
Side-Channel Attacks on Shared Search Indexes

Liang Wang∗, Paul Grubbs†, Jiahui Lu‡, Vincent Bindschaedler§, David Cash¶, Thomas Ristenpart†
∗UW–Madison †Cornell Tech ‡SJTU §UIUC ¶Rutgers University

Abstract—Full-text search systems, such as Elasticsearch and
Apache Solr, enable document retrieval based on keyword
queries. In many deployments these systems are multi-tenant,
meaning distinct users’ documents reside in, and their queries
are answered by, one or more shared search indexes. Large
deployments may use hundreds of indexes across which user
documents are randomly assigned. The results of a search
query are filtered to remove documents to which a client should
not have access.

We show the existence of exploitable side channels in modern
multi-tenant search. The starting point for our attacks is a
decade-old observation that the TF-IDF scores used to rank
search results can potentially leak information about other
users’ documents. To the best of our knowledge, no attacks
have been shown that exploit this side channel in practice,
and constructing a working side channel requires overcoming
numerous challenges in real deployments. We nevertheless
develop a new attack, called STRESS (Search Text RElevance
Score Side channel), and in so doing show how an attacker
can map out the number of indexes used by a service, obtain
placement of a document within each index, and then exploit
co-tenancy with all other users to (1) discover the terms in
other tenants’ documents or (2) determine the number of
documents (belonging to other tenants) that contain a term of
interest. In controlled experiments, we demonstrate the attacks
on popular services such as GitHub and Xen.do. We conclude
with a discussion of countermeasures.

Keywords-side channels; SaaS security; elasticsearch

I. INTRODUCTION

Modern cloud services provide full-text search interfaces
to enable users to easily navigate potentially large document
sets. Search systems such as Elasticsearch [14] and Solr [48]
are both used by individual enterprises and offered as hosted
services for other companies. Databases such as MySQL
include similar search interfaces for columns containing
unstructured text [35].

The canonical search API allows querying one or more
keywords (or terms as they are usually called) to obtain
an ordered list of matching documents. The response may
additionally provide a real-valued score for each document.
Which documents to return and their scores are determined
using a relevance algorithm, most often term-frequency
inverse-document frequency (TF-IDF) [30, 54] or one of
its variants such as BM25 [53]. The TF-IDF score of a
document is proportional to the ratio of the term frequency
(the number of times a term appears in that document) to the
logarithm of the total number of documents divided by the
document frequency (the number of documents containing
the term at least once). To compute these scores quickly,

the search system maintains an inverted index that contains
precomputed document frequencies for each term and term
frequencies for each document-term pair.

Maintaining an index incurs overhead, and so best practice
guides [12, 34] suggest configuring multi-tenant search
systems to use shared indexes: each index is computed over
(many) different users’ documents. This configuration can
additionally improve search efficacy because the document
frequencies of other users’ documents may help make
relevance scores more accurate. When indexes hold private
data, search APIs must be carefully configured to return only
results for which the querying user has read privileges. The
industry-standard method (see for example [12,22,33,34,59])
for searching with a multi-tenant index works in two steps.
First, when user u issues a search query, the system forwards
the query to the multi-tenant index, which returns results that
may include documents to which u does not have access
rights. Next, the systems post-processes the list of results to
filter out any documents u should not have access to, and
returns the remaining results. This is referred to as filtering;
see Figure 1 in §III.

This filtering-based approach includes a side channel: one
user may be able to determine the document frequency of a
term, thereby potentially inferring if other users’ documents
include that term. This observation was first made by
Büttcher and Clarke [7] in the context of local file systems.
But to date no side-channel attack has been demonstrated
exploiting the observation, and, as we shall see, doing so
requires overcoming a number of significant challenges.

This paper. We provide the first treatment of logical side-
channel attacks on modern multi-tenant search services. We
begin by investigating representative open-source systems
and assessing whether the basic document frequency (DF)
side channel mentioned above exists. We setup local instal-
lations of systems including Elasticsearch/Solr and MySQL,
following best practice guides for multi-tenant search. In all
systems surveyed, we confirm that DF leakage can occur.

Despite this, and akin to early work on more well-studied
side channels such as those based on CPU caches [4,38,40],
it is not a priori clear how an attacker can exploit DF scores
in realistic settings. In modern multi-tenant infrastructures,
there exist a number of challenges: the precise scoring
functions used in real services are proprietary and unknown,
a user’s documents may be assigned to one of many possible
indexes, noise in relevance scores arises due to the number

of files fluctuating frequently over time as users add or
remove files, indexes may not remove keywords from an
index even after a file is deleted, many APIs rate limit
queries to search indexes, and more. It could also be, of
course, that some sophisticated enterprise services do deploy
proprietary countermeasures.

We develop STRESS1 attacks, which consist of a multi-
step methodology for exploiting DF side channels. Our
attacks overcome the challenges mentioned and, ultimately,
realize the first demonstrated cross-user side-channel attacks
in this setting.

Our framework begins by providing three low-level tools
that aid in attacks. First is a new approach that we call
score dipping. It provides a basic ability to infer, for a
single index that includes an attacker document, whether
there exists another document on the index containing a
specific keyword. The insight is that an attacker can abstract
away details of the scoring function, relying only on the
assumption that scores decrease with increasing DF. Score
dipping improves on prior ideas [7] for how to exploit the side
channel because it can be used without precise knowledge
of the scoring function used by a service plus, as we will
experimentally show, it is robust to noise.

In large-scale systems there will be a large number of
shards across which an index is split, and score dipping alone
is not effective in this setting. Each shard can be thought of
as a logically isolated portion of the index, and a scoring
function only takes into account documents assigned to the
shard. In targeted attacks against a particular victim, attackers
must have the ability to place one or more documents on
the same shard as the target’s documents. But the search
service controls shard assignment, typically randomly load
balancing new documents across them. Thus attackers are
faced with an analogous issue to the co-location challenge
that must be overcome in cross-user side-channel attacks in
public infrastructure-as-a-service (IaaS) [23,43,51,55,57] or
platform-as-a-service (PaaS) [60] clouds.

As a first step towards attacking a multi-shard system, we
show how to use score-dipping to construct our second low-
level tool, called co-shard tests, against multi-shard systems.
Our co-operative co-shard test allows an attacker to deter-
mine if two attacker-owned documents have been assigned
to the same shard. Specifically, we use score-dipping to
build a covert-channel between different documents that are
owned by the same user or different, co-operating users, and
hence determine if they are on the same shard. This channel
however does not on its own achieve co-location on a shard
with a victim’s documents, since the channel is only between
attacker documents.

We next propose a new and different approach to obtaining
co-location with a victims’ documents, and in the process
also learn about the service backend. Instead of trying to just

1Search Text RElevance Score Side channel

obtain co-location with a target, we use our co-operative co-
shard test to build our third low-level tool that we call a shard
map: A set of documents in which each document is present
on a distinct shard. We will show that it is possible even on
large-scale services to build complete shard maps, i.e., ones
that appear to cover all shards used by the system. A complete
shard map already reveals the number of shards, but more
damagingly will be useful as a preliminary step for more
granular attacks. We show how to do the following using a
shard map:
• DF estimation: We can reverse-engineer each shard’s

unknown scoring function using a curve-fitting strategy.
This yields a function that maps a term’s search score
to an estimate of that term’s DF on a shard. This
allows, among other things, trending: the ability to count
the number of (private) documents mentioning a word.
For example, if one knows an identifier used by a
particular company using GitHub, our technique allows
counting the number of private files they have stored on
the service.

• Brute-force term recovery: We can use our shard
map to test if a given term exists anywhere in the
system, thereby allowing an attacker to brute-force
recover moderately high-entropy values from victim
repositories. While the side-channel attack does not
reveal to the attacker which repositories contained the
term, we propose scenarios that nevertheless allow the
extraction of sensitive information such as credit card
numbers, social security numbers, passwords, and more.

We evaluate the viability of STRESS attacks in practice
with case studies of GitHub, Orchestrate.io, and Xen.do. As
a sample of our results, we demonstrate on GitHub (in a
responsible way, see discussion in §VI) that one can build a
191-document shard map in 104 hours with a single account.
We estimate that it would take about a day to brute force
a space of 106 possible terms on every shard. For example,
if one knows the BIN and last four digits of a credit card
number stored in a GitHub repository then the rest of the
card’s number can be brute-forced in under a day with
191 free accounts (c.f., [18] for discussion of credit card
numbers and other information being stored on GitHub). We
also discuss how stripping relevance scores (but still ranking
documents) is likely to be inadequate.

We conclude by discussing potential countermeasures,
suggesting in particular a new countermeasure which re-
places actual document frequencies with ones trained from
public data. We discuss the merits of this approach and routes
to deployment.

II. BACKGROUND

Ranked keyword search. A fundamental information-
retrieval task is finding relevant text documents for keyword
search queries. Let D denote a corpus of text documents.

For our purposes, a document consists of a bag-of-words
representation; each word is a string that we refer to as a
term. Our concern will be search systems that expose an API
allowing keyword search, i.e., a client can execute a remote
procedure call SEARCH(t) for a term t that returns an ordered
list of documents d1, . . . , dn for some (typically fixed, small)
n, sorted from most to least relevant. In addition to the list,
many APIs also return relevance scores s1, . . . , sn for which
si ∈ R indicates the estimated relevance of di to the query.
A higher score indicates stronger relevance, and so si ≥ sj
for i < j. Many search routines allow more complex queries
such as disjunctions and/or conjunctions of keywords, but we
will primarily focus on single-term search.

This work will only consider unstructured document
search in which documents have no semantic relationships.
This distinguishes it from settings such as web or social
network search.

In our unstructured search context, the most prevalent way
of ranking is via term frequency/inverse document frequency
(TF-IDF) scoring [30, 54]. Let D denote the document
corpus, N = |D| the number of documents, t be any term,
and d be an arbitrary document in D. Define df(t,D) =
|{d ∈ D | t ∈ d}| to be the number of documents in
D containing term t. This is referred to as the document
frequency (DF). We define the term frequency tf(t, d) as the
number of times the term t appears in the document d. We
define the inverse document frequency by

idf(t,D) = 1 + log
N

df(t,D) + 1
.

