dk,1, . . . , ~Dk,L.

c) For k = 2, . . . , B and j = 1, . . . , L: the parties
jointly and securely generate a random permutation of
the vector ~Dk,j .

d) For k = 2, . . . , B: the parties jointly and securely
generate a random permutation of the vector [1, . . . , L]
and permute the subarrays in ~Dk accordingly.

e) For k = 2, . . . , B and j = 1, . . . , L: The parties open
and check each of the first C triples in ~Dk,j , and remove
them from ~Dk,j . If a party rejects any check, it sends ⊥
to the other parties and outputs ⊥.

f) The remaining triples are divided into N sets of triples
~B1, . . . , ~BN , each of size B, such that the bucket ~Bi

contains the i’th triple in ~D1, . . . , ~DB .
4) Check buckets: In each bucket, B − 1 triples are used to

validate the first (as in Step 2 of the informal description in
Section II-A and as in Protocol A.1).

• Output: The parties output ~d.

subarray are permuted to the same position (which happens
for each with probability 1/L). The overall probability that the
adversary wins is close to 1

LB which is much too large (note
that L is typically quite small). By opening balls in each ~Dk,j ,
we prevent the adversary from corrupting an entire subarray
(or many triples in a subarray).

Before proceeding, note that if we set L = 1, we obtain
the basic shuffling of Section II-A (and its formal description
in Appendix A), and thus the combinatorial analysis provided
next, applies to that case as well.

Proof of security – combinatorial analysis. We now prove
that the adversary can cause the honest parties to output a
bad triple in Protocol 3.1 with probability at most 1

NB−1 .
This bound is close to tight, and states that it suffices to
take B = 3 for N = 220 exactly as proven in [11] for
the baseline protocol. However, in contrast to the baseline
protocol, here the parties must open (B−1)CL triples (instead
of just (B − 1)C). Nevertheless, observe that the bound is
actually independent of the choice of C and L. Thus, we
can take C = 1 and we can take L to be whatever is
suitable so that N/L+C fits into the cache and L is not too
large (if L is large then many triples are wasted in opening
and the permutation of {1, . . . , L} would become expensive).
Concretely, for N = 220 one could take L = 512 and then
each subarray is of size 2049 (2048 plus one triple to be

opened). Thus, 512(B − 1) = 1024 triples overall are opened
when generating 220 triples, which is insignificant.

We start by defining a combinatorial game which is equiv-
alent to the cut-and-bucket protocol using the optimized shuf-
fling process. Recall that C denotes the number of triples that
are opened in each subarray, B denotes the size of the bucket,
L denotes the number of subarrays, and X = N/L+C denotes
the number of triples in each subarray.

Game1(A, X, L,B,C):
1) The adversary A prepares a set D1 of (X−C)L balls and

B − 1 sets D2, . . . , DB of X ·L balls, such that each ball
can be either bad or good.

2) Each set Dk is divided into L subsets Dk,1, . . . , Dk,L of
size X . Then, for each subset Dk,j where k ∈ {2, . . . , B}
and j ∈ [L], C balls are randomly chosen to be opened. If
one of the opened balls is bad then output 0. Otherwise,
the game proceeds to the next step.

3) Each subset Dk,j where k ∈ {2, . . . , B} and j ∈ [L]
is randomly permuted. Then, for each set Dk where
k ∈ {2, . . . , B}, the subsets Dk,1, . . . , Dk,L are randomly
permuted inside Dk. Denote by N = L(X − C) the size
of each set after throwing the balls in the previous step.
Then, the balls are divided into N buckets B1, . . . , BN ,
such that Bi contains the ith ball from each set Dk where
k ∈ [B].

4) The output of the game is 1 if and only if there exists i
such that bucket Bi is fully bad, and all other buckets are
either fully bad or fully good.

We begin by defining the bad-ball profile Tk of a set
Dk to be the vector (tk,1, . . . , tk,L) where tk,j denotes the
number of bad balls in the j’th subarray of Dk. We say that
two sets Dk, D` have equivalent bad-ball profiles is Tk is a
permutation of T` (i.e., the vectors are comprised of exactly
the same values, but possibly in a different order). We begin
by proving that the adversary can only win if all sets have
equivalent bad-ball profiles.

Lemma 3.2: Let T1, . . . , Tk be the bad-ball profiles of
D1, . . . , DL. If Game1(A, X, L,B,C) = 1 then all the bad-
ball profiles of T1, . . . , Tk are equivalent.

Proof: This is straightforward from the fact the adversary
wins (and the output of the game is 1) only if for every i ∈ [n]
all the balls in the ith place of D1, . . . , DB are either bad or
good. Formally, assume there exist k, ` such that Tk and T` are
not equivalent. Then, for every permutation of the subsets in
Dk and D`, there must exist some j such that tk,j 6= t`,j after
the permutation. Assume w.l.o.g that tk,j > t`,j . Then, for
every possible permutation of the balls in Dk,j and D`,j , there
must be a bad ball in Dk,j that is placed in the same bucket as
a good ball from D`,j , and the adversary must lose. Thus, if the
adversary wins, then all bad-ball profiles must be equivalent.

Next we prove that the best strategy for the adversary is to
choose bad balls so that the same number of bad balls appear in
every subset containing bad balls. Formally, we say that a bad-
ball profile T = (t1, . . . , tL) is single-valued if there exists a
value t such for every i = 1, . . . , ` it holds that ti ∈ {0, t} (i.e.,
every subset has either zero or t bad balls). By Lemma 3.2 we
know that all bad-ball profiles must be equivalent in order for
the adversary to win. From here on, we can therefore assume

that A works in this way and there is a single bad-ball profile
chosen by A. Note that if the adversary chooses no bad balls
then it cannot win. Thus, the bad-ball profile chosen by A
must have at least one non-zero value. The following lemma
states that the adversary’s winning probability is improved by
choosing a single-valued bad-ball profile.

Lemma 3.3: Let T = (t1, . . . , tL) be the bad-ball profile
chosen by A and let t be a non-zero value in T . Let
T ′ = (t′1, . . . , t

′
L) be the bad-ball profile derived from T

by setting t′i = t if ti = t and setting t′i = 0 otherwise
(for every i = 1, . . . , L). Then, Pr[Game1(A, X, L,B,C) =
1] ≤ Pr[Game1(AT ′ , X, L,B,C) = 1], where AT ′ chooses
the balls exactly like A except that it uses profile T ′.

Proof: Let T be the bad-ball profile chosen by A and
define T ′ as in the lemma. Let E1 denote the event that no
bad balls were detected when opening C balls in every subset,
that all subsets containing t bad balls are matched together,
and that all bad balls in these subsets containing t bad balls are
matched in the same buckets. By the definition of the game,
it follows that Pr[Game1(AT ′ , X, L,B,C) = 1] = Pr[E1].
Next, define by E2 the probability that in the game with A,
the subsets with a number of bad balls not equal to t are
matched and bucketed together. Then,

Pr[Game1(A, X, L,B,C) = 1] = Pr[E1 ∧ E2].

We have that
Pr[Game1(A, X, L,B,C) = 1]

= Pr[E1 ∧ E2] = Pr[E2 | E1] · Pr[E1]

≤ Pr[E1] = Pr[Game1(AT ′ , X, L,B,C) = 1]

and the lemma holds.
We are now ready to prove that the adversary can win in

the game with probability at most 1/NB−1 (independently of
C,N , as long as C > 0).

Theorem 3.4: For every adversary A, for every L > 0 and
0 < C < X , it holds that

Pr[Game1(A, X, L,B,C) = 1] ≤ 1

NB−1

where N = (X − C)L.
Proof: By Lemma 3.3 it follows that the best strategy for

the adversary is to choose some S subsets from each set, and
to put exactly t bad balls in each of them, for some t, while
all other subsets contain only good balls. Thus, overall there
are SB subsets containing bad balls.

Next, we analyze the success probability of the adversary
in the game when using this strategy. We define three inde-
pendent events:
Ec: the event that no bad balls were detected when opening
C balls in each of the S sub-sets containing t bad balls in
D2, . . . , DB . Since there are

(
X
C

)
ways to choose C balls

out of X balls, and
(
X−t
C

)
ways to choose C balls without

choosing any of the t bad balls, we obtain that

Pr[Ec] =

((
X−t
C

)(
X
C

))S(B−1)= ((X − t)!(X − C)!
X!(X − t− C)!

)S(B−1)
(1)

EL: the event that after permuting the subsets in D2, . . . , DB ,
the S subsets containing t bad balls are positioned at the same
locations of the S subsets in D1. There are L! ways to permute
the subsets in each Dk, and S!(L−S)! ways to permute such

that the subsets with t bad balls will be in the same location
as in D1. Thus, we have

Pr[EL] =

(
S!(L− S)!

L!

)B−1
=

(
L

S

)−(B−1)
Et: the event that after permuting the balls inside the sub-
sets, all bad balls are positioned in the same location in
D1, . . . , DB . For subset Dj,k which contains t bad balls, there
are (X − C)! ways to permute it. In contrast, there are only
t!(X −C− t)! ways to permute it such that the bad balls will
be in the same location of the bad balls in D1,k. Since there
are S subsets with t bad balls in each set, we have that

Pr[Et] =

(
t!(X − C − t)!

(X − C)!

)S(B−1)
. (2)

Combining the above three equations and noting that the

product of Eq. (1) and Eq. (2) equals
(
t!(X−t)!
X!

)S(B−1)
=(

X
t

)−S(B−1)
, we conclude that

Pr[Game1(A, X, L,B,C) = 1]

= Pr[Ec ∧ EL ∧ Et] = Pr[Ec] · Pr[EL] · Pr[Et]

=

(
L

S

)−(B−1)(
X

t

)−S(B−1)
. (3)

Next, observe that for the adversary to win it must hold that
t ≤ X − C < X and S > 0. Thus, we can use the fact that
for every 0 < t < X it holds that

(
X
t

)
≥
(
X
1

)
. In contrast, the

adversary may choose to corrupt all subarrays. i.e., set S = L.
Thus, we consider two cases.
• Case 1: S = L. In this case, we obtain that

Pr[Game1(A, X, L,B,C) = 1]

=

(
L

L

)−(B−1)(
X

t

)−L(B−1)
≤

(
X

1

)−L(B−1)
=

1

XL(B−1) .