The TF-IDF score for the relevance of document d to the
single-term query t is

scoretf-idf(t, d,D) = tf(t, d) · idf(t,D) (1)

The TF-IDF score for a multi-term query q = (t1, . . . , tm) is

scoretf-idf(q, d,D) =

m∑
i=1

scoretf-idf(ti, d,D) (2)

We note that the idf(t,D) term is independent of the
document d, and it is intuitively used to weight terms for
multi-keyword queries.

There are many variants of the basic TF-IDF score that
include other parameters and normalizing terms, and also al-
ternative definitions of term frequency and inverse document
frequency. Indeed, the live systems we experimented on used
more complicated variants of TF-IDF, but we will use this
simple formulation for the time being.

To implement TF-IDF scoring and search, a system
generates an inverted index. For each potentially-searched
keyword t, one stores (t, idf(t,D)) at the head of a list of
(d, tf(t, d)) pairs. This allows fast computation of the TF-
IDF and the documents that should be returned in response
to the query.

TF-IDF scoring has many advantages and has intu-
itive probabilistic and geometric interpretations (c.f., [54]).
However, in applications it is often useful to account for
other factors in determining relevance, like the length of a
document compared to the average length of all documents
in the index. The BM25 scoring method incorporates this
additional information [53]. As our eventual attacks will
focus on TF-IDF, we omit the details and note that our attacks
should extend to use of BM25.

Multi-user indexes and the DF side channel. More
than 10 years ago, Büttcher and Clarke [7] pointed out a
potential side channel when using TF-IDF scoring on multi-
user indexes. A multi-user index is simply one generated over
a document corpus D that includes files from different users
with different permissions. To perform a search on behalf
of a user u, one uses the index to compute a ranked list of
documents (d1, . . . , dn) with scores (s1, . . . , sn). Then one
post-processes the list to redact documents (and their scores)
not accessible by u, resulting in a smaller list (d′1, . . . , d

′
n)

with scores (s′1, . . . , s
′
n) that are returned to u.

Büttcher and Clarke pointed out that systems like Apple’s
filesystem search service Spotlight are multi-user. While
permissions models can be rather complex, we will focus our
attacks on settings in which users should only be able to read
the files they own, and no others.

In this context, Büttcher and Clarke show that idf(t,D)
forms a potentially exploitable side channel that violates
document confidentiality, even if a search index properly
filters out search results on documents not owned by the user
performing the search. This channel will allow an adversary
to learn partial information about document frequency, so we
call this the DF side channel.

To demonstrate their observation, consider an adversarial
user Eve that wants to determine the number of documents
that contain a term t∗. For example, it may be that Eve
wants to learn whether another user Alice has a document
dA = {t∗} stored on the system. Then, there is a simple
attack exploiting the scoring function as a side channel.

Eve generates two documents d1 = {t∗} and d2 = {r}
where r is some random term of length sufficient to ensure
that it will not appear in any user document. Then Eve issues
two search queries: First for SEARCH(t∗), which returns
document d1 with score s1, and then for SEARCH(r) which
returns document d2 with score s2. Even though SEARCH
only returns results related to documents owned by Eve, Eve
can anyway use s1 and s2 to infer information about other
users’ documents. By construction Eve has arranged that
tf(t∗, d1) = tf(r, d2) = 1 and df(r) = 1. Thus referring
back to (1), Eve knows that

s1 = tf(t∗, d1) · idf(t∗, D) = 1 + log
N

df(t∗, D) + 1

s2 = tf(r, d2) · idf(r,D) = 1 + logN/2 .

Thus Eve now has two equations in two unknowns and can
solve for N and df(t∗, D). The latter reveals how many
documents in D contain t∗. Under the assumption that t∗

would only appear, if at all, in dA (e.g., because it is rather
high entropy), then Eve can conclude that Alice’s document
contains t∗.

The attack as described requires scores, but Büttcher and
Clarke detail another attack that uses only the order of
documents returned by a multi-term search to approximately
bound df(t∗, D). They also mention that their techniques
could be used to perform brute-force attacks, repeatedly
using the side channel for different possible values for the
target term t∗.

Büttcher and Clarke conjecture that this side channel could
be used to recover information from real multi-user search
indexes, but they do not demonstrate any working attacks. So
while the DF side channel has been known to exist in theory
since 2005, we are unaware of any investigation into its
exploitability in practice, despite the widespread deployment
of multi-user indexes. As we will discuss in the next section,
there appear to be inherent challenges to building real attacks,
including some noted by Büttcher and Clarke and others that
we uncover related to distributed system design.
Other storage system side channels. Other side channels on
search indexes and databases have been developed. Gelernter
and Herzberg [17] show how to exploit a cross-site timing
side channel to test for the presence of terms in a target
search index. Our attack does not require malicious code
injection, but does enable term extraction from a search
index. Futoransky et al. use a timing side channel on
insertions into MySQL and MS SQL databases to extract
private information [16]. They observe that insertions take
longer if a new virtual memory page is written, and use a
divide-and-conquer approach to learn private terms. Their
side channel is much harder to exploit than ours because it
requires fairly high-precision timing measurements.

III. SURVEY OF MULTI-TENANT SEARCH SIDE
CHANNELS

The basic DF side channel has only been discussed in
theory, and it is unknown what search systems, if any,
are vulnerable. We therefore begin by surveying existing
open-source multi-tenant search systems, and experimentally
confirm that the DF side channel exists in every setting
we consider.
Elasticsearch. There are a few prominent systems for
implementing full-text search on unstructured documents.
Lucene [27] is a Java library which implements the building
blocks of a search index, including functionality such as
document tokenizers and query parsers. It also implements
common data structures used for indexing. Elasticsearch (ES)
and Solr are two libraries that implement sharding and cluster
management for Lucene indexes. ES and Solr are widely used
in industry due to their efficiency and scalability.

… shard n

d1 d2

d1 d2

d3

dog

cat

cow

query = “cat dog”

d1 d2

d1 d2

scorescore score score

score score

Raw results from index

Filtered results

d1 d2 d3

“dog cat” “dog cat” “cow”

ES load
balancer

d4

“bird”

shard1 shard2

d1 d2

… shard n… shard n
shard n

d3 d4

… …

Indexes

add documents

inverted
index

Figure 1: A typical multi-tenant ES deployment consisting
of several shards, and an example of inverted indexes and
query filtering in ES. Documents from different users are in
different colors.

An architectural diagram of a canonical ES deployment is
depicted in Figure 1. We assume a multi-tenant setting, in
which multiple distinct user accounts have their documents
indexed. In large deployments, a single server is insufficient
to handle search queries, and so one instead builds separate
indexes across multiple shards. A common way of load
balancing across shards is to assign users at random to a
shard, meaning all their files will be in that shard. Should
individual users have many files, it may be needed to
have more granular load balancing. For example, one can
assign each individual document to a shard randomly when
the document is uploaded, or there may be other logical
groupings of documents. For example in GitHub, users may
have multiple git repositories, and as we will see later GitHub
load balances across shards at the granularity of repository.

Lucene, Solr, and ES are all open-source projects, and
typical configurations for the ranking function can be found
online in forums [29,42]. The default ranking used by Lucene
(and so, in turn, by ES and Solr) is a variant of TF-IDF given
by the equation

scorees(q, d) =
∑
t∈q

ρq,d · βt · tf(t, d) · idf(t,D)2√
|d| ·

∑
t∈q

idf(t,D)2
(3)

The query coordination factor ρq,d =
∑

t∈q I(t ∈ d)/|q|
boosts documents that contain more terms matched by
the query. It counts the number of query terms matching
the document and divides by the total number of terms
in the query |q|. The per-term boost function βt allows
customization of scores based on important application-
specific terms. The division by

√
|d| is what’s referred to as

the field-length norm, and it simply acts to normalize relative
to the size of the document. In some configurations, the field-

length norm is combined with an index-time field-level boost,
which for our purposes would simply change βt.

An attacker that retrieves a score scorees(q, d,D) on their
document dwill know most of the terms in the right hand side
of (3), with the only unknowns being the value N , df(t,D)
for each t ∈ q, and, if the configuration is unknown, the boost
function and other factors. When the configuration is known,
this is just a (log-linear) equation in two unknowns. In this
case the attack applies as in §II.

To test if ES has the DF side channel, we set up a local
installation of ES version 2.3.4, and configure it to use one
shard with zero replicas. We leave the other configuration
options default. Following the suggestions provided by
ES [34], we adopt the shared index strategy, create two
tenants alice and bob, and add a tenant-id field to a document
data structure to specify the document owner. A document
data structure is a piece of JSON data that consists of three
fields: a tenant-id field, a name to store the document name,
and a content field to store the document content.

We implement and test two common search filtering
mechanisms to enforce access control: filtering on tenant-
id in the query [13] and filtered index alias [1]. The
former excludes the documents that fail to meet the filtering
conditions, e.g., excluding documents whose tenant-id 6=
alice for queries issued by the tenant alice. The latter works
in the same way as the former, but it makes search filtering
easier by allowing a user to create an alias name for a set of
filtering conditions.

We first generated a unique term t, added a document da =
{t} as alice (the tenant-id of da is set to alice), and got a score
sa = scorees(t, da). Then, we added a document db = {t}
with tenant-id = bob, and measured s′a = scorees(t, da). We
observed that s′a < sa, and s′a decreases as more documents
that contain t are added by the tenant bob. Finally, we deleted
all the documents associated with bob, measure again as
alice to get s′′a = scorees(t, da), and saw s′′a is the same
as sa. We observed the same results under different filtering
mechanisms. These observations strongly suggest that one
can infer if there are other documents containing a term by
examining relevance scores; therefore, the DF side channel
exists in ES.

MySQL. We set up a MySQL 5.6 server using its default
configurations. In MySQL-based multi-tenant applications,
a common design is multi-tenant-per-table, that is, storing
all tenant’s data in the same table, with a tenant-id field
to distinguish each tenant’s records [32]; then, to get the
records only associated with a tenant alice, one can issue
SQL queries with a condition tenant-id = alice. We achieve
multi-tenancy in MySQL based on this design pattern. Our
simple multi-tenant application uses one table, each record
in which corresponds to a document. A record has the same
three fields as the documents in the ES tests. To enable full-
text search in MySQL, we build a FULLTEXT index on

the content field [35]. As a result, all the tenants share the
same index.

We conducted the same tests as we do for ES, and observed
the same result: the relevance score of a document for a
given term will be affected by the documents that contain
the same term, even if these documents are owned by other
tenants. The result also suggests that the DF side channel
exists in MySQL.

Other vulnerable systems. We found five vulnerable cloud-
based search services using the similar methodology as in
ES and MySQL. A cloud-based search service aims to
provide scalable, easy-to-manage full-text search for web or
mobile applications. An application can use it to build and
maintain indexes on its data, and handle search requests.
Such services usually charge the applications based on the
amount of storage used or the number of requests processed.
All of the systems we considered provide RESTful APIs and
reveal relevance scores. Four of the services are built on ES
(i.e., hosted-ES services), including AWS Elasticsearch [3],
AWS CloudSearch [2], Searchly [45] and bonsai [6]. It’s
easy to confirm that they inherit the DF side channels from
ES. We investigated these four due to their popularity, but
there are many other hosted-ES services that could also have
the vulnerability. One vulnerable system called Swiftype
implements its own search engine [50].

Note that even if the side channel exists in a hosted
search service, an application built atop that service will
not necessarily have the DF side channel. For example,
an application could conceivably assign each of their users
to an independent index. However, due to the costs of
cloud-based search services, application developers would
typically prefer to use shared indexes. In Swiftype, a basic
plan ($299 per month) only provides one index for usage,
while a business plan ($999 per month) provides up to three
indexes. In Searchly, a professional plan ($99 per month)
offers 13 indexes. So if a multi-tenant application is built
atop the service, the application’s users will share the same
indexes and might be vulnerable to information leakage.
Looking at the case studies advertised by Swiftype [49], we
realized some of them are indeed multi-tenant applications.
We also noticed that Heroku uses Swiftype and Searchly as
its search add-on [21], suggesting the DF side channel might
be inherited by Heroku-based applications.

Non-vulnerable systems. We also investigated Post-
greSQL [41], CouchBase [9], crate.io [10], Searchify [44]
(not to be confused with Searchly above), and Google App
Engine [20]. Our experimentation suggests that these systems
do not exhibit the DF side channel, primarily because they
appear to use independent indexes for different tenants.

IV. THE DF SIDE CHANNEL IN ENTERPRISE SYSTEMS

In the controlled or partially-controlled settings above, we
verified that the DF side channel was present. Enterprise

search systems however introduce a number of complica-
tions, and it is at first unclear if the DF side channel can
be exploited. In this section we discuss the major issues
that must be addressed in understanding if such a system is
vulnerable in practice.

Hidden relevance formulae. An adversary may not know
which TF-IDF variant is being used. The space of TF-IDF
variants is large, with several different possible choices for
tf(t, d) and idf(t,D) other than what we defined above, as
well as different formulas for combining them to compute a
score. These choices may use more features than we specified
above, such as the length of the document. Scores for multi-
term queries may also be computed via more complicated
formulae and have constants that can be hand-tuned for
a given application. Finally, we found that some services
implemented scoring via ad hoc methods that took into
account last-touched time or the order of terms in a query
(i.e., treating the query (t1, t2) differently from (t2, t1)).

When the adversary does not know the scoring function
it can no longer implement the algebraic attack from the
previous section. This issue was cited by Büttcher and Clarke
as preventing them from carrying out the attack on Spotlight.
Instead, other techniques must be developed that are robust
to variations in the scoring function.

Sharding. As mentioned above, enterprise search systems
perform load balancing by dividing the document corpus into
shards, which are essentially independent indexes. Sharding
may be done per-document, per-collection, per-user, or via
some other metric like creation time. Replica shards (i.e.,
copies of shards) are used to increase query throughput.

A side channel will only exist when scores are computed
as a function of private documents, which usually means that
an adversary’s document must be on the same shard as victim
data that it hopes to extract. Since search system interfaces do
not expose information about sharding, this poses a further
challenge for an adversary, who will need to arrange for
its documents to be co-sharded with victim data, and also
not be misled when documents are placed on shards without
victim data.

Noise. The production search systems we experimented with
displayed noisy behaviors that make attacks more difficult.
For instance, in all of our experiments on live systems
we observed that relevance scores constantly changed, and
issuing the same search multiple times will result in different
relevance scores on almost every query (see Figure 2 in §V).

Some of the noise is likely due to variations in the value
N , the number of documents in the shard, which is changing
constantly as many users write data to the index. This foils the
algebraic attack of Büttcher and Clarke, because obtaining
two scores computed with same value of N may be difficult
or impossible, and anyway one cannot tell when this is
the case.

Consistency and deletions. We also observed occasional
larger changes in relevance scores likely due to other
systems behavior. ES and similar systems have complex
mechanisms for propagating newly written data into shards
which maintain some form of consistency as segments of
data are merged into shards. However, they do not maintain
consistent relevance scores when data are merged, causing
further difficulties for attacks that depend on fine-grained
measurements in score changes. In some services it took up
to two minutes for a change in a document to result in a
change in relevance scores, slowing possible attacks. We also
noticed that searches may be issued in quick succession yet
return greatly differing scores, likely due to a segment merge
in between the queries.

Deletions are implemented lazily by marking documents
for deletion and later expunging them via a background pro-
cess (c.f., [11]). The DF values are incremented quickly (i.e.,
after a minute) but apparently only reduced after expunging.
Thus an adversary who hopes to delete documents as part
of an attack is required to wait until its documents have
been expunged before it can observe a change in the score
function. Further complication arises because an adversary
will not know which shard its document was present on and
deleted from.

API restrictions. Search interfaces are rate-limited, both in
terms of queries per time period (e.g., 5,000 queries per hour
on GitHub) and their total size (e.g., 128 bytes to describe
the keywords in the query). A very weak side channel may
be mitigated if it requires an infeasible number of queries, or
large queries.

Tokenizers and API interfaces often strip special char-
acters, treating them as whitespace. So, for example, a
hyphenated number XXXX-YYYY may be tokenized into
two terms XXXX and YYYY, which have independent
DFs. This affects the information available via the DF
side channel.

Bystander data. An adversary who targets a victim or
victims will need to carry out the attack in the presence of
a possibly large number of bystander users whose data are
uninteresting to the adversary. These data are not known to
the adversary but will be used in relevance score calculations
using a formula also unknown to the adversary. These
bystanders are also actively writing and deleting data in
the index.

The primary effect of bystander data in our work is their
effect on false positives, which we return to below. The
essential issue is that an adversary is only able to compute
the DF of a term on a given shard. It is thus impossible
to distinguish with certainty between cases where a victim
document or a bystander document contains the term (and
causes its DF to be non-zero). In some cases, we will argue
that it is possible to use contextual clues, like the presence of
other terms in the same shard, to limit false positives.

V. STRESS ATTACKS

A. Attack Goals and Notation

We consider services that allow an adversary to write data
and also use a search interface to retrieve relevant documents
with scores. We assume that access control is implemented
properly, meaning that other users’ private documents are
not returned to the adversary, or otherwise leaked directly
through the interface.

Our adversary’s intermediate goal will be to determine the
DF of some given terms t1, . . . , tq . (Later we will discuss
attacks built on this capability.) We start from simplest case,
where each df(ti, D) is either 0, meaning no one has a
document containing ti, or is positive, meaning that it appears
at least once. The document set D is changing constantly due
to bystander activity, but we assume that the terms ti are not
written or deleted in a short period for the attack, and also
that the size of the shard does not change dramatically.

In a system with a single shard, the DF of a term
is well-defined. But in a multi-shard system, each term
will have a shard-specific DF. To define the attack, we
model the document set D as being partitioned into sets
D1, . . . , DnSHRDS

, where nSHRDS is the number of shards. In
this case, our adversary should determine, for each shard,
the tuple (df(ti, Dj))

q
i=1 where the shard holds documents

Dj . That is, on each of the shards, it should determine an
estimate of DF of each term on that shard. We note that
this attack will allow an adversary to detect that, say, t1 and
t2 happen to occur together on the same shard, which is
stronger than simply detecting that they occur somewhere in
the larger system.

Notation. In this section, we fix a term-sampling algorithm
RNDTERM that outputs a fresh random term that is assumed
to never appear in bystander documents. In our experiments
choosing a uniformly random 16-character alphabetic string
was sufficient.

We also fix some notation for documents, terms, and the
interface into the search service. Documents will be treated
as sets of terms in our notation. In reality they are strings of
text but the order of terms does not matter for scoring. We
assume the service provides the ability to write documents,
which we formalize as WRITE(d, S), where d is a reference
to a document and S is a set of terms. This operation will
overwrite the entire document to consist of exactly S. Next
we will write score(t, d) to mean the score of document d
returned by the service for a search for the term t (note that
multiple calls to score(t, d) may return different scores, and
we are not fixing a document set D — score(t, d) is defined
according to the service’s response).

B. Basics of Exploiting the Side channel

All of our attacks will be built on a fundamental property
of all in-use relevance scoring functions we are aware of: As
a term t becomes more common (i.e. its DF increases), the

0 20 40 60

9.0496

9.0497

9.0498

9.0499

Time

Sc
or

e

0 3,600 7,200

Time

Figure 2: Example relevance scores returned by the GitHub
API when searching for the same term several times. Left
shows the score variations in 60 seconds, and right shows
the score variations in 2 hours. The time intervals for left
and right are 2 s and 60 s respectively. Y-axis does not start
from zero.

term weight decreases. In the case of basic TF-IDF, the term
weight is idf(t,D), but this is true for all of the variants we
have encountered. Indeed it is intentional: A more common
term should be given less weight in multi-term queries. An
adversary that does not know the scoring function can still
take advantage of this property.

Score-dipping. We use this property to build what we call
the score-dipping attack to determine if a term t appears
somewhere in a shard of a system that uses an unknown
scoring function. For now, assume that our attack owns a
document d on the shard of interest. The attack first writes
two terms t and r to d by invoking WRITE(d, {t, r}), where
r is a long random term (not present in another document).
Then it requests searches for t and r. The search for t returns
only d with some score s, and the search for r returns only
d with some score s′. The attack checks if s < s′, and if so
it guesses that t is present in the shard.

If t was not present in the system originally, then after
writing to d, we have both df(t,D) = df(r,D) = 1 (where
D is the document set in the shard) and the searches should
return the same score. But if t was already present, then
df(t,D) > 1 and thus s should be lower.