• Case 2: 0 < S < L. In this case, we obtain that
Pr[Game1(A, X, L,B,C) = 1]

≤
(
L

1

)−(B−1)(
X

1

)−S(B−1)
=

1

(L ·XS)B−1
≤ 1

(L ·X)B−1

Since for every L > 0 and X > 1 (as assumed in the
theorem) it holds that L ·X ≤ XL, we conclude that

Pr[Game1(A, X, L,B,C) = 1]

≤ max

(
1

XL(B−1) ,
1

(L ·X)B−1

)
=

1

(L ·X)B−1

<
1(

L(X − C)
)B−1 =

1

NB−1 .

By setting 1
NB−1 ≤ 2−σ in Theorem 3.4, we conclude:

Corollary 3.5: If L,X,C and B are chosen such that
σ ≤ (B − 1) logN where L > 0, X > C > 0 and
N = (X − C)L, then for every adversary A, it holds that
Pr[Game1(A, X, L,B,C) = 1] ≤ 2−σ .

Concrete parameters. Observe that for N = 220, it suffices
to set B = 3 and C = 1 and for any L we have that
the adversary wins with probability at most 2−40. This thus
achieves the tight analysis provided in [11] when a cache-
inefficient shuffle is used. In our implementation, we take
N = 220 and L = 29; thus we have 512 subarrays of size
2048 each. Recall that we actually only shuffle the indices;
for a subarray of length 2048 we need indices of size 2 bytes
and so the entire subarray to be shuffled is 4096 bytes = 4KB.
This fits into the L1 cache on most processors making the
shuffle very fast.

B. Reducing Bucket-Size and Communication
Clearly, the major cost of the protocol is in generating,

shuffling and checking the triples. If it were possible to reduce
the size of the buckets needed, this would in turn reduce the
number of triples to be generated and result in a considerable
saving. In particular, the protocol of [11] uses a bucket size
of 3 and requires that each party send 10 bits per AND gate;
this places a strict lower bound on performance dependent
on the available bandwidth. In this section, we show how
to reduce the bucket size by 1 (concretely from 3 to 2) and
thereby reduce the number of triples generated by 1/3, reduc-
ing computation and communication. Formally, we present an
improvement that reduces the cheating probability of the ad-
versary from 1

NB−1 to 1
NB , thus enabling us to use B′ = B−1.

Thus, if previously we needed to generate approximately 3
million triples in order to compute 1 million AND gates, in
this section we show how the same level of security can be
achieved using only 2 million triples. Overall, this reduces
communication from 10 bits per AND gate to 7 bits per AND
gate (since 1 bit is needed to generate a triple and 2 bits are
needed to verify each triple using another).

The idea behind the protocol improvement is as follows.
The verification of a multiplication gate in the circuit uses
one multiplication triple, with the property that if the gate is
incorrect and the triple is valid (meaning that c = ab), then the
adversary will be caught with probability 1. Thus, as long as
all triples are valid with very high probability, the adversary
cannot cheat. The improvement that we propose here works
by observing that if a correct multiplication gate is verified
using an incorrect triple or an incorrect multiplication gate
is verified using a correct triple, then the adversary will be
caught. Thus, if the array of multiplication triples is randomly
shuffled after the circuit is computed, then the adversary can
only successfully cheat if the random shuffle happens to match
good triples with good gates and bad triples with bad gates.
As we will see, this significantly reduces the probability that
the adversary can cheat and so the bucket size can be reduced
by 1. Note that although the number of triples is reduced (since
the bucket size is reduced), the number of shuffles remains the
same. The modified protocol is described in Protocol 3.6; the
steps reference the formal specification of [11] in Appendix A.

Observe that in the reshuffle stage in Protocol 3.6, the
random permutation is computed over the entire array, and
does not use the cache-efficient shuffling of Section III-A.
This is due to the fact that unlike the triples generated in the
preprocessing/offline phase, no triples of the circuit emulation
phase can be opened. Thus, the adversary could actually make
as many triples as it wishes in the circuit emulation phase
be incorrect. In order to see why this is a problem, consider

PROTOCOL 3.6 (Secure Computation – Smaller Buckets):
• Inputs and Auxiliary Input: Same as in Protocol A.2; In

addition, the parties hold a parameter L.
• The protocol – offline phase: Generate multiplication triples

by calling Protocol 3.1; let ~d be the output.
• The protocol – online phase:

1) Input sharing and circuit emulation: Exactly as in Proto-
col A.2.

2) Reshuffle stage: The parties jointly and securely generate a
random permutation over {1, . . . , N} and then each locally
shuffle ~d accordingly.

3) Verification and output stages: Exactly as in Protocol A.2.

the case that the adversary choose to corrupt one subarray in
each of ~D1, . . . , ~DB and make X − 1 out of the X triples
incorrect. Since C = 1, this implies that the adversary is not
caught when opening triples in subarrays ~D2, . . . , ~DB with
probability X−B+1. Furthermore, the probability that these
subarrays with all-bad triples are matched equals L−B+1.
Thus, the adversary succeeds in have an all-bad bucket in
the preprocessing phase with probability 1

(XL)B−1 < 1
NB−1

as proven in Theorem 3.4. Now, if the cache-efficient shuffle
is further used in the circuit computation phase, then the
adversary can make a subarray all-bad there as well (recall that
nothing is opened) and this will be matched with probability
1/L only. Thus, the overall cheating probability is bounded by
1
L ·

1
NB−1 >>

1
NB . As a result, the shuffling procedure used in

the online circuit-computation phase is a full permutation, and
not the cache-efficient method of Section III-A. We remark
that even when using a full permutation shuffle, we need
to make an additional assumption regarding the parameters.
However, this assumption is fortunately very mild and easy to
meet, as will be apparent below.

As previously, we begin by defining a combinatorial game
to model this protocol variant.

Game2(A, X, L,B,C):
1) Run Game1(A, X, L,B,C) once. If the output is 0, then

output 0. Otherwise, proceed to the next step with the
buckets B1, ...BN .

2) The adversary A prepares an additional set ~d of N balls
where each ball can be either bad or good.

3) The set ~d is shuffled. Then, the ith ball in ~d is added to
the bucket Bi.

4) The output of the game is 1 if and only if each bucket is
fully good or fully bad.

Note that in this game we do not explicitly require that the
adversary can only win if there exists a bucket that is fully
bad, since this condition is already fulfilled by the execution
of Game1 in the first step. We proceed to bound the winning
probability of the adversary in this game.

Theorem 3.7: If B ≥ 2, then for every adversary A and for
every L > 0 and 0 < C < X such that XL ≥ (X · L)2, it
holds that

Pr[Game2(A, X, L,B,C) = 1] ≤ 1

NB

where N = (X − C)L.
Proof: Assume that the adversary chooses to corrupt

exactly S subsets in Game1 (the first step of Game2) by inserts
exactly t bad balls in each (recall that this strategy is always
better, as proven in Lemma 3.3). Then, as shown in Eq. (3)
in the proof of Theorem 3.4, it holds that

Pr[Game1(A, X, L,B,C) = 1]=

(
L

S

)−(B−1)(
X

t

)−S(B−1)
.

Next, it is easy to see that for the adversary to win in Game2,
it must choose exactly S · t bad balls in ~d (otherwise a good
and bad ball with certainly be in the same bucket). There are(
N
S·t
)

ways of matching the S · t bad balls in ~d, and there is
exactly one way in which the adversary wins (this is where all
S · t match the bad balls from Game1). Thus, the probability
that the adversary wins is

Pr[Game2(A, X, L,B,C) = 1]

=

(
N

S · t

)−1
· Pr[Game1(A, X, L,B,C) = 1]. (4)

We separately consider two cases:
• Case 1 – S · t < N : Applying Eq. (4) and the fact that(

N
S·t
)−1

is maximized for S · t = 1 (since S · t cannot equal
0 or N)

Pr[Game2(A, X, L,B,C) = 1] ≤

(
N

1

)−1

· 1

NB−1
=

1

NB

• Case 2 – S · t = N : Observe that we cannot use Eq. (4)
here since

(
N
N

)
= 1. We therefore prove the bound using

Eq. (3). Here S = L and so
(
L
S

)
= 1 and t = X − C (note

that t < X since C > 0). Plugging this into Eq. (3) we have

Pr[Game2(A, X, L,B,C) = 1]

=

(
X

X − C

)−L(B−1)
≤
(
X

1

)−L(B−1)
=

1

XL(B−1) .

Now, using the assumption that XL ≥ (X · L)2, which
implies XL(B−1) ≥ (X ·L)2(B−1) ≥ (X ·L)B when B ≥ 2
(which is indeed the minimal size of a bucket as assumed
in the theorem), we obtain that

Pr[Game2(A, X, L,B,C) = 1]

=
1

XL(B−1) ≤
1

(L ·X)B
≤ 1

(L · (X − C))B
=

1

NB
.

We have the following corollary:
Corollary 3.8: Let L,X,C and B be such that σ ≤ B logN

where B ≥ 2, L < 0, 0 < C < X > 0, XL ≥ (X · L)2 and
N = (X − C)L. Then for every adversary A, it holds that
Pr[Game2(A, X, L,B,C) = 1] ≤ 2−σ

Concrete parameters and a tradeoff. As we have described
above, this shows that setting C = 1, B = 2 and X,L such
that N = (X−C)L = 220 yields a security bound of 2−40 as
desired. Thus, we can reduce the size of each bucket by 1, and
can use only 2 arrays in the triple generation phase (shuffling
just one of them), at the expense of an additional shuffle in
the online phase.