To work on a real system this attack must be extended
to tolerate noise in the scores returned. Due to bystander
activity, we will observe differences in s and s′ even when
the terms t, r have the same DF. (Indeed just searching for the
same term twice will produce different scores. See Figure 2.)
Bystander activity that incidentally decreases s or increases
s′ may cause the attack to output a false positive.

To mitigate this effect, we observed that the effect of
changing a DF from 0 to 1 (or some larger number) caused
a noticeably larger change in the relevance score than
background bystander activity. In our attack, we perform
several measurements on a shard to compute the typical
variation when searching for terms with DF equal to 1 and
2. We can then determine a threshold for when the score is
small enough to indicate that a term’s DF is larger than 0.

C. Plan for the Attacks

We now begin building towards an attack on a multi-shard
system. In all multi-shard systems, the mapping of documents
to shards is handled by some load balancing strategy that is
not directly exposed in the interface. (To an outside user,
sharding is meant to be transparent, though it does result
in variation of relevance scores for the same query across
shards.) Thus an adversary cannot directly see in which
shards its documents reside, or directly control the shard on
which a newly-created document is placed.

The hidden layer of load-balancing creates several difficul-
ties. If we try to repeat the score-dipping attack several times
without considering which shard we are on in each run, we
will not know when we have explored all of the shards. Some
systems might have hundreds of shards, and it may take a
minute or more for a write to possibly change a relevance
score. API rate-limiting can further slow naive attacks.

A more serious problem is that naively repeating the
single-shard attack is not even a correct strategy when a
service processes deletions lazily, meaning it only reduces
DFs when expunging. In this setting, naive repetition will
detect its own documents, which artificially increase the DF
of terms of interest, during the attack. Concretely, suppose
one stage of the attack writes a document d = {t, r}
containing the term of interest, and that deleting d, or
removing t from d does not reduce the DF of t in the shard
holding d. Then later stages of the attack that happen to return
to the same shard will detect that the DF of t is non-zero, but
this will be due to d and not victim documents.

Below we show how to mitigate the difficulty of attacking
without deleting via a technique we call shard mapping
that reverse-engineers the number of shards in the service
and also places an adversary-controlled document on each
shard. In addition to giving interesting information about a
backend, shard mapping helps avoid the issues above, and
also improves the efficiency of attacks.

We build two families of attacks using shard mapping:
First we show how to quickly test for the presence of
terms in other users’ documents, allowing for what we call
brute force term extraction. Second, we present a totally
different approach called DF prediction that learns the
scoring function on a shard and then attempts to predict DFs
using the learned function.

D. Tool: Co-Shard Testing

We first build a tool that we will use a sub-routine: co-
shard testing. This will efficiently determine if an adversary-
owned document d1 resides on the same shard as another
adversary-owned document.

Our strategy uses a technique similar to the score-dipping
attack and the details are given in Algorithm 1. The routine
COSHARDTEST takes as input references to document
d1, and a set of documents M (not containing d1), and
determines if d1 was co-sharded with any documents in M

Algorithm 1: COSHARDTEST

Input : Document d1 and document set M
Output : True iff ∃d ∈M : d1, d on same shard
Parameter: Integer δ > 0

1 r ← RNDTERM; r′ ← RNDTERM;
2 WRITE(d1, {r, r′});
3 foreach d ∈M do WRITE(d, r);
4 SLEEP;
5 s← score(r, d1);
6 s′ ← score(r′, d1);
7 if (s′ − s) > δ then return True;
8 else return False;

(but not which one). It also uses a service-specific constant δ
that we set by hand (once for each service). The attack starts
by selecting two random terms r and r′. Then it writes r and
r′ to d1, and only r to the other documents. After waiting for
the writes to propagate, the algorithm issues two searches for
r and r′, and records the score of d1 in the searches as s and
s′ respectively. Finally it outputs true if s′ is greater than s
by more than δ.

This attack works based on the principles described. If d1
was not co-sharded with any other document, then we have
df(r,Dj) = df(r′, Dj) = 1, whereDj is the shard containing
d1. But if d1 and one (or more) d ∈M are on the same shard
Dj , then df(r,Dj) ≥ 2 and df(r′, Dj) = 1, resulting in a
noticeable change in the score.

In this algorithm, most of the time is spent in SLEEP on
line 4. This is why we have chosen a fast version of co-shard
testing, where we can test if a new document d1 was co-
sharded with some d ∈ M without spending extra time to
determine which document it was.

The final detail is fixing δ, which must be set so that
we distinguish larger changes in the score from random
variation. We experimented with each service by repeating
several queries over a period of time, and setting δ to more
than the maximum observed variation (see Figure 2 for an
example of observed random variation).

Co-shard testing on stable services. On some services
we noticed that searching for two terms with DF exactly
1 would return results with exactly the same score. On
such stable services we can save time when co-shard testing
many documents via the following strategy: create many
documents, all containing the same random term r. Then
request a search for r, which returns all of the created
documents, and partition the documents returned by their
scores. If the service is stable, the documents on the same
shard will have the same scores, and otherwise their scores
will likely differ. Thus our test can immediately filter to
a subset of documents that are likely co-sharded, and then
perform the co-shard test to verify correctness.

E. Tool: Shard Mapping

Our multi-shard attacks will start with a pre-computation
phase that we call shard mapping, which aims to place

exactly one adversary-owned document on each shard in the
system. We call a set M of documents with this property
a shard map, and the goal of this subsection is to compute
a shard map efficiently. Recall that this is non-trivial since
the mapping of documents to shards is hidden by the
interface. After this somewhat slower pre-computation set
the adversary will be able to build attacks efficiently as we
describe below.

Our method for computing a shard map M is as follows:
Initialize a set M consisting of a single document d1 (on
some shard). Then create another document d2, and use the
co-shard test to check if d1 and d2 are on the same shard.
If they are, then the attack discards d2. If d1 and d2 are on
different shards, then it adds d2 to the map M . The attack
continues creating further documents, except this time it tests
for co-sharding with its documents in M before deciding that
it has found a new shard and adding the new document to S.
After some large number of runs that do not find a new shard,
the adversary concludes that the set S consists of exactly one
document on each shard of the system.

We denote our method by MAPSHARDS and it is given in
detail in Algorithm 2. We repeatedly create a new document
and test if it has landed in an “unmapped” shard using
COSHARDTEST. If not, we discard the document. If, on the
other hand, the document is on a new shard, then we add it
to the map M .

Run-time analysis. In Algorithm 2 we assume a service-
specific constant nMAX has been fixed. We want to pick an
nMAX large enough to ensure that we eventually find every
shard without wasting too much time in the attack, since each
co-shard test requires a costly sleep to propagate writes.

To analyze the run-time we assume that each newly created
document is assigned a uniformly random shard out of nSHRDS

possibilities. (Note that the actual shard assignment strategy
being used by a target service could be more complex, so
nSHRDS estimated by MAPSHARDS would only be a lower
bound.) Then the expected number of iterations before we
have a document on every shard is given by the well-
known coupon collector problem with nSHRDS coupons (see
for example [5]). A classic analysis tell us that the expected
number of tries is close to nSHRDS · (ln(nSHRDS) + 1.6), with
tight tail bounds on deviations from the expectation.

Thus one can set nMAX to be slightly larger than
the coupon-collector prediction when one knows nSHRDS,
say, from technical information the service has released.
Alternatively, one can simply guess nSHRDS and run the attack
until many iterations fail to find a shard. Let nFIND be the
number of shards found after k iterations, and nFAIL be the
number of consecutive iterations fail to find a shard after
the kth iteration. The probability of seeing nFAIL iterations
of failing can be calculated as (nFIND/nSHRDS)

nFAIL . Then, one
can stop if the probability is smaller than a certain threshold.
We took the latter approach in our attacks.

Algorithm 2: MAPSHARDS

Parameter: Integer nmax > 0
Output : Shard map M

1 Create an empty document d1;
2 M ← {d1};
3 for j = 2, . . . , nMAX do
4 Create new empty document dj ;
5 if COSHARDTEST(dj ,M) = False then
6 M ←M ∪ {dj};
7 else
8 Discard dj ;
9 end

10 end
11 return M

Optimizations and multi-mapping. We also implemented
a slightly more complicated, but faster, variant of shard
mapping. In each iteration of the main loop on line 3, we
changed the algorithm to create two new empty documents
d
(1)
j , d

(2)
j instead of one. We then execute a version of

COSHARDTEST to test if either d(1)j , d
(2)
j (or both) landed on

new shards. If neither did, we discard them both. If exactly
one did, then we keep it and discard the other. If both landed
on new shards, then we must test if they landed on the same
new shard via another co-shard test. In principle this could
be run with more than two new documents in each iteration
but we found that mapping was fast enough with two.

A second optimization is to apply the faster co-shard test
when the service returns stable scores. On some services this
will increase the speed of the mapping attack substantially.

Later we show that some attacks can be sped up using
multiple shard maps M1, . . . ,Mm, where the first documents
of all shard maps lie on the same shard, and second lie on the
same shard, etc. On some services like GitHub this will be
easy to construct due to their sharding policy, which places
all files from a repository on the same shard. On others we
can run shard mapping multiple times, and then use co-shard
testing again to find one document from each map that is on
each shard.

F. Attack 1: Brute-Force Term Extraction

We now build our brute-force term extraction attack using
a pre-computed shard map M . Our attack will use M to
quickly determine the DF of given terms on every shard of
the system. More precisely, let B be a (potentially large) set
of terms that we are interested in testing for, in a system with
nSHRDS shards. Our attack will return a tuple (B1, . . . , BnSHRDS

)
of sets of terms, where Bi ⊆ B consists of the terms from B
that are in the i-th shard of the system.

Our attack is given in Algorithm 3. It starts by initializing
the sets Bi to be empty, and then iterates over each document
in the shard map, writing a random term and all of the
terms in B to the document. After waiting for the writes to
propagate, it then tests for the presence of each t ∈ B on
the shards using score-dipping again with some threshold δ.

Algorithm 3: TERMEXTRACT

Input : Shard map M = {d1, . . . , dnSHRDS}, term set B
Output: (B1, . . . , BnSHRDS)
Param : δ > 0

1 Initialize all Bi ← ∅;
2 for i = 1, . . . , nSHRDS do
3 ri ← RNDTERM;
4 WRITE(di, {ri} ∪B)
5 end
6 SLEEP;
7 foreach t ∈ B do
8 for i = 1, . . . , nSHRDS do
9 si ← score(ri, di);

10 s′i ← score(t, di);
11 if (s′i − si) > δ then
12 Bi ← Bi ∪ {t}
13 end
14 end
15 end
16 return (B1, . . . , BnSHRDS)

This approach minimizes the number of costly sleep times
by writing many terms to each file.

This technique crucially depends on the shard map to avoid
incorrectly dipping the score for a term t with the attacker’s
own write operations. Also we note that if we have multiple
shard maps then we can partition B and run independent
instances of TERMEXTRACT in parallel.

G. Attack 2: DF Prediction via Score Extrapolation

Natural extensions of our first attack to estimate DFs
appeared to work correctly but were slow, as they had
to measure and test if the DF was 0, 1, 2, 3, . . . before
finding the correct value. Our second attack estimates how
many documents contain a given term on each shard of a
search service (that is, we estimate df(t,Dj) for each shard
document set Dj). We call this DF prediction which is
denoted as DFPRED.

At a high level, DF prediction works by collecting data on
the behavior of the score function when the DF of a term
is known, and then training a model that predicts DF from
relevance scores alone. In our attacks we can speculatively
guess the class of scoring functions based on knowledge of
common implementations, but we still assume that constants
and custom modifications to the function are hidden.

The algorithm DFPRED is described in Algorithm 4. It
assumes it is given input several documents on the same shard
of the service (either from several shard maps or from some
other method). Then it performs a data collection step in the
loop that estimates the score of a search when a term has
DF equal to 1, . . . , nDFE, where nDFE is a parameter of the
system (see Figure 3 for example data). After this step it uses
a training algorithm to fit a curve f (from some class) that
maps integers to reals. This f intuitively is a guess for the
mapping from DFs to relevance scores induced by the system.

After computing f we can apply it in attacks. Given a term
t of interest, an attack can write t to the document on the

Algorithm 4: DFPRED

Input : Documents d1, . . . , dnDFE on same shard
Output : Score-to-DF model f
Params: nDFE , training algorithm TRAIN

1 Lscrs ← φ;
2 for i = 1 . . . nDFE do
3 r ← RNDTERM;
4 for j = 1 . . . i do WRITE(dj , r);
5 SLEEP;
6 si ←

∑i
j=1 score(r, dj)/i;

7 Append {〈i, si〉} to Lscrs

8 end
9 f ← TRAIN(Lscrs);

10 return f

target shard and then search and record the score as s. Finally,
we produce an estimated DF by computing

[f−1(s)]− 1

where [x] denotes the closest integer to x. We subtract 1 to
account for the document added by the attack that contains t.

Comparison to Brute-Force Term Extraction. Once we
have computed the model f we can also use it for brute-force
term extraction to get an attack with essentially the same
complexity by using f to predict when terms have DF equal
to zero. We opted for the first attack above because it does not
require the training phase. Note that DF prediction actually
recovers more, as it guesses the DF of a term rather than only
detecting if the DF is non-zero. As mentioned above, using
TERMEXTRACT to decide the DF of a term would be slow.

H. Attack 3: Rank-only Attacks

Our attacks above assumed that the search interface returns
relevance scores. Some services however only return the list
of ranked results without scores, and here we sketch how to
adapt our techniques to this case.

We assume that the service supports multi-term search
queries, and that the relevance scoring function assigns
weights to terms that decrease with their DF. For now, we
also assume there is no noise in the scores on a shard.

When there is no noise in scores, scores will often result
in ties, and we start by reverse-engineering how the service
breaks ties. In our experience this was done by sorting on the
document name, creation time, or some other easily-noticed
property of the documents.

Rank-only term extraction. Our rank-only term extraction
attack is given in Algorithm 5. It takes as input two
documents d1 and d2 on the same shard, and a target term
set B. Without loss of generality we assume that d1 is ranked
higher than d2 in the case of a tie.

The algorithm will compute the subset B′ ⊆ B of terms
present on the shard with d1 and d2. The algorithm iterates
over each t ∈ B. It writes t into the document d1, and it
writes fresh random terms ri into the document d2.

Algorithm 5: ROTERMEXTRACT

Input : Documents d1, d2, term set B
Output : Terms B′ ⊆ B present on the shard.

1 foreach t ∈ B do
2 r ← RNDTERM
3 WRITE(d1, t)
4 WRITE(d2, r)
5 SLEEP
6 R← ROSEARCH({t, ri})
7 if d1 is ranked below d2 in R then
8 B′ ← B′ ∪ {t}
9 end

10 end

After waiting for the writes to propagate to the index, the
attacker issues a two-term search query for {ri, t}, which
returns a ranked list R of two results. This list is either
d1 > d2 or d2 > d1. If it is the latter, the algorithm infers
that t is on the i-th shard and adds it to B′.

To see why this attack works, we consider the cases where
df(t,D) is zero or is positive before the attack starts (where
D is the document set on the shard). If it is zero, then d1
and d2 will have the same score and hence d1 will be ranked
higher. If however df(t,D) is positive, then d2 will have a
higher idf since the DF of r is exactly 1 and the DF of t is
at least 2 after we write the files. Thus, d2 has a higher score
and be ranked first.

Optimizations. This attack can be generalized to test for
several terms in each iteration of the main loop instead of 1
(thus reducing the number of sleep operations). This version
requires several documents d1, . . . , dm on the same shard,
and we assume that ties are broken in the order d1 > d2 >
· · · > dm. The attack writes r into the last document dm,
and the terms of interest t1, . . . , tm−1 in the first m − 1
documents d1, . . . , dm−1. Then it issues a search query for
{t1, . . . , tm, r} and looks at the position of dm in the list. If
a document di appears below dm, then the attack infers that
ti appears on the shard for the same reasons as before.

VI. CASE STUDIES OF MODERN SERVICES

In this section we discuss how an adversary might abuse
the attacks we constructed in the previous section. Then we
explore three services against which the score-based attacks
are effective: GitHub, Orchestrate.io and Xen.do. We report
on the performance of our attacks on the services, such as
how long they took, how much they would cost to mount at
scale, and how often they might fail. Finally, we examine
rank-only attacks against GitHub and Orchestrate.io, who
provide web interfaces for performing multi-term search
without returning relevance scores.

A. Scenarios

To understand possible threats let us abstract the ability
that is implied by our brute force term extraction and DF
prediction attacks. Let the document sets stored on the shards

of the service be D1, . . . , DnSHRDS
. Term extraction gives us

abstractly an oracle OTE that takes input (t, i) and returns 0
if df(t,Di) = 0 and otherwise returns 1. DF estimation
provides a richer oracle ODF that takes the same inputs (t, i)
but returns (approximately) df(t,Di) itself.

In this view any abuse will have some fundamental
limitations. Short terms are likely to appear by chance in
documents, so the first oracle will likely return 1 most of the
time. Also, since terms are extracted by a tokenizer, if some
text happens to contain periods or hyphens (like a URL, SSN,
phone number), then the text will be separated into small
terms which may have high false positive rates. Neither of
these oracles allows one to test for substrings of terms, so
very high-entropy terms like cryptographic keys are, without
some side information about them, intractable to guess. We
nevertheless identify two types of attack scenarios that are
possible within these limitations.

Medium-entropy terms. The first is brute-forcing medium-
entropy terms that are rare enough to avoid false positives
yet drawn from a brute-forcible space. As examples of
sensitive medium-entropy data that may be stored within a
search service, consider SSNs and phone numbers in the
United States. In these cases, and assuming no hyphenation
is used (which is desirable for search), an adversary could in
principle use the first oracle OTE to produce a list of all such
numbers and SSNs stored in the shards of the service. This
is already a severe violation of the confidentiality expected
by users.

A second type of medium-entropy data are (relatively
strong) passwords. Note that very weak passwords such as
“123456” are likely to generate false positives. An attacker
may test a dictionary of common passwords (or their hashes)
using OTE to determine which ones occur in the services’
document set of terms. Passwords could be stored in search
services when used as application backends, and there have
also been well-publicized incidents of passwords being stored
on GitHub repositories. In either case, an attacker could use
access to OTE to filter the password dictionary to a smaller
set that it then uses for online password guessing attacks.

Medium-entropy data targets may also arise when an
adversary has partial knowledge on an a priori piece
of high-entropy data. For instance, someone may store
documents that contain terms with adversary-known high-
entropy prefixes followed by lower entropy suffixes. The
prefixes will lower or remove false positives, allowing for
brute-forcing of the rest via the oracle OTE.

A final type of medium-entropy data may occur when
high-entropy data is tokenized into medium-entropy terms.
Consider a hypothetical 24-character API key that consists of
four 6-character chunks separated by hyphens. These may be
tokenized into 6-character terms that could then be found via
the oracle OTE, along with some false positives. This would
vastly reduce the space of possible API keys for an attacker

who only needs to try keys formed by combinations taken
from the set of 6-character terms found in the index.

Term trending. A second class of attacks uses the richer
ability of the ODF oracle to estimate DFs rather than simply
detect if they are positive. Unlike the previous settings,
an attack may profitably query ODF for even low-entropy
terms to learn about how commonly they are included in
documents. For instance, on GitHub, one can use the side
channel to learn about the popularity of certain libraries or
packages. Or, if separate source code documents include
unique identifiers associated to a particular victim (e.g., AWS
account IDs), then the ODF oracle can be used to count the
number of documents in that victim’s private repositories.
Since we are able to extract per-shard DF estimations, an
adversary may be able to guess if it has found the shard of
a particular user by looking for a shard that contains, with
high DFs, terms associated with that user. One can then focus
searches on that shard in order to reduce false positive rates
in, e.g., a brute-force attack.

B. Performing Responsible Experiments

We would like to validate the feasibility of attack scenarios
as discussed above. However, the nature of the side channel
is such that we could, if careless, end up spying on actual
user data in these services (e.g., if we simply started querying
for passwords). We therefore took care to ensure that our
experiments would not expose private information about their
users or otherwise cause undue burdens on services.

Our experiments will only target simulated victims, i.e.,
accounts under our control with documents that we generate.
This will give us ground truth. Except for estimating false
positive rates, we apply the DF side channel only to long,
random unstructured terms that are exponentially unlikely
to appear in any bystander’s document (given the number
of such terms we use the side channel upon). Put another
way, we explicitly avoid learning anything about other users’
data from the side channel. We refer to users other than
our simulated attack and victim users as bystanders (i.e.,
everyone is a bystander except for our accounts).