Clearly, in some cases one would not settle on any increase
of the online work. Nevertheless, our analysis gives a clear
trade-off of the offline communication complexity vs. the
online computational complexity.

The latency vs throughput tradeoff. By reducing the
number of triples sent and by reducing the communication,
the protocol improvement here should considerably improve

throughput. However, it is important to note that the fact that
the online shuffle is not cache efficient means that the through-
put increase is not optimal. In addition, it also means that the
online time is considerably increased. Thus, when the secure
computation is used in an application where low latency is
needed, then this improvement may not be suitable. However,
when the focus is on high throughput secure computation, this
is of importance.

Practical limitations. Although theoretically attractive, in
most practical settings, the implementation of this protocol
improvement is actually very problematic. Specifically, if a
circuit computation involving N AND gates is used for a large
N , then the improvement is suitable. However, in many (if not
most) cases, circuits of smaller sizes are used and a large N
is desired in order to achieve good parameters. For example,
220 triples suffice for approximately 180 AES computation. In
such a case, this protocol variant cannot be used. In particular,
either the application has to wait for all AES computations to
complete before beginning verification of the first (recall that
the shuffle must take place after the circuit computation) or a
full shuffle of what is left of the large array must be carried
out after each computation. The former solution is completely
unreasonable for most applications and the latter solution will
result in a very significant performance penalty. We address
this issue in the next section.

C. Smaller Buckets With On-Demand Secure Computation

In this section, we address the problem described at the
end of Section III-B. Specifically, we describe a protocol
variant that has smaller buckets as in Section III-B, but enables
the utilization of multiplication triples on demand without
reshuffling large arrays multiple times. Thus, this protocol
variant is suitable for settings where many triples are generated
and then used on-demand as requests for secure computations
are received by an application.

The protocol variant that we present here, described in
Protocol 3.9, works in the following way. First, we generate
2 arrays ~d1, ~d2 of N multiplication triples each, using Proto-
col 3.1 (and using a smaller B as in Section III-B). Then, in
order to verify a multiplication gate, a random triple is chosen
from ~d1 and replaced with the next unused triple in ~d2. After N
multiplication gates have been processed, the triples in ~d2 will
be all used and Protocol 3.1 will be called again to replenish
it. Note that ~d1 always contains N triples, as any used triple
is immediately replaced using ~d2.

As before, we need to show that this way of working
achieves the same level of security as when a full shuffle is
run on the array. Formally, we will show that for N triples and
buckets of size B, the probability that the adversary succeeds
in cheating is bounded by 1

NB , just as in Section III-B. Note
that Protocol 3.9 as described is actually continuous and does
not halt. Nevertheless, for simplicity, we start by presenting
the bound for the case of computing N gates, and then use it
for computing the bound in the continuous analysis.

In order to prove the bound, we begin by defining the com-
binatorial game Game3(A, X, L,B,C) which is equivalent to
the process described in Protocol 3.9 When computing N
gates.

PROTOCOL 3.9 (On-Demand with Smaller Buckets):
• Inputs and Auxiliary Input: Same as in Protocol A.2.
• The protocol – triple initialization:

1) The parties run Protocol 3.1 twice with input N and obtain
two vectors ~d1,~d2 of sharings of random multiplication
triples.

• The protocol – circuit computation: Upon receiving a request
to compute a circuit:

1) Sharing the inputs: Same as in Protocol A.2.
2) Circuit emulation: Same as in Protocol A.2.
3) Verification stage: Before the secrets on the output wires are

reconstructed, the parties verify that all the multiplications
were carried out correctly, as follows. For k = 1, . . . , N :
a) Denote by ([x], [y]) the shares of the input wires to the
kth AND gate, and denote by [z] the shares of the output
wire of the kth AND gate.

b) The parties run a secure coin-tossing protocol in order
to generate a random j ∈ [N]. (In [11], it is shown
that secure coin-tossing can be non-interactively and
efficiently computed in this setting.)

c) The parties check the triple ([x], [y], [z]) using
([aj], [bj], [cj]) (the jth triple in ~d1).

d) If a party rejects any of the checks, it sends ⊥ to the
other parties and outputs ⊥.

e) Each party replaces its shares of ([aj], [bj], [cj]) in ~d1
with the next unused triple in ~d2.

4) Output reconstruction and output: Same as in Protocol A.2.
• Replenish: If ~d2 is empty (or close to empty) then the parties

run Protocol 3.1 with input N to obtain a new ~d2.

Game3(A, X, L,B,C):
1) Run steps 1-3 of Game1(A, X, L,B,C) twice to receive

two lists of buckets B1, . . . , BN and B′1, . . . , B
′
N .

2) If all buckets are either fully good or fully bad proceed
to the next step. Otherwise, output 0.

3) The adversary A prepares N new balls denoted by
b1, . . . , bN , where each ball can be either bad or good, with
the requirement that at least one of the balls must be bad.

4) For i = 1 to N :
a) The ball bi is thrown into a random bucket Bk (k ∈ [N]).
b) If the bucket Bk is fully bad output 1.
c) If the bucket Bk is not fully good or fully bad output 0.
d) Replace Bk with the bucket B′i.
Observe that in this game, the adversary is forced to choose

a bad ball only when it prepares the N additional balls. This
means that in order for it to win, there must be at least one bad
bucket among B1, . . . , BN . For this to happen, the adversary
must win in at least one of Game1 executions. Thus, in the
proof of the following theorem, we will use the bound stating
that the probability that the adversary wins in Game1 is at
most 1/NB−1. In addition, note that from the condition in the
last step, the adversary wins if and only if the first bad ball
is thrown into a fully bad bucket (even if a bad ball is later
thrown into a fully good bucket meaning that the adversary
will be detected). This is in contrast to previous games where
the adversary only wins if all bad balls are thrown into fully
bad buckets. This is due to the fact that output may be provided
after only using some of the triples. If one of the triples was
bad, then this will be a breach of security, and the fact that
the adversary is caught later does not help (in the sense that
security was already broken). Thus, cheating must be detected
at the first bad ball and no later.

We consider the case of B ≥ 2 and our aim is to prove that
the probability that the adversary cheats is at most 1/NB . In
this game, unlike Sections III-A and III-B, we actually need to
open at least C = 3 triples in each subarray. We will explain
why this is necessary at the end of the proof.

We prove the theorem under the assumptions that X >
L+C (meaning that the number of subarrays is less than the
size of each subarray), that L ≥ 5 (meaning that there are at
least 5 subarrays), that C ≥ 3, and that X −C ≥ 6 (meaning
that the subarrays are at least of size C+6 which can equal 9).
All of these conditions are fulfilled for reasonable choices of
parameters in practice.

Theorem 3.10: Let B ≥ 2 and assume X > L+C. Then for
every adversary A and for every L ≥ 5, C ≥ 3 and X−C ≥ 6
it holds that

Pr[Game3(A, X, L,B,C) = 1] ≤ 1

NB

where N = (X − C)L.
Proof: In order to win the game, A must choose bad balls

in at least one of Game1 executions. If A chooses bad balls
in both executions, then the theorem follows directly from
Theorem 3.4, since A wins in two executions of Game1 with
probability only 1

NB−1 · 1
NB−1 = 1

N2B−2 ≤ 1
NB , where the last

inequality holds when B ≥ 2 as assumed, in the theorem.
Thus, for the remainder of the proof we assume that A

chose bad balls in exactly one of Game1 executions only (note
that the cases are mutually exclusive and so the probability of
winning is the maximum probability of both cases).

Denote by S the number of subsets that contain bad buckets
after the Game1 executions (recall that we consider the case
only that these are all in the same Game1 execution), and let t
be the number of bad buckets (in the proof of Theorem 3.4,
note that t denotes the number of bad balls in the subarray;
if the adversary is not caught then this is equivalent to the
number of bad buckets). By Eq. (3) we have that

Pr[Game1(A, X, L,B,C) = 1] =

(
L

S

)−(B−1)(
X

t

)−S(B−1)
.

We separately consider the cases that S = 1, S = 2, S = 3
and S ≥ 4.

Case 1 – S = 1: In this case, we have

Pr[Game1(A, X, L,B,C) = 1] =

(
L

1

)−(B−1)(
X

t

)−(B−1)

=

(
L ·

(
X

t

))−(B−1)

.

If t = 1, then
(
X
t

)−1
= 1

X < L
N and so the probability

that A wins in Game1 is at most 1
NB−1 . In this case, in the

latter steps in Game3, A can only win by choosing exactly
one bad ball out of b1, . . . , bN . Now, this ball is thrown into
a random bucket, and there is at most one bad bucket (note
that if the bad bucket is in the second array then depending
on where the bad ball is, it may not even be possible for it to
be chosen). Thus, the probability that it will be thrown into
that bucket (which is essential for A to win) is at most 1

N .
Overall, we have that A can win Game3 with probability at
most 1

NB (since A must both win in Game1 and have the bad
ball thrown in the single bad bucket).

Next, if t = 2, we have that(
X

t

)−(B−1)
=

(
X

2

)−(B−1)
=

(
2

X(X − 1)

)B−1
.

Thus,

Pr[Game1(A, X, L,B,C) = 1] =

(
2

L ·X(X − 1)

)B−1
.

Now, in the later phase of Game3, we have that there are
at most 2 bad buckets out of N buckets overall.3 Thus, for
each bad ball, the probability that it will be thrown into a bad
bucket is at most 2

N . Combining these together, we have that
the adversary can win in Game3 with probability at most

2

N
·
(

2

L ·X(X − 1)

)B−1
=

2B

LBXB−1(X − 1)B−1(X − C)

<
2B

LBXB−1(X − C)B

and since we assume X ≥ 4 and thus 2B ≤ XB−1 for B ≥ 2,
the above is at most

1

LB(X − C)B
=

1

NB
.