False positive rates caused by bystander data are important
for understanding the efficacy of possible attacks, as we
expect false positives to be a significant limitation to the
attacks in practice. The rates however depend on bystanders’
potentially private data. We therefore perform carefully
limited false positive measurements in which we infer only
whether or not we get the right answer from our side channel
for random terms of given lengths. Even here we minimize
any perceived risk to other users, only searching for random
unstructured data with no semantic value. We only report
summary statistics and never what random values may have
resided in one or more bystander’s documents, and we will
not make these false-positive datasets public.

Attacks could involve making a large number of queries to
the service. We rate-limit our queries appropriately and show

how to extrapolate from our experiments to attackers with
no qualms about submitting as many queries as possible per
unit time.

C. GitHub

GitHub is one of the most popular source code hosting
platforms, with 14 million users and 35 million repositories
as of April 2016 according to Wikipedia. GitHub has
two types of repositories: public repositories and private
repositories. Users can register for a free plan and set up
unlimited numbers of public repositories, but no documents
or repositories can be marked as private. To enable use of
private repositories, one can choose a 7 USD per month
plan. In a private repository, documents can be accessed
and searched by their owner or authorized users. Non-
authorized users should not be able to learn anything about
the repository’s contents, such as the number and type of
documents, the contents of those documents, etc.

GitHub search API and basic experiments. GitHub
uses ES (hosted by Elastic.co) as its search engine for full-
text search [8]. A user could use a web-based interface or
RESTful APIs to search for a term of interest. A search
request will return with all the documents containing this
term in both the public repositories as well as in private
repositories to which the requesting user has access. The
RESTful search API returns relevance scores to facilitate
application development, which our attacks will exploit,
while the web-interface returns ranked results without scores
(we discuss attacking this setting in the Appendix). Based
on public documentation [8, 19], we know that GitHub load
balances across shards at the granularity of an individual
repository: at the time the repository is created it is assigned
to a shard. All documents in that repository are indexed
within the assigned shard.

We first performed some manual experimentation using
our score-dipping attack to both confirm the DF side channel
and reverse engineer some undocumented aspects of the
GitHub search service. We found that public repositories
and private repositories use the same indexes. This means
that, looking ahead, a malicious user could use (free) public
repositories and the search API to extract sensitive terms
from a victim’s private repositories. We also observed that
the index update time, i.e., the time between inserting a
document into a repository and it being added to an index,
is less than 1 minute in most cases.

Search queries emanating from a particular user account
are limited to 5,000 per hour. There is a public interface
for search as well, which does not require an account,
and only searches public documents (which suffices for our
attacks should an attacker use public repositories). This is
rate limited to 60 per IP per hour. The GitHub search API
allows queries with size less than or equal to 128 bytes.
In our experiments, we primarily used private repositories
for our simulated attacker, and found that pausing at least

two seconds between two consecutive API requests avoids
triggering rate limits. Therefore, in all our experiments, we
pause for 2 seconds after search query and 60 seconds
after creating/updating a document. Using longer pause times
might be better for handling outliers (i.e., the index update
time can be up to 2 minutes in rare cases), but would
significantly increase the experiment running time.

Shard mapping. As mentioned GitHub hosts millions of
repositories across many users, and therefore uses a large
number of ES shards. We apply our shard mapping tool to
determine how many, and to place an attacker document on
each of the discovered shards.

We ran the shard mapping algorithm variant as described in
§V-E, creating two new repositories each with one document
over 513 rounds for a total of 1,026 repositories. The δ
in COSHARDTEST was set to 0.05. We stopped after 50
consecutive rounds (100 repositories) failed to find a new
shard. It took 104 hours and we discovered 191 shards.
We might have missed some small number of shards. For
example, assuming random assignment of repositories to
shards, the probability of 100 consecutive failings if there
were in fact 200 shards is 1%. Nevertheless, our shard map
ends up sufficient for all experiments — all subsequent
simulated victims ended up on one of the 191 shards that we
discovered. We note an Elastic.co use-case description states
that GitHub has 128 shards [19], suggesting this information
is out of date.

After creating one repository on each shard at GitHub, we
can generate many shard map sets M1,M2, . . . simply by
creating one document on each repository.

We note that using shard mapping it would seem possible
to track, over time, the number of shards used by GitHub.
This could already be a hypothetical confidentiality issue
for services that want to keep their infrastructure configura-
tion secret.

Note that the consistency issues mentioned in §IV might
produce false positives in COSHARDTEST; i.e., the differ-
ence in scores for two documents is greater than a threshold
even though the documents are not on the same shard. To
handle this issue, we double check after COSHARDTEST
returns a positive result: we run COSHARDTEST again and
accept the result if both rounds of tests give positive results.
We adopt this false positive identification method in the
COSHARDTEST on all examined services.

DF prediction. As mentioned above, the documents in the
same repository are assigned to the same shard. Doing more
manual tests, we confirmed this, and leverage it in the design
of our experiments. We use one account AcctA as the account
for a simulated attacker and another account AcctV for a
simulated victim.

We tested the accuracy of DF prediction as follows. For
a given value of nDFE, we create nDFE training documents
in a repository under the attacker’s account AcctA and run

0 200 400 600 800 1,000

6

7

8

9 9.04

8.84

DF(t)

sc
or

e(
t,
d
)

Figure 3: The changes of score(t, d) as df(t,D) increases.
The scores when df(t,D) = 1 and df(t,D) = 2 are
highlighted. Y-axis does not start from zero.

DFPRED. During the training, we use OriginLab [37] to
test the data against all the functions provided, and find
without exception the best-fit function is in the form of
f(x) = a−b∗ ln(x+c), where x is the variable representing
the unknown DF and a, b, c are coefficients. This function is
consistent with the standard Elasticsearch scoring function
in [28].

Using AcctV we generate nDF victim documents in a single
repository, each document containing the single term {t∗}
which is chosen as a random 16-byte alphabetic string. We
vary nDF and test the accuracy of the attack. We run the
COSHARDTEST attack to place a document d = {t∗} from
AcctA on the same shard with the documents of AcctV . We
then measure and record the score score(t∗, d) by making
a search query from AcctA. Then, we calculate dfest(t

∗) =
f−1(score(t∗, d)) − 1 as an approximation of DF(t∗) and
measure the relative error rate (in percentage) and absolute
error in order to evaluate estimation accuracy. The relative
error rate is calculated as |df(t∗)− dfest(t

∗)|/df(t∗) ∗ 100
and the absolute error is calculated as |df(t∗)− dfest(t

∗)|.
We perform experiments for each nDFE, nDF pair for nDFE ∈

{1, 5, 10, . . . , 250} and nDF ∈ {0, 1, . . . , 999}. Figure 3
shows the changes of the relevance score of score(t∗, d) as
DF(t∗) increases from 1 to 1,000.

As shown in Table 4, the average relative errors (across
all nDF) for any nDFE are all less than 0.5%, and average
absolute errors are less than 3. We find that when nDFE ≥ 50,
the average relative errors and the average absolute errors
under different nDFE are similar, i.e., the estimations do not
become more accurate as we use more data points during
regression analysis. Figure 5 shows a histogram of the errors
for the 1,000 experiments (for the 1,000 different nDF values)
and for nDFE = 50. As can be seen, the performance of the
DF prediction is very good: about 10% of the estimations
are correct; less than 14 of the estimations have absolute
errors of 5. We note that the attack performs differently on
alphabetic and numeric terms, likely due to boosting in the
score function.

Relative error Absolute error
Min Avg Max Min Avg Max

Alphabetic 0.07% 0.38% 0.53% 0.52 1.93 2.83
Numerical 0.13% 0.43% 0.58% 0.59 2.15 3.03

Figure 4: An overview of the average relative and absolute
errors for DF prediction for all nDFE on GitHub. The first row
targets estimation for a random 16-byte alphabetic string and
the second row is for random 16-byte number.

0 1 2 3 4 5

0
5
10
15
20
25
30
35
40

Absolute error

Pe
rc

en
ta

ge

16-byte alphabetic 16-byte number

Figure 5: The distribution of the absolute errors when nDFE =
50 (GitHub).

We repeat the experiments again on two further shards and
get similarly small error rates: when nDFE = 50, the average
relative errors are 0.65% and 0.27%, and the average absolute
errors are 3.9 and 1.2, respectively.

One important factor that can affect the estimation
accuracy is the time we wait between updating a document
and relevance score measurement. We find if waiting only
30 seconds, there is so much noise in the data that we
cannot even do a reasonable curve fit to the scoring function.
However, sometimes 60 seconds might still not be long
enough for an index to reach a stable state: we indeed
observed unusual score variations during data collection.
While the DF estimation already works well despite this
noise, we believe the performance could be improved further
with more effort on data collection and processing.

Term extraction attacks. We start by confirming that
term extraction works correctly in a controlled setting. We
generate a set of 50 victim terms B and a set of 50 control
terms B′. We create a victim document d = B, and then run
our term extraction attack on all the terms in B ∪ B′ to see
if it can properly identify the victim terms. We repeated the
experiment 50 times.

To save time, once TERMEXTRACT finds the target shard
containing d (i.e., a shard containing any of the terms form
B∪B′) we ignore the other shards and only do term exaction
on the target shard. The average time for finding the target
shard is 1,149 seconds, while the minimum time is 698
seconds and the maximum time is 1,607 seconds. The median

4 5 6 7 8 9 10 11

0

50

100

Term length

Fa
ls

e-
po

st
iv

e
ra

te

GitHub-numeric
GitHub-alphabetic

Orchestrate-numeric
Orchestrate-alphabetic

Figure 6: The average false-positive rates for different lengths
of alphabetic-character-only term and numeric-character-
only terms across three shards in GitHub and Orchestrate.io.

number of tries (i.e., number of shards examined before
finding the target index) is 98.

The attack achieves a true-positive rate of 100% and a
false-positive rate of 0%. Since we also chose long random
terms, excluding any noise due to bystanders, we conclude
that the attack solved the experiment perfectly.