Finally, if t ≥ 3, we have that(
X

t

)−1
≤

(
X

3

)−1
=

6

X(X − 1)(X − 2)

<
6

(X − C)3
=

6L3

N3

and hence (
X

t

)−(B−1)
<

(
6L3

N3

)B−1
.

We stress that
(
X
t

)−1≤(X3)−1 is only true since we take C≥3,
because otherwise

(
X
t

)−1
would be smaller for t = X − 2 or

t = X − 1. However, when three balls are checked, if the
adversary sets t ≥ X − 2 it will certainly be caught (since at
least one bad ball will always be checked). Thus,

Pr[Game1(A, X, L,B,C) = 1] <

(
6L2

N3

)B−1
.

Now, in the later phase of Game3, we have that there are at
most N

L bad buckets out of N buckets overall (since S = 1).
Thus, for each bad ball, the probability that it will be thrown
into a bad bucket is at most 1

L . Combining these together, we

3This holds since t = 2 and thus 2 bad buckets were generated in Game1.
Note that there are at most 2 bad buckets at this stage and not necessarily 2
since the bad buckets in Game1 may have been generated in the second set.

have that the adversary can win in Game3 with probability at
most

1

L
·
(
6L2

N3

)B−1
=

6B−1L2(B−1)

L3(B−1)(X − C)3(B−1)L

=
6B−1

LB(X − C)3(B−1)

=
6B−1

NB(X − C)2(B−1)

<
1

NB

where the inequality follows since we assume X−C ≥ 6 and
B ≥ 2, and thus 6B−1 < (X − C)2(B−1).

Case 2 – S = 2: Observing that
(
L
2

)
= L(L−1)

2 and recalling
that

(
X
t

)−1 ≤ (X1)−1 = 1
X < L

N , in this case we have

Pr[Game1(A, X, L,B,C) = 1]

<

(
2

L(L− 1)

)B−1(
L

N

)2(B−1)

=

(
2L2

L(L− 1)N2

)B−1
=

(
2L

(L− 1)N2

)B−1
.

Now, since S = 2 we have that at most 2 subarrays were
corrupted and so the number of bad buckets from Game1 is
at most 2 · NL . Thus, the probability that a bad ball is thrown
into a bad bucket is at most 2

L , and the probability that the
adversary wins in Game3 is at most(

2L

(L− 1)N2

)B−1
· 2
L

=
2BLB−2

(L− 1)B−1N2B−2

For L ≥ 5, B ≥ 2, we have that (L− 1)B−1 ≥ 2B and so the
probability that the adversary wins in Game3 is at most

LB−2

N2B−2 ≤
1

NB
,

as required.

Case 3 – S = 3: Observing that
(
L
3

)
= L(L−1)(L−2)

6 and
using the fact that

(
X
t

)−1
< L

N as above, in this case we have

Pr[Game1(A, X, L,B,C) = 1]

<

(
6

L(L− 1)(L− 2)

)B−1(
L

N

)3(B−1)

=

(
6L2

(L− 1)(L− 2)N
· 1

N2

)B−1
=

(
6L

(L− 1)(L− 2)(X − C)
· 1

N2

)B−1
By assumption X > L + C and so L

X−C ≤ 1, and L ≥ 5

and so 6
(L−1)(L−2) ≤ 1. So the above is less than 1

N2(B−1) ,
which is at most 1

NB for B ≥ 2.
Case 4 – S ≥ 4: Using the bound on Game1 and again

utilizing the fact that
(
X
t

)−1
< L

N , first note that

(
L

S

)−1(
X

t

)−S
≤
(
L

N

)S
≤ L4

N4
=

L4

N2 · (X − C)2L2

where the last equality is by definition that N = (X − C)L.
By the assumption that X > L+C we have that 1

X−C < 1
L .

Thus, (
L

S

)−1(
X

t

)−S
≤ L4

N2L4
=

1

N2
.

Therefore

Pr[Game1(A, X, L,B,C) = 1]

=

(
L

S

)−(B−1)(
X

t

)−S(B−1)

≤
(

1

N2

)B−1

≤ 1

NB

where the last inequality holds for B ≥ 2. which suffices
since A must win in Game1 in order to win Game3.

Tightness of the theorem’s bound. Note that in the above
proof, in the case of S = 1, t = 1, the only inequality is
1
X < L

N , i.e. 1
X < L

(X−C)L = 1
X−C . Since C is small, the

bound for the case of S = 1, t = 1 is tight, and hence the
bound

Pr[Game3(A, X, L,B,C) = 1] ≤ 1

NB

is tight.

An attack for C = 2. We proved Theorem 3.10 for the
case that C ≥ 3. We conclude this section by showing that
when C = 2 the theorem does not hold and the adversary
can win with probability 2

N2 (for B = 2). The adversary
works by corrupting no balls in the second array generated
by Game1 and by corrupting an entire subarray in the first
array generated by Game1. Specifically, in that execution of
Game1, it generates X−2 bad balls in some subarray in both
arrays that it prepares. Since C = 2, the probability that the
adversary wins in Game1 equals approximately 2L

N2 . Then, in
the later steps of Game3 the adversary make the first ball b1
bad and all the other balls good. Thus, the adversary wins if
and only if b1 is thrown into a bad bucket, which happens
with probability 1

L (as there are N
L bad buckets). Overall, the

winning probability of the adversary is 2
N2 .

A continuous version of Game3. Next, we prove the bound
for a continuous game which is equivalent to Protocol 3.9.
This game runs indefinitely until A chooses a bad ball bi in
Step 3c. Note that the game terminates immediately after bi is
thrown in Step 3d: if bi is thrown into a fully bad bucket, the
output is 1, and if bi is thrown into a fully good bucket, that
bucket is no longer fully good and the output is 0. To ensure
the game terminates, it is required that A choose a bad ball
at some point.

GameC
3 (A, X, L,B,C):

1) Run steps 1-3 of Game1(A, X, L,B,C) once to receive a
list of buckets B1, . . . , BN .

2) If all buckets are either fully good or fully bad proceed
to the next step. Otherwise, output 0.

3) Until an output is reached:
a) Run steps 1-3 of Game1(A, X, L,B,C) once to receive

a list of buckets B′1, . . . , B
′
N .

b) If all buckets are either fully good or fully bad proceed
to the next step. Otherwise, output 0.

c) The adversary A prepares N new balls denoted by
b1, . . . , bN , where each ball can be either bad or good.

d) For i = 1 to N :
i) The ball bi is thrown into a random bucket Bk (k ∈

[N]).
ii) If the bucket Bk is fully bad output 1.

iii) If the bucket Bk is not fully good or fully bad
output 0.

iv) Replace Bk with the bucket B′i.

Theorem 3.11: Let B ≥ 2 and assume X > L+C. Then for
every adversary A and for every L ≥ 5, C ≥ 3 and X−C ≥ 6
it holds that

Pr[GameC
3 (A, X, L,B,C) = 1] ≤ 1

NB

where N = (X − C)L.
Proof: The only way for A to win is if a bad ball is

thrown into a bad bucket in Step 3d. If the game ends prior
to this step it will end with output 0. Therefore it is enough
to show that when the first bad ball is thrown, A wins with
probability at most 1

NB . There are three cases to consider.
• Case 1: A bad ball is thrown before any bad buckets

are generated, that is, while all buckets B1, . . . , BN and
B′1, . . . , B

′
N are good. In this case the output is always 0,

hence the probability that A wins is 0.
• Case 2: When the first bad ball bi is thrown, bad buckets

have been generated during at least two executions of
Game1. By Theorem 3.4, A wins in two executions of
Game1 with probability 1

NB−1 · 1
NB−1 = 1

N2B−2 ≤ 1
NB ,

where the last inequality holds since B ≥ 2.
• Case 3: When the first bad ball bi is thrown, bad buckets

have been generated in exactly one execution of Game1.
– If the bad buckets are generated in Step 1 or the first

iteration of Step 3a, the resulting game is equivalent to
the case of Game3 in which bad buckets are generated
in exactly one list, and the bound follows from Theorem
3.10.

– If, instead, the bad buckets are generated in a later
iteration of Step 3a, note that A cannot win while all
buckets are good, and the best strategy for A is to prepare
no bad balls (since throwing a bad ball when all buckets
are good always results in output 0). Thus any iteration
of Step 3 in which no bi is chosen will not increase the
probability that A wins. Therefore, to obtain the bound,
it is enough to consider only two iterations of Step 3: the
iteration in which the bad ball bi is produced, and the
iteration preceding it. The resulting game is equivalent to

the case of Game3 in which bad buckets are generated in
only the first list, and the bound follows from Theorem
3.10.

D. Hash Function Optimization

In [11], the method for validating a multiplication triple
using another triple requires the parties to compare their views
and verify that they are equal. In this basic comparison, each
party sends 3 bits to another party. Since B such comparisons
are carried out for every AND gate, this would significantly
increase the communication. Concretely, with our parameters
of N = 220 and B = 2 and our optimizations, this would
increase the communication from 7 bits per AND gate to
13 bits per AND gate. In order to save this expense, [11]
propose for each party to simply locally hash its view (using
a collision-resistant hash function) and then to send the result
of the hash only at the end of the protocol. Amortized over
the entire computation, this would reduce this communication
to almost zero. When profiling Protocol 3.9 with all of our
optimizations, we were astounded to find that these hashes
took up almost a third of the time in the triples-generation
phase, and about 20% of the time in the circuit computation
phase. Since the rate of computation is so fast, the SHA256
computations actually became a bottleneck; see Figure 3.

We solved this problem by observing that the view com-
parison procedure in [11] requires for each pair of parties
to compare their view. The security is derived from the fact
that if the adversary cheats then the views of the two honest
parties are different. As such, instead of using a collision-
resistant hash function, we can have each party compute a
MAC of their view. In more detail, each pair of parties jointly
choose a secret key for a MAC. Then, as the computation
proceeds, each party computes a MAC on its view twice,
once with each key for each other party. Then, at the end,
each party sends the appropriate MAC to each other party.
Observe that the honest parties compute a MAC using a secret
key not known to the corrupted party. Thus, the adversary
cannot cause the MACs of the two honest parties to have
the same tag if their views are different (or this could be
used to break the MAC). Note that with this method, each
party computes the MAC on its view twice, in contrast to
when using SHA256 where a single computation is sufficient.
Nevertheless, we implemented this using GMAC (optimized
using the PCLMULQDQ instruction) and the time spent on
this computation was reduced to below 10%. As we show in
Section IV, this method increases the throughput of the fastest
protocol version by approximately 20%.

Fig. 3. Microbenchmarking of Protocol 3.9, using the CxxProf C++ profiler

IV. IMPLEMENTATION AND EXPERIMENTATION

We implemented the baseline protocol of [11] and the
different protocol improvements and optimizations that we
present in this paper. (We did not implement the variant in
Section III-B since it has the same efficiency as the variant in
Section III-C, and the latter is preferable for practical usage.)
All of our implementations use parameters guaranteeing a
cheating probability of at most 2−40, as mandated by the
appropriate theorem proven above. We begin by describing
some key elements of our implementation, and then we present
the experimental results.

A. Implementation Aspects

Parallelization and vectorization. As with [1], our protocol
is particularly suited to vectorization. We therefore work in
units of 256 bits, meaning that instead of using a single bit as
the unit of operation, we perform operations on units of 256
bits simultaneously. For example, we are able to perform XOR
operations on 256 bits at a time by writing a “for loop” of eight
32 bit integers. This loop is then automatically optimized by
the Intel ICC compiler to use AVX2 256bit instructions (this is
called auto-vectorization). We verified the optimization using
the compiler vec-report flag and used #pragma ivdep in
order to aid the compiler in understanding dependencies in
the code. We remark that all of our combinatorial analyses
considered “good” and “bad” balls and buckets. All of this
analysis remains exactly the same when considering vectors
of 256-triples as a single ball. This is because if any of the
triples in a vector is bad, then this is detected and this is
considered a “bad ball”.

Memory management. We use a common data structure
to manage large amounts of triplets in memory efficiently.
This structure holds 220×256 triplets. For triplets ([a], [b], [c])
(or ([x], [y], [z]) respectively) we store an array of 220 × 256
bits for [a], 220 × 256 bits for [b], and 220 × 256 bits for
[c]. This method is known as a Struct of Arrays (SoA) as
opposed to an Array of Structs (AoS) and is commonly used in
SIMD implementations. It provides for very efficient intrinsic
(vectorized) operations, as well as fast communication since
we send subarrays of these bit arrays over the communication
channel in large chunks with zero memory copying. This
reduces CPU cycles in the TCP/IP stack and is open for further
optimization using RDMA techniques.

Index shuffling. When carrying out the shuffling, we shuffle
indices of an indirection array instead of shuffling the actual
triples (which are three 256-bit values and so 96 bytes). Later
access to the 256-bit units is carried out by first resolving the
location of the unit in O(1) access to the indirection array.
This show substantial improvement as this avoids expensive
memory copies. Note that since the triples themselves are not

shuffled, when reading the shuffled array during verification
the memory access is not serial and we do not utilize memory
prefetch and L3 cache. Nevertheless, our experiments show
that this is far better overall than copying the three 256-bit
memory chunks (96 bytes) when we shuffle data. In Figure 4,
you can see that the entire cost of shuffling and verifying
the triples (_verifyAll_shuffleIndices) is reduced to
less than 30% of the time, in contrast to the original protocol
in which it was approximately 55% (see Figure 1).

Cache-Aware code design. A typical Intel Architecture
server includes a per-core L1 cache (32KB), a per-core L2
cache (typically 512KB to 2MB), and a CPU-wide L3 Cache
(typically 25-55MB on a 20-36 core server). L1 cache access is
extremely fast at ∼0.5ns, L2 access is ∼7ns and DDR memory
reference is ∼100ns. All caches support write back (so updates
to cached data is also extremely fast).

We designed our implementation to utilize L1 cache ex-
tensively when carrying out the Fisher-Yates shuffling on
subarrays. We use two levels of indirection for the index
shuffling: the top level of 512 indices and the low level of
2048 indices (under each of the top level indices, yielding
512 subarrays of length 2048 each). As vectors are 1024 byte
and 4096 bytes respectively (uint16 values), they require
1/32 or 1/8 of the L1 cache space so L1 will be utilized
with very high probability (and in worst case will spill into
the L2 cache). This makes shuffling extremely fast. Note that
attempting to force prefetch of the index vectors into cache
(using _mm_prefetch instructions) did not improve our
performance, as this is hard to tune in real scenarios.

Offline/online. We implemented two versions of the proto-
cols. The first version focuses on achieving high throughput
and carries out the entire computation in parallel. Our best
performance is achieved with 12 workers; each worker has two
threads: the first thread generates multiplication triples, and the
second carries out the circuit computation. The architecture of
this version can be seen in Figure 5.

The second version focus on achieving fast online perfor-
mance in an offline/online setting where multiplication triples
are prepared ahead of time and then consumed later by a
system running only the circuit computation (and verification
of that computation). As we have mentioned, the cache-
efficient version with bucket-size B = 3 is expected to have
lower throughput than the version with bucket-size B = 2
but lower latency. This is because with B = 3 there is no
need to randomly choose the triple being used to validate the
gate being computed. We therefore compared these; note that
in both cases we used the GMAC optimization described in
Section III-D so that we would be comparing “best” versions.

TABLE II
IMPLEMENTATION RESULTS; B DENOTES THE BUCKET SIZE; SECURITY LEVEL 2−40

Protocol Variant AND gates/sec %CPU utilization Gbps utilization Latency (ms)
Baseline [11]; Section II (B = 3, SHA) 503,766,615 71.7% 4.55 680

Cache-efficient; Sec. III-A (B = 3, SHA) 765,448,459 64.84% 7.28 623
On-demand; Sec. III-C (B = 2, SHA) 988,216,830 65.8% 6.84 812

On-demand; Sec. III-D (B = 2, GMAC) 1,152,751,967 71.28% 7.89 726

Online-only: on-demand; Sec. III-D (B = 2, GMAC) 1,726,737,312 45.1% 5.11 456.4
Online-only: cache-efficient; Sec. III-A (B = 3, GMAC) 2,132,197,567 41.6% 6.93 367.5

Fig. 5. Architecture of implementation

B. Experimental Results
We ran our implementations on a cluster of three mid-

level servers connected by a 10Gbps LAN. Each server has
two Intel Xeon E5-2650 v3 2.3GHz CPUs with a total of
20 cores. The results appear in Table II. Observe that each of
the protocol improvements presented here provides a dramatic
improvement:
• Section III-A: Replacing the naive Fisher-Yates shuffle on

an array of size 220 with our cache-efficient shuffle yields
an increase of about 50% in throughput;

• Section III-C: Reducing the communication (in addition
to the cache-efficient shuffle) by reducing the bucket-size
from B = 3 to B = 2 and randomly choosing triples to
verify the circuit multiplications yields a further increase
of about 30%. (This is as expected since the reduction in
communication is exactly 30%.)

• Section III-D: Replacing the use of SHA256 with the
GMAC computations yielded an additional increase of
over 15%.

Our best protocol version has a throughput of about 2.3 times
that of baseline version. This result unequivocally demon-
strates that it is possible today to achieve secure computation
with malicious adversaries at rates of well over 1-billion
gates per second (using mid-level servers).

It is highly informative to also consider the results of the
online-only experiments (where triples are prepared previously
in an offline phase). As expected, the protocol version with
bucket-size B = 3 is better in the online phase since no
random choice of triples is needed. The throughput of the best
version exceeds 2 billion AND gates per second. Importantly,
latency is also significantly reduced to 367.5ms; this can be
important in some applications.

Microbenchmarks. Microbenchmarking of the faster pro-
tocol can be seen in Figure 4. In order to understand this,
see Figure 5 for a description of the different elements in
the implementation. The run_BTG thread generates multi-
plication (Beaver) triples. Each triple is generated by first
generating two random sharings and then running a semi-
honest multiplication. After two arrays of triples are prepared
(since we use buckets of size B = 2), they are verified using
the _verifyAll_shuffleindices procedure; this pro-
cedure carries out shuffling and verification. The second thread
runs MPC computation to compute the circuit, followed by
verifying all of the multiplications in the verifyOutput2
procedure.

V. THE COMBINATORICS OF CUT-AND-CHOOSE

In the previous sections, we have seen that tight combinato-
rial analyses are crucial for practical performance. As pointed
out in [11], the combinatorial analysis from [6] mandates
a bucket-size of B = 4 for 220 triples and security level
s = 2−40. In [11], a tighter combinatorial analysis enabled
them to obtain the same level of security while reducing the
bucket-size from B = 4 to B = 3. Utilizing a different
method, we were further able to reduce the bucket size to
B = 2. (Combinatorics also played an important role in
achieving a cache-efficient shuffle and an on-demand version
of the protocol.) With this understanding of the importance of
combinatorics to cut-and-choose, in this section we ask some
combinatorial questions that are of independent interest for
cut-and-choose protocols.