False positives on GitHub. The brute-force term extraction
attack will encounter false positives due to bystander data.
To understand how often terms happen to be contained
on GitHub, we estimate the false-positive rate associated
with low-entropy terms. We also test two types of terms:
alphabetic-character-only terms and numeric-character-only
terms. For a given length `, we generate 20,000 terms of
length ` (` ≥ 5) and of a given type (104 terms for numeric-
character-only term when ` = 4) to constructB, and randomly
select 5% of these terms asB′. We set ` to each of 4, 5, ..., 16.
We repeat the test on three different shards, and report on
the average false-positive rates across 3 rounds in Figure 6.
We can see when ` = 4, 5, the false-positive rates are 100%
or near 100% in both services. The false-positive rates are
relatively high even when ` = 8, but drops to a very small
value (< 0.5%) when ` ≥ 9 and zero when ` ≥ 11. We can
also clearly see that numeric-character-only terms involve
more false positives than alphabetic-character-only terms.

Feasibility of brute-force attacks. According to GitHub,
developers sometimes leave CCN information in source
code [18], and users might also store their own personal
information on GitHub [52]. We argue that it is sometimes
feasible for an attacker with partial information to harvest this
(and other) information via the DF side channel.

Recall that in GitHub one account can send 5,000 requests
per hour. Our brute-force attack will write large files
containing terms to test and then issue one API call per term.
Since writing the file requires a wait time for propagation to
the index, one would pipeline the writes while performing the
search queries. Assuming this is implemented, in the limit our
term extraction needs one API request per term guess (using

a modified version of TERMEXTRACT that uses one random
term ri to generate a score si that is then compared against
the scores of many victim terms). Each guess checks if the
term is on a particular shard. This gives a rough estimate
of 120,000 guesses on a shard per day with one account.
Creating n additional accounts increases the brute-forcing
power by a factor n as the guessing algorithm can be run
in parallel.

For a concrete example, if one knows the BIN (bank
identification number) and last four digits of a CCN then
there are about 106 possible CCNs. If an attack has focused
on a particular shard the rest of the CCN could be brute-
forced with one account in under a day. If the attacker is
unsure of the shard, it could create one free account per shard
and execute the attack in parallel (which, nicely, would be
perfectly load-balanced on GitHub’s backend).

D. Orchestrate.io

Orchestrate.io is a database-as-a-service platform for
developing web and mobile applications. The information
stored on Orchestrate.io is likely different than in GitHub
since it is a generic key-value database and is being used to
store all types of data. It seems likely that application back-
ends store sensitive customer information in Orchestrate.io.

According to Orchestrate.io’s official blog, it uses ES
as its search engine [36], and has made efforts to secure
its search API. However, we found its search API also
expose the relevance scores of returned documents. Further
tests suggested that the DF side channel also exists in
Orchestrate.io.

The Orchestrate.io API does not restrict the number of
operators in the query but enforces a maximum query
size of 6 KB. The service does not have a specific rate-
limiting policy but will throttle a user if her API requests
affect their servers’ performance. The index update time
on Orchestrate.io is faster than GitHub. To avoid burdening
on the target server, we decide to pause 30 seconds after
creating/updating a document and 2 seconds after each
search query.

Attack results. In Orchestrate.io, we use the same
experiments as in GitHub to test MAPSHARDS and
TERMEXTRACT. MAPSHARDS collects 50 shards in 12
hours, using 128 rounds with 256 documents being cre-
ated. The δ in COSHARDTEST was set to 0.08. In
TERMEXTRACT, the average time for locating the target
shard is 324 seconds and the median number of tries is 15.
The term extraction attack also achieves a true-positive rate
of 100% and a false-positive rate of 0%.

We also conduct the same false-positive tests in Orches-
trate.io. The average false-positive rates across three rounds
are shown in Figure 6. As the term length increases, the false-
positive rates drop to zero more quickly than on GitHub;
when 7 ≤ l ≤ 9, we only find very few false positives (1
to 3) for a given length.

To perform DFPRED, we need to put multiple documents
on the same shard. Unfortunately, unlike GitHub, no features
in Orchestrate.io directly facilitate creating documents on
the same shard. One solution is to create many documents
and use COSHARDTEST to discover the documents that
are on the same shard with a target document. However,
this is very time-consuming. To speed this process up, we
use the aforementioned ad-hoc score-based co-shard test
in §V. More specifically, we create 30,000 documents that
have the same content in AcctV , which is a unique 16-byte
term, and measure the relevance scores of these documents.
We group the documents by their relevance scores, and
keep 500 documents from the largest group. To eliminate
false positives, we use COSHARDTEST to confirm these
documents are indeed on the same index. We repeat these
procedures in AcctA and keep 100 documents.

We perform experiments for each nDFE, nDF pair for nDFE ∈
{1, 5, 10, . . . , 100} and nDF ∈ {0, 1, . . . , 499}. The scoring
function in Orchestrate.io is still in the form of a−b∗ ln(x+
c). The average relative and absolute error rates decrease
as nDFE increases. When nDFE = 100, the average relative
errors are about 2.2% and the average absolute errors are
less than 6.0 for terms being tested. As df(t∗) increases, the
estimations become less accurate. The maximum absolute
errors are 15. However, when df(t∗) ≤ 250, the attack still
performs well, with the maximum absolute error less than or
equal to 2.

Feasibility of brute-force attacks. In Orchestrate.io, a free-
plan user can only send 50,000 requests every month. So to
search 109 terms, the attacker needs 20,000 accounts. Though
this sounds costly, the process can be automated due to the
fact that the account registration is very simple — the attacker
just needs to fill in an email address and a password — and
no captchas are being used.

Another choice is to use Orchestrate.io’s professional plan,
which is $499 per month, that allows one to send 5 M requests
per month and pay $0.01 for 10 K additional requests.
Sending 109 requests costs an attacker $1,500, but the gain
of the attacks could be more than the cost. Of course, smaller
spaces can be brute forced much more cheaply and quickly.

E. Xen.do

Xen.do is a hosted search service which aggregates data
from a user’s accounts on multiple third-party services, builds
full-text indexes over the data, and provides interfaces to
search the aggregated data. Xen.do supports more than 35
services, including, but not limited to, Google Apps (Gmail,
Contacts, Drives, etc.), cloud storage services (Dropbox,
OneDrive, etc.), customer relationship management (CRM)
systems (Salesforce, ZohoCRM, etc.), and other services
(Evernote, Office 365, etc.).

Sensitive information harvesting is particularly threatening
on Xen.do since the data are collected from users’ personal
accounts. Xen.do makes an best effort to guarantee data

security and privacy, and has received high ratings in various
security tests such as Skyhigh Networks CloudTrust [56].
Unfortunately, we also find the DF side channel in Xen.do.
We found the all the supported services in Xen.do share the
same multi-tenant indexes. Therefore, a malicious user can
extract the sensitive terms in other users’ documents from
different sources at the same time.

For Xen.do, its API access is not public and the API key
can be only obtained on request. We only obtain a 30-day
trial to the beta-test version of the API, which currently
only provides basic operations such as full-text search and
authentication. One operation — connecting Xen.do to a
service — in the attacks must be done manually via the
web interface.

The indexes updates on Xen.do are very slow, often taking
about 20 to 30 minutes. In our attacks, after creating or
updating a document, we query every 10 minutes to see if
the document has been indexed. We still pause 2 seconds after
each API request.

Attacks results. Using COSHARDTEST, we confirm that all
the services supported by Xen.do are using the same set of
shards. We create a document d1 on a service serv1 (e.g.,
Gmail), and connect AcctA to serv1; then, we create a
document d2 on another service serv2 (e.g., Dropbox), and
connect AcctV to serv2. We then use COSHARDTEST to test
if d1 and d2 are on the same shard. If not, we disconnect
AcctA from serv1 and reconnect it again, which forces
Xen.do to assign d1 to a new shard. We did two tests:
(1) randomly chose 5 different pairs of serv1 and serv2,
and (2) fix serv1 as Dropbox, and 17 different serv2. In
both tests, COSHARDTEST usually succeeded in between 4
and 10 tries. The success of COSHARDTEST indicates that
Xen.do uses the same set of shards for all services. The δ in
COSHARDTEST was set to 0.08.

In MAPSHARDS, we stop the attack if we can’t find more
shards in 10 rounds. After 20 rounds, we found 4 shards.

Due to the restrictions of the Xen.do API and slow index
propagation, we only collected a small amount of data. We
use the ad-hoc score-based method again to put 50 documents
on the same shard. Since the index updates are slow, it took
us longer to run DFPRED (dominated by waiting). We had
the best results fitting the scoring function to a curve of the
form f(x) = a−b∗ ln(x+c). We use first the 15 data points
to approximate the scoring function and the other data points
for evaluation. The absolute errors of 40%, 49%, and 14% of
the estimations are 0, 1, and 2, respectively. This preliminary
assessment suggests that our attacks will work on Xen.do.

F. Rank-only Attacks on GitHub and Orchestrate.io.

We briefly checked if our rank-only attack works cor-
rectly against GitHub and Orchestrate.io, who provide web
interfaces for performing multi-term search without returning
relevance scores. On GitHub we started with a control
experiment with an empty victim document and two attack

documents on the same shard (recall that creating several
co-resident documents is easy because GitHub shards based
at the repository level). Using the web interface for GitHub
search (which ranks but does not report scores), we observed
that our attack returned a true negative (i.e. the order of
the two attacker documents did not change). Next we added
the term t (in this case a long random string) to the victim
document and re-ran the attack, which swapped the order of
the attack documents in the web interface, confirming that
the attack works.

Interestingly our attack failed on Orchestrate.io. This
appears to be due to their using a non-standard scoring
function for multi-term queries. We found that for multi-
term queries, Orchestrate.io computed relevance scores that
weight terms based on their order in the query. So, for
instance, “t1 t2” will give different term weights from
“t2 t1” while TF-IDF and common variants will treat these
terms equivalently.

G. Conclusions

The results demonstrate that our score-based attacks can
work on the three targets and can be used to extract sensitive
data from other tenants’ documents. Without relevance
scores, one can still exploit the DF-side channel using rank-
only attacks. All the services we tested claim protecting
data security and data privacy as a priority. Indeed, they
make efforts to secure their physical infrastructures, systems,
and APIs. However, the DF side channels, hidden in their
underlying search engines for years, make the services
vulnerable to sensitive data leakage via side-channel attacks.

VII. COUNTERMEASURES

Perhaps the most obvious idea for a countermeasure is to
simply not return relevance scores in response to searches,
instead just providing an ordered list of documents. This
might be a hindrance to applications that make use of
the API’s relevance scoring. But more importantly, while
removing relevance scores would prevent our score-based
attacks, as shown in §VI, it does not prevent exploitation of
the DF side channel via rank-only attacks.