A. The Potential of Different-Sized Buckets
We begin by studying whether the use of different-sized

buckets can help to increase security. Since our Game1 (from
Section III-A) is specifically designed for the case where all
buckets are of the same size, we go back to the more general
game of [11] and [6] and redefine it so that buckets may have
different sizes. Intuitively, since the adversary does not know
in advance how many bad balls to choose so that there will
be only fully bad buckets, using buckets of different sizes
makes it more difficult for him to succeed in cheating. If this is
indeed the case, then the winning probability of the adversary
can be further decreased, and it may be possible to generate
less triples to start with, further improving efficiency. In [11,
Theorem 5.3] it was shown that the optimal strategy for the
adversary is to make the number of bad balls equal to the size
of a single bucket. In this section, we show that even when the
buckets sizes are different, the best strategy for the adversary

Fig. 4. Microbenchmarking of best protocol variant, using the CxxProf C++ profiler (run on a local host)

is to make the number of bad balls equal to the size of the
smallest bucket. We then use this fact to show that given any
set of bucket sizes, changing the sizes so that the bucket sizes
of any two buckets differ by at most 1, does not improve the
probability that the adversary wins. This makes sense since
the adversary’s best strategy is to make the number of bad
balls equal the size of the smallest bucket, and its hope is
that the bad balls will fall into such a bucket. By reducing
the gap between buckets (by moving balls from larger buckets
to smaller ones) we actually reduce the number of buckets of
the smallest size, thereby reducing the probability that all bad
balls will be in a bucket of minimal size.

We define a combinatorial game with buckets of different
sizes as follows. Let ~B = {B1, . . . , BN} denote the multiset
of bucket sizes where Bi is the size of the ith bucket. As
C balls are opened before dividing the balls into buckets, it
follows that the overall number of balls generated is M =∑N
i=1Bi + C.

Game4(A, N, ~B,C):
1) The adversary A prepares M balls. Each ball can be

either bad or good.
2) C random balls are chosen and opened. If one of the C

balls is bad then output 0. Otherwise, the game proceeds
to the next step.

3) The remaining
∑N
i=1Bi balls are randomly thrown into

N buckets of sizes ~B = {B1, . . . , BN}.
4) The output of the game is 1 if and only if there exists

a bucket Bi that is fully bad, and all other buckets are
either fully bad or fully good.

For our analysis we need some more notation. Let Bmin
be the minimal bucket size. We use [N] to denote the set
{1, . . . , N}. Let S ⊆ [N] be a subset of bucket indices, and let
tS =

∑
{i|i∈S}Bi be the total number of balls in the buckets

indexed by S. Finally, let n(t) = |{S ⊆ [N] | tS = t}| be the
number of different subsets of buckets such that the number
of balls in all buckets in the subset equal exactly t.

We start by computing the winning probability of the
adversary. First, we prove that a necessary and sufficient
condition for A having any chance to win in the game, is
that n(t) > 0.

Claim 5.1: Let At be an adversary who chooses t bad
balls. Then, Pr[Game4(At, N, ~B,C) = 1] > 0 if and only
if n(t) > 0.

Proof: If n(t) = 0 then there is no subset of buckets
which contain exactly t balls. Thus, every permutation of the
balls will result in the existence of a mixed bucket containing
good and bad balls, and the output of the game will be 0
with probability 1. In contrast, if n(t) > 0 then there exists a
subset S ⊆ ~B such that tS = t and therefore with non-zero
probability, the bad balls will fall only in the buckets of S,
and the game’s output will be 1.

Intuitively, for A to win, the bad balls must fill some subset
of buckets (since otherwise there will be a bucket with good
and bad balls). Since there are n(t) such subsets, and there
are
(
M
t

)
ways to choose t balls out of M balls, it follows that

the winning probability of the adversary is n(t)

(Mt)
as stated in

the next lemma.

Lemma 5.2: For every adversary At who chooses t bad balls
it holds that

Pr[Game4(At, N, ~B,C) = 1] =
n(t)(
M
t

) .
Proof: First, the probability that A does not lose when

C balls are opened is (M−t
C)
(MC)

, since there are
(
M
C

)
ways to

choose C balls overall, and
(
M−t
C

)
ways to choose C good

balls. Then, there are (M − C)! ways to permute the balls,
from which only n(t)·t!·(M−C−t)! will result in A winning
the game. This holds since n(t) equals the number of subsets
of buckets which contain exactly t balls, there are t! ways to
permute the bad balls inside the buckets in such a subset and
there are (M − C − t)! ways to permute the remaining balls.
Therefore, we obtain that

Pr[Game4(At, N, ~B,C) = 1]

=

(
M−t
C

)(
M
C

) · n(t) · t!(M − C − t)!
(M − C)!

= n(t) · (M − t)!
C!(M − t− C)!

· C!(M − C)!
M !

· t!(M − C − t)!
(M − C)!

= n(t) · t!(M − t)!
M !

=
n(t)(
M
t

)
The next theorem proves that the best strategy for the

adversary is to corrupt a single bucket of minimal size. The
intuition behind this, is that in order for a subset of buckets
to be filled with t bad balls, the smallest bucket in this subset
must be filled with bad balls. Thus, it is better for the adversary
to choose bad balls for this bucket only, instead for the entire
subset.

Theorem 5.3: If C ≥ Bmin then for every S ⊆ [N], for
every adversary AtS who chooses tS bad balls and for every
adversary ABmin

who chooses Bmin bad balls, it holds that

Pr[Game4(AtS , N, ~B,C) = 1]

≤ Pr[Game4(ABmin
, N, ~B,C) = 1].

We begin by proving a simple property of n(t) that will be
used later in the proof of Theorem 5.3.

Claim 5.4: For every M,C as defined in Game4 and for
every 0 < t < M − C it holds that n(t) = n(M − C − t).

Proof: This follows directly from the definition. Specif-
ically, for every subset of buckets S such that tS = t, the
complement subset S = ~B \ S is such that tS =M − C − t.
Thus, the number of subsets is the same.

Next, we prove a bound on the winning probability of the
adversary.

Lemma 5.5: For every S ⊆ [N] such that tS ≤ M
2 and for

every adversary AtS who chooses tS bad balls, there exists
r ∈

[
N
2

]
for which it holds that

Pr[Game4(AtS , N, ~B,C) = 1] ≤ n(tS)(
M

r·Bmin

)

Proof: From Lemma 5.2, it follows that it is sufficient to
show that there exists r ∈

[
N
2

]
for which it holds that

1(
M
tS

) ≤ 1(
M

r·Bmin

)
which is equivalent to(

M

tS

)
≥
(

M

r ·Bmin

)
. (5)

We consider two cases (note that |S| is the number of buckets
in the subset S):
• Case 1: |S| ≤ N

2 . In this case, we simply set r = |S|
and then the lemma holds since 1 ≤ r ≤ N

2 and since
r · Bmin = |S| · Bmin ≤ tS ≤ M

2 (which implies that
Eq. (5) holds, since the expression

(
M
x

)
increases as x

increases when x ∈ {1, . . . , M2 }).
• Case 2: |S| > N

2 . In this case, we set r = N
2 . Then,

the lemma holds since r ∈
[
N
2

]
and since N

2 · Bmin <
|S| · Bmin ≤ tS ≤ M

2 (which, as in the previous case,
implies that Eq. (5) holds).

We are now ready to prove that the best strategy for the
adversary is to choose exactly Bmin bad balls; i.e., to corrupt
a single bucket of minimal size.

Proof of Theorem 5.3: From Lemma 5.2 it follows that

Pr[Game4(ABmin
, N, ~B,C) = 1] =

n(Bmin)(
M

Bmin

)
We consider first the case where tS ≤ M

2 . From Lemma 5.5
it follows that in this case, there exists r ∈ [N2] such that

Pr[Game4(AtS , N, ~B,C) = 1] ≤ n(ts)(
M

r·Bmin

) .
Thus, in order to prove the theorem, we need to show that

n(ts)(
M

r·Bmin

) ≤ n(Bmin)(
M

Bmin

) .
Since n(Bmin) > 0, it suffices to prove that

n(ts)(
M

r·Bmin

) ≤ 1(
M

Bmin

)
which is equivalent to

n(tS) ·
M !

(M −Bmin)!Bmin!
≤ M !

(M − r ·Bmin)!(r ·Bmin)!
.

By multiplying both sides with

Bmin!(M − r ·Bmin)!(r ·Bmin −Bmin)!
M !

,

we can replace the above inequality with

n(tS) ·
(M − r ·Bmin)!(r ·Bmin −Bmin)!

(M −Bmin)!

≤ Bmin!(r ·Bmin −Bmin)!
(r ·Bmin)!

which is equivalent to proving that

n(tS) ·
(r ·Bmin)!

Bmin!(r ·Bmin −Bmin)!

≤ (M −Bmin)!
(r ·Bmin −Bmin)!(M − r ·Bmin)!

.

Thus, we need to prove that

n(tS)

(
r ·Bmin

(r − 1) ·Bmin

)
≤
(

M −Bmin
(r − 1) ·Bmin

)
.

Since C ≥ Bmin, it holds that M − Bmin ≥ M − C and
so (

M −Bmin
(r − 1) ·Bmin

)
≥
(

M − C
(r − 1) ·Bmin

)
.

In addition, note that n(tS) ≤
(
M−C
tS

)
(this holds since by

definition n(tS) equals the number of ways to choose tS balls
out of M −C balls under a specific restriction), and note that
r ·Bmin ≤ tS (see Lemma 5.5). Thus it follows that

n(tS)

(
r ·Bmin

(r − 1) ·Bmin

)
≤
(
M − C
tS

)(
tS

(r − 1) ·Bmin

)
.

Combining all above, it suffices to prove that(
M − C
tS

)(
ts

(r − 1) ·Bmin

)
≤
(

M − C
(r − 1) ·Bmin

)
. (6)

To see that Eq. (6) holds, consider the following two com-
binatorial processes: (1) choose tS balls out of M − C and
then choose (r−1) ·Bmin balls from the tS that were chosen
before; (2) choose (r− 1) ·Bmin balls out of M −C balls. It
is easy to see that the number of ways to choose the tS balls
is higher in the second process as the selection of balls is less
restricted. Since the first process corresponds to the left side
of Eq. (6) whereas the second process corresponds to the right
side, we conclude that the theorem holds in this case.

Next, we proceed to the second case where tS ≥ M
2 .

Since tS ≥ M
2 and tS < C + tS it holds that

(
M
tS

)
>(

M
tS+C

)
(this holds since

(
M
x

)
decreases as x increases when

x ∈ {M2 , . . . ,M}). Thus, it holds that(
M

tS

)
>

(
M

tS + C

)
=

(
M

M − C − tS

)
. (7)

Therefore, it holds that

Pr[Game4(AtS , N, ~B,C) = 1]

=
n(tS)(
M
tS

) <
n(M − C − tS)(

M
M−C−tS

)
= Pr[Game4(AM−C−tS , N, ~B,C) = 1]

where the first and last equalities holds from Lemma 5.2, and
the inequality follows from Eq. (7) and Claim 5.4, which states
that n(tS) = n(M − C − tS).

Now, since M −C− tS < M
2 , it follows from the first case

that

Pr[Game4(AM−C−tS , N, ~B,C) = 1]

≤ Pr[Game4(ABmin , N,
~B,C) = 1]

and therefore

Pr[Game4(AtS , N, ~B,C) = 1]

≤ Pr[Game4(ABmin , N,
~B,C) = 1]

as required. This concludes the proof of the theorem.
Next, we show that if ~B that was chosen for the game

contains two buckets i and j such that Bi − Bj > 1, then
moving one ball from the bigger bucket Bi to the smaller
bucket Bj , will result in a game that is more difficult for
the adversary to win. This proves that having buckets of
significantly different sizes does not improve security, as one
can keep moving balls between buckets until all buckets are
of size B and B + 1 for some B. As explained earlier, the
intuition behind this is that reducing the gap between large
and small buckets in this way can only result in having fewer
buckets of smallest size, and therefore the probability that the
bad balls will be thrown into a bucket of smallest size can
only be reduced.

Theorem 5.6: Let ~B be a multiset of N bucket sizes that
was chosen for the game and assume that there exist i, j ∈ [N]
such that Bi−Bj > 1. Let ~B′ be a multiset of N bucket sizes
obtained by setting

B′k =

Bi − 1 if k = i
Bj + 1 if k = j
Bk otherwise

If C ≥ Bmin, then for every adversary A′ in the game
where ~B′ is used, there exists an adversary A in the game
where ~B is used such that
Pr[Game4(A′, N, ~B′, C) = 1] ≤ Pr[Game4(A, N, ~B,C) = 1]

Proof: Denote by Bmin the size of the smallest bucket in
~B and by B′min the size of the smallest bucket in ~B′. From
Theorem 5.3, it follows that for every adversary A′ as in the
lemma it holds that

Pr[Game4(A′, N, ~B′, C) = 1]

≤ Pr[Game4(A′B′min
, N, ~B′, C) = 1]

where A′B′min
is an adversary who chooses B′min bad balls in

the game where ~B′ is used. It suffices to show that

Pr[Game4(A′B′min
, N, ~B′, C) = 1]

≤ Pr[Game4(ABmin
, N, ~B,C) = 1] (8)

since we can then take A = ABmin
in the game with ~B′ in

the theorem statement.
From Lemma 5.2 we obtain that Eq. (8) can be replaced by

n(B′min)(
M

B′min

) ≤ n(Bmin)(
M

Bmin

) . (9)

To prove Eq. (9), we consider two cases:
• Case 1: B′min = Bmin. In this case, it is sufficient to

prove that n(B′min) ≤ n(Bmin), and this holds since in
the process of changing ~B to ~B′, the number of buckets
with smallest size can only decrease (note that since only
one bucket can be filled when t = Bmin, then n(Bmin)
equals the number of buckets of minimal size).

• Case 2: B′min > Bmin. This case can occur only if there
was exactly one bucket of size Bmin in ~B, and it gained one

ball in the process of changing ~B to ~B′. Thus, it follows
that B′min = Bmin + 1 and n(Bmin) = 1. Thus, we can
replace Eq. (9) with

n(B′min) ≤

(
M

B′min

)(
M

Bmin

) .
Observe that(

M
B′min

)(
M

Bmin

) =
(M −Bmin)!Bmin!
(M −B′min)!B′min!

=
(M −Bmin)!Bmin!

(M − (Bmin + 1))!(Bmin + 1)!

=
M −Bmin
Bmin + 1

≥ M − C
Bmin + 1

=

∑N
i=1Bi

Bmin + 1

where the inequality holds since C ≥ Bmin. Also, note that
n(Bmin) ≤ N as there are N buckets in the game. Thus,
in order to complete the proof, we need to show that

N ≤
∑N
i=1Bi

Bmin + 1
.

This holds since, as explained before, in this case there was
exactly one bucket of size Bmin, one bucket of size at least
Bmin + 2 (from which one ball was moved to the first
bucket) and all other buckets are of size at least Bmin + 1
(otherwise, B′min would have stayed equal to Bmin). Thus,
it follows that∑N

i=1Bi
Bmin + 1

≥ Bmin + (Bmin + 2) + (N − 2)(Bmin + 1)

Bmin + 1

=
N · (Bmin + 1)

Bmin + 1
= N

as required.
Note that these are the only possible cases, since the case

that B′min < Bmin is not possible, because a bucket of
minimal size cannot lose balls when modifying ~B to obtain ~B′.
This concludes the proof of the theorem.

We conclude that taking different-sized buckets does not
improve security (except possibly for the case when exactly
two sizes B and B+1 are used). We will use this conclusion
in the next section.

B. Moderately Lowering the Cheating Probability
The discrete cut-and-choose problem. Typically, when
setting the parameters of a protocol that has statistical error
(like in cut and choose), there is a targeted “allowed” cheating
probability which determines a range of values that guarantee
the security bound. The parameters are then chosen to achieve
the best efficiency possibly within the given range. For ex-
ample, in a cut-and-choose setting modeled with balls and
buckets, the size of the buckets B may be incremented until
the security bound is met. However, this strategy can actually
be very wasteful. In order to understand why, assume that
the required security bound is 2−40 and assume that for the
required number of buckets, the bound obtained when setting
B = 3 is 2−39. Since this is above the allowed bound, it
is necessary to increase the bucket size to B = 4. This has
the effect of increasing the protocol complexity significantly
while reducing the security bound to way below what is
required. To be concrete, we have proven that the error bound

for the protocol version in Section III-A in 1/NB−1 (see
Theorem 3.4). If we require a bound of 2−40 and wish to
carry out N = 219 ≈ 500, 000 executions, then with B = 3
we achieve a cheating probability of only 2−38. By increasing
the bucket size to B = 4 we obtain a bound of 2−57 which is
overkill with respect to the desired bound. It would therefore
be desirable to have a method that enables us to trade-off the
protocol complexity and cheating probability in a more fine-
grained manner.
A solution. In this section, we propose a partial solution to
this problem; our solution is only partial since it is not as fine-
grained as we would like. Nevertheless, we view this as a first
step to achieving better solutions to the problem. The solution
that we propose in this section is to increment the size of only
some of the buckets by 1 (instead of all of them), resulting in
a game where there are buckets of two sizes, B and B + 1.
We use the analysis of the previous section to show that this
gradually reduces to the error probability, as desired.

Formally, let ~Bk = {Bk1 , . . . , BkN} be a multiset of bucket
sizes such that Bki = B for i ≤ k and Bki = B + 1 for
i > k. In the next lemma, we show that the probability that
the adversary wins in the combinatorial game when choosing
the bucket sizes in this way is a multiplicative factor of p = k

N
lower than when all buckets are of size B. Thus, in order to
reduce the probability by 1/2, it suffices to take k = N/2 and
increase half the buckets to size B+1 instead of all of them.
In the concrete example above, with N = 219 it is possible to
reduce the bound to 2−40 by increasing half of the buckets to
size B = 4 instead of all of them, achieving a saving of 218

balls. This therefore achieves the desired goal. We now prove
the lemma.

Lemma 5.7: Let k,N ∈ N such that k < N and let p = k
N .

For every bucket-size B, let ~Bk be the multiset of bucket
sizes defined as above. Then, for every adversary Ak in Game4
where ~Bk is used, there exists an adversary A in Game4 where
all buckets are of size B such that

Pr[Game4(Ak, N, ~Bk, C) = 1] ≤ p · Pr[Game4(A, N,B,C) = 1].

Proof: In the version of Game4 with bucket sizes ~Bk,
the minimal bucket size is B. Thus using Theorem 5.3, an
adversary who chooses B bad balls will maximize its winning
probability in both games. Thus, it is sufficient to prove that

Pr[Game4(AkB , N, ~Bk, C) = 1]

≤ p · Pr[Game4(AB , N,B,C) = 1] (10)

where AB and AkB are adversaries who choose B bad balls
in their games. This is sufficient since if Eq. (10) holds then
for every Ak, we can take the adversary AB as the adversary
for which the lemma holds.

Since there are exactly k buckets of size B, we have that
n(B) = k in this game. Furthermore, the number of balls
overall is exactly Bk + (B + 1)(N − k) + C. Thus, by
Lemma 5.2, it holds that
Pr[Game4(AkB , N, ~Bk, C) = 1] =

k(
Bk+(B+1)(N−k)+C

B

)
=

p ·N(
BN+(N−k)+C

B

) .
Similarly, from Lemma 5.2, it follows that

Pr[Game4(AB , N,B,C) = 1] =
N(

BN+C
B

)
since there are N buckets of size B in this game. Thus,
Eq. (10) follows if

p ·N(
BN+(N−k)+C

B

) ≤ p ·N(
BN+C
B

)
and this holds since

(
BN+C
B

)
≤
(
BN+(N−k)+C

B

)
.

Improving the bound. Observe that the adversary’s winning
probability decreases multiplicatively by k/N when N − k
balls are added. Thus, in order to reduce the probability by
1/2 we must add N − N/2 = N/2 balls, and in order to
reduce the probability by 1/4 we must add 3N/4 balls. In
general, in order to reduce the probability by 2−ζ we must
add N − N/2ζ balls. An important question that is open is
whether or not it is possible to reduce the probability while
adding fewer balls.

ACKNOWLEDGEMENTS
The authors at Bar-Ilan University were supported in part by

the European Research Council under the ERC consolidators
grant agreement n. 615172 (HIPS) and by the BIU Center
for Research in Applied Cryptography and Cyber Security in
conjunction with the Israel National Cyber Bureau in the Prime
Minister’s Office.

REFERENCES
[1] T. Araki, J. Furukawa, Y. Lindell, A. Nof and K. Ohara. High-

Throughput Semi-Honest Secure Three-Party Computation with an
Honest Majority. In the 23rd ACM CCS, pages 805–817, 2016.

[2] D. Beaver. Efficient Multiparty Protocols Using Circuit Randomization.
In CRYPTO 1991, Springer (LNCS 576), pages 420–432, 1992.

[3] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure
protocols. In the 22nd STOC, pages 503–513, 1990.

[4] M. Bellare, V.T. Hoang, S. Keelveedhi, and P. Rogaway. Efficient
garbling from a fixed-key blockcipher. In IEEE Security and Privacy,
pages 478–492, 2013.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems
for noncryptographic fault-tolerant distributed computations. In the 20th
STOC, pages 1–10, 1988.

[6] S.S. Burra, E. Larraia, J.B. Nielsen, P.S. Nordholt, C. Orlandi, E. Orsini,
P. Scholl, and N.P. Smart. High Performance Multi-Party Computation
for Binary Circuits Based on Oblivious Transfer. ePrint Cryptology
Archive, 2015/472.

[7] D. Chaum, C. Crépeau and I. Damgård. Multi-party Unconditionally
Secure Protocols. In 20th STOC, pages 11–19, 1988.

[8] I. Damgård, M. Geisler, M. Krøigaard and J.B.Nielsen. Asynchronous
Multiparty Computation: Theory and Implementation. In Public Key
Cryptography 2009, Springer (LNCS 5443), pages 160–179, 2009.

[9] I. Damgård, V. Pastro, N.P. Smart and S. Zakarias. Multiparty Com-
putation from Somewhat Homomorphic Encryption. In CRYPTO 2012,
pages 643–662, 2012.

[10] R.A. Fisher and F. Yates. Statistical Tables for Biological, Agricultural
and Medical Research (3rd ed.). Oliver & Boyd. pages 26-27, 1938.

[11] J. Furukawa, Y. Lindell, A. Nof and O. Weinstein. High-Throughput
Secure Three-Party Computation for Malicious Adversaries and an
Honest Majority. In EUROCRYPT 2017.

[12] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game. In the 19th STOC, 218–229, 1987.

[13] S. Gueron, Y. Lindell, A. Nof and B. Pinkas. Fast Garbling of Circuits
Under Standard Assumptions. In 22nd ACM CCS, pp. 567–578, 2015.

[14] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party
computation using garbled circuits. In USENIX Security, 2011.

[15] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious
transfers efficiently. In CRYPTO 2003, pages 145–161, 2003.

[16] M. Keller, E. Orsini and P. Scholl. MASCOT: Faster Malicious Arith-
metic Secure Computation with Oblivious Transfer. In ACM CCS, pages
830–842, 2016.

[17] M. Keller, P. Scholl and N.P. Smart. An architecture for practical
actively secure MPC with dishonest majority. ACM CCS, pp. 549–
560, 2013.

[18] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free xor
gates and applications. In Automata, Languages and Programming,
pages 486–498, 2008

[19] B. Kreuter, a. shelat, and C. Shen. Billion-gate secure computation with
malicious adversaries. In USENIX Security, pages 285–300, 2012.

[20] E. Larraia, E. Orsini, and N.P. Smart. Dishonest majority multi-party
computation for binary circuits. In CRYPTO, pages 495–512, 2014.

[21] D. Malkhi, N. Nisan, B. Pinkas and Y. Sella. Fairplay-secure two-party
computation system. In the USENIX Security Symposium, 2004.

[22] P. Mohassel, M. Rosulek and Y. Zhang. Fast and Secure Three-party
Computation: The Garbled Circuit Approach. ACM CCS, pp. 591–602,
2015.

[23] P. Rindal and M. Rosulek. Faster Malicious 2-Party Secure Com-
putation with Online/Offline Dual Execution. In USENIX Security
Symposium, pages 297–314, 2016.

[24] T. Schneider and M. Zohner. GMW vs. Yao? efficient secure two-party
computation with low depth circuits. In Financial Cryptography and
Data Security, pages 275–292, 2013.

[25] A. C. Yao. How to generate and exchange secrets. In the 27th FOCS,
pages 162–167, 1986.

[26] S. Zahur, M. Rosulek and D. Evans: Two Halves Make a Whole
- Reducing Data Transfer in Garbled Circuits Using Half Gates. In
EUROCRYPT, 220–250, 2015.

[27] Intel Haswell cache performance. http://www.7-cpu.com/
cpu/Haswell.html

APPENDIX A
THE PROTOCOL OF [11] IN DETAIL

PROTOCOL A.1 (Generating Multiplication triples):
• Input: The number N of triples to be generated.
• Auxiliary input: Parameters B and C.
• The Protocol:

1) Generate random sharings: The parties generate 2M shar-
ings of random values, where M = 2(NB + C(B − 1));
denote the shares that they receive by [([ai], [bi])]

M
i=1.

2) Generate multiplication triples: For i = 1, . . . ,M , the
parties run the semi-honest multiplication protocol of [1] to
compute [ci] = [ai] · [bi]. Denote ~D = [([ai], [bi], [ci])]

M/2
i=1 ;

observe that [ci] is the result of the protocol and is not
necessarily “correct”.

3) Cut and bucket: In this stage, the parties perform a first
verification that the triples were generated correctly, by
opening some of the triples.
a) Each party splits ~D into vectors ~D1, . . . , ~DB such that

~D1 contains N triples and each ~Di for i = 2, . . . , B
contains N + C triples.

b) For i = 2 to B: The parties jointly and securely generate
a random permutation πi over {1, . . . , N+C} and then
each locally shuffle ~Di according to πi.

c) For i = 2 to B: The parties run a protocol for checking
that a triple is valid (with opening) for the first C triples
in ~Di, and removes them from ~Di. If a party did not
output accept in every execution, it sends ⊥ to the other
parties and outputs ⊥.

d) The remaining triples are divided into N sets of triples
~E1, . . . , ~EN , each of size B, such that the bucket ~Ei

contains the i’th triple in ~D1, . . . , ~DB .
4) Check buckets: The parties initialize a vector ~d of length N .

Then, for i = 1, . . . , N :
a) Denote the triples in ~Ei by

([a1], [b1], [c1]), . . . , ([aB], [bB], [cB]).
b) For j = 2, . . . , B, the parties run a protocol to check

that ([a1], [b1], [c1]) is valid (i.e., c1 = a1b1), using
([aj], [bj], [cj]).

c) If a party did not output accept in every execution, it
sends ⊥ to the other parties and outputs ⊥.

d) The parties set ~di = ([a1], [b1], [c1]); i.e., they store
these shares in the ith entry of ~d.

• Output: The parties output ~d.

PROTOCOL A.2 (Securely Computing a Functionality f):
• Inputs: Each party Pi where i ∈ {1, 2, 3} holds an input xi ∈
{0, 1}`.

• Auxiliary Input: The parties hold a description of a Boolean
circuit C that computes f on inputs of length `. Let N be the
number of gates in C.

• The protocol – offline phase:
1) The parties call Protocol A.1 with input N and obtain a

vector ~d of sharings.
• The protocol – online phase:

1) Sharing the inputs: For each input wire, the party whose
input is associated with that wire securely shares its input.

2) Circuit emulation: Let G1, . . . , GN be a predetermined topo-
logical ordering of the gates of the circuit. For k = 1, . . . , N
the parties work as follows:

– If Gk is a XOR gate: Given shares [x] and [y] on the
input wires, the parties compute [x]⊕ [y] and define the
result as their share on the output wire.

– If Gk is a NOT gate: Given shares [x] on the input
wire, the parties compute [x] and define the result as
their share on the output wire.

– If Gk is an AND gate: Given shares [x] and [y] on the
input wires, the parties run the semi-honest multiplica-
tion protocol of [1].

3) Verification stage: Before the shared values on the out-
put wires are reconstructed, the parties verify that all the
multiplications were carried out correctly, as follows. For
k = 1, . . . , N :
a) Denote by ([x], [y]) the shares of the input wires to the
kth AND gate, and denote by [z] the shares of the output
wire of the kth AND gate.

b) The parties run the protocol to check that the triple
([x], [y], [z]) is valid (i.e., z = xy) using the triple
([ak], [bk], [ck]).

c) If a party did not output accept in every execution, it
sends ⊥ to the other parties and outputs ⊥.

4) If any party received⊥ in any call to any functionality above,
then it outputs ⊥ and halts.

5) Output reconstruction: For each output wire of the circuit,
the parties securely reconstruct the shared secret to the party
whose output is on the wire.

6) If any party receives ⊥ in any such reconstruction, then it
sends ⊥ to the other parties, outputs ⊥ and halts.

• Output: If a party has not output ⊥, then it outputs the values
it received on its output wires.

In this appendix, we describe the protocol of [11] in detail.
We omit the description of the secret-sharing scheme, the
semi-honest multiplication protocol and other details that are
not needed for understanding our techniques. The description
below also refers to subroutines for generating shares of
random values, for jointly choosing a random permutation (for
the array shuffle), and for sharing and reconstructing secrets.
In addition, they use subprotocols for checking the validity
of a multiplication triple (while opening and “wasting it”)
and for checking the validity of triple using another (while
preserving the secrecy of the first and “wasting” the second).
The protocol specifications below are as in [11], with the
exception of the cut-and-bucket step which is modified as
described in Section II-A.