Previously proposed countermeasures. One can remove the
side channel by isolating each users’ documents within in-
dependent indexes. Received wisdom suggests this approach
is unsuitable for large-scale systems with many users due
to poor performance [12]. Some Elasticsearch deployments
have successfully used this architecture via careful tuning and
optimization, but it may be too expensive for, e.g., Github to
use [25]. Search functionality degradation is also a concern
here, since users with small document sets may not provide
enough data on their own to have good DF estimates.

Another approach is to retain a multi-tenant index, but
compute relevance scores in a way that matches what
would have been computed in the independent index
case. Büttcher and Clarke were the first to suggest this

countermeasure [7] and called their particular realization
of it “query integration”. It works by inserting a security
manager between the components of the system responsible
for query processing and index management. When a user
issues a query, the security manager recomputes a user-
specific view of the index (and relevance scores) that is
consistent with the user’s access rights. Subsequent work
provided different realizations of this approach [31, 39, 46],
focusing on performance improvements by partially pre-
computing views.

These approaches were suggested in the context of local
file system search. In the multi-tenant cloud services we have
primarily focused on, maintaining access control information
at every shard will incur a large storage overhead.

Another countermeasure that has been proposed in the
literature takes a statistical approach, attempting to add noise
or otherwise change the IDF distribution so that an individual
user’s private information is hidden. Zerr et al. [58] give
a countermeasure using a “relevance score transformation
function” meeting an ad-hoc statistical notion of confiden-
tiality. It is unclear what guarantee this actually provides.

A. New Countermeasures

All the approaches discussed above seem to have inherent
limitations which will impede their usability in large-scale
multi-tenant search indexes. We observe that they all preserve
the exact functionality of TF-IDF scoring (or a slightly
noisy variant) over a user’s view of the system. This may
be unnecessary: approximations that result in similar, but
slightly different, scores are likely acceptable in practice.

Below we outline two approaches that eliminate DF side
channels more efficiently. We also implement and evaluate
one approach. We plan to open-source the relevant code. In
both approaches, the searches are no longer scored strictly
according to TF-IDF. Instead, the relevance score of a
document d is computed as a function only of the public
documents and of d. In particular, it is no longer a function of
other private documents, whether or not d is public or private.

Public-corpus DFs. The first approach is called public-
corpus DFs. The idea is to train a DF model using public
data. In GitHub, for example, this would mean computing
a DF model on a subset of public repositories. The model
itself would be stored as an auxiliary index in Elasticsearch,
enabling nodes to efficiently fetch the current public DF value
for a term they have not seen. A default DF (of one) could
be used for terms which do not appear in the public data. In
settings like Xen.do and Orchestrate where there is no notion
of “public” and “private” information, this approach will not
work with data on the service. Instead, one could train on
suitable public file corpuses, should they exist.

Blind DFs. We call the second approach blind DFs. Recall
that the search system we consider stores an inverted index
that consists of per-term postings lists. At the head of each

list, the DF is stored to speed up searching. Typically the DF
value is equal to the length of the list.

To implement blind DFs, one augments each posting entry
to contain a binary attribute indicating if the document is
public (i.e. world readable) or not. We then modify the
mechanisms for adding and deleting to maintain a count that
we call the blind DF, which is now the number of public
postings in the postings list. This can be achieved, say, by
only incrementing or decrementing a posting lists’ DF when
adding or deleting a public document. Of course one may also
store the (true) DF for purposes other than relevance scoring.
This metadata must be stored for each document so document
deletions can properly decrement the DF.

To process a (public or private) search with blind DFs,
one modifies the system to use the blind DFs in place of
true DFs, but otherwise leaves it unchanged. In particular,
one could compute relevance scores exactly as before, but
with a blind DF. To enforce access control one could use the
post-processing filtering mechanism as is currently deployed.
Since the relevance scores are not a function of private
documents, the DFs will contain only public information.

Comparison of the two approaches. Both approaches
increase the amount of storage space needed for the index.
For blind DFs, the amount of extra space required is on the
order of the number of documents in the index, since the
public/private attributes for each document must be stored.
For public-corpus DFs, the amount of extra space needed
is only on the order of the number of unique terms in
the index. The amount of space needed for public-corpus
DFs does not change as more documents are added to the
index, whereas the space overhead of blind DFs does increase
over time. Unlike public-corpus DFs, blind DFs can be
implemented without any preprocessing. Both approaches
will also potentially diminish the utility of DFs because
private documents will no longer inform relevance scoring,
even when a user is searching her own private documents.
Edge cases, such as making a public document private, may
be difficult to handle. The main benefit of both approaches
is that they are relatively simple to implement. The relevance
scoring and other portions of the system would be largely
unchanged, including the access control filtering.

B. Evaluation of Public-corpus DFs

Of the two approaches described above, we believe public-
corpus DFs will likely be better for large-scale search systems
like Github’s due to its low space complexity. Here we report
on initial experiments to assess the potential practicality
of the countermeasure. All experiments were performed on
an Ubuntu 16.04 desktop, using Lucene 6.3.0 and Java 8.
The machine was equipped with a 512 GB NVMe SSD
and 16 GB of DRAM. Microbenchmarks revealed a small
latency increase of about 1% due to the countermeasure. We
therefore focus our evaluation of public-corpus DFs on two
axes: space overhead and search quality.

Corpus #Docs #Terms Size (GB) TD size (MB)
Reuters 0.8 1.0 0.6 8.7

Wikipedia 3.6 14.5 33.0 200.0
Enron 0.54 0.6 3.0 5.7

Figure 7: The “#Docs” and “#Terms” columns are the total
number (in millions) of documents and terms in the corpus
respectively. “Size” and “TD size” are the size and the size
of the terms dictionary of the corpus respectively. Statistics
for the Reuters dataset refer to the pre-processed LYRL2004
version [26].

Space overhead. The space overhead of public-corpus DFs
comes from storing the auxiliary index of DFs for each
term. It is straightforward to evaluate this by indexing a
document corpus using Elasticsearch and measuring the size
of the term dictionary in the resulting index. Asymptotically,
the term dictionary’s size is on the order of the number of
unique terms in the index, but we will still measure its size
empirically to account for the effect of Elasticsearch’s term
dictionary compression.

We tested with three datasets: the Reuters RCV1 cor-
pus [26], a dump of the English Wikipedia from April
2015 [15], and the Enron email dataset [24]. Each was
parsed, tokenized, stemmed, filtered to remove stop words,
and indexed using Lucene. Finally, the statistics in Figure 7
were collected by inspecting the resulting index. The term
dictionary size is measured as the sum of the on-disk file sizes
of the .tim and .tip files of the Lucene index. These two
files store the compressed term dictionary and an index into
it, respectively. Note that the auxiliary data structure would
also store the DFs of each term. The size of the DFs in bytes
would be about four times the number of unique terms for
each corpus.

These results are quite promising: even for the entire
English Wikipedia, the public-corpus DFs would only require
about 250 MB of storage (the fifth column of Figure 7 plus
four times the third column). This is small enough that it
could be held entirely in memory on each shard, minimizing
the number of slow disk I/O operations.

Search quality. Since the storage overhead of public-corpus
DFs is minimal, we can turn our attention to evaluating its
impact on search quality. We will use a standard methodology
from information retrieval: queries with human-labeled
relevance judgments. This measures search quality for a set of
synthetic queries on a standard corpus by using human judges
to label documents as relevant or non-relevant for each query,
then evaluating a search engine’s performance in retrieving
relevant documents. We built our experiment by modifying
Ian Soboroff’s trec-demo project [47].

Our corpus for the experiment was a pre-built Lucene
index consisting of volumes 4 and 5 from NIST’s Text
Research Collection. These two volumes contain about
530,000 total documents and 4.1 M unique keywords. The

Real DFs Enron DFs

TF-IDF

MAP 0.17 0.17
P@5 0.43 0.43
P@20 0.31 0.31
P@100 0.17 0.17

BM25

MAP 0.17 0.17
P@5 0.44 0.43
P@20 0.31 0.31
P@100 0.17 0.17

Figure 8: Results of search quality experiment. MAP is
“mean average precision”. P@n is the precision only
considering the top n documents returned for the search,
averaged across all queries. Higher scores are better.

index was not stemmed, but common stopwords were
removed. We used the relevance judgments from the “ad hoc”
track of the sixth, seventh, and eighth sessions of NIST’s
Text Retrieval Conference (TREC). There were 150 total
labeled queries.

Our experiment consisted of a few concrete steps. We
performed queries on two versions of the NIST index: an
unmodified ‘insecure” one which used the actual DFs of
the NIST corpus and one which used public DFs from the
Enron corpus. For both, we recorded the top 1,000 most
relevant documents returned for each query. Finally, with the
relevance judgments as ground truth, we computed quality
metrics to measure the degradation in quality (if any) caused
by our countermeasure.

We used two metrics from information retrieval: “preci-
sion” and “mean average precision”. Intuitively, precision is
the fraction of returned documents that were relevant to the
query. If the number of relevant documents returned for a
query is r and the total number of returned documents is s,
the precision is defined as r/s. The metric P@n is defined
as the precision when only considering the top n documents
returned for the search. The numbers given in Figure 8 are
averaged over all 150 queries.

Mean average precision is a related metric, defined simply
as the mean over all queries of the per-query “average
precision”. The average precision is, importantly, not simply
the average of an arbitrary set of precision scores. Average
precision is defined in our case by measuring the precision at
every cutoff point (i.e. n in P@n above) from 1 to 1,000, then
summing and dividing by the number of relevant documents.

The results of the experiment are in Figure 8. The results
using relevance scores computed with the default implemen-
tation is in the column of Figure 8 labelled “Real DFs”.
The results with the public-corpus DFs countermeasure
enabled (using the Enron email corpus) are in the column
labeled “Enron DFs”.

The results show that using the Enron DFs in place of the
real DFs for the corpus has negligible effect on the precision
of the searches. Most values are identical when rounded to

the hundredths place. This is true both for TF-IDF and the
more modern BM25 scoring function.

Limitations and future work. We believe our evaluation
presents good evidence of the practicality of the public-
corpus DF countermeasure. Nevertheless, it is limited in a
few important ways. First, we only evaluate unstructured
English text corpora and queries, and it is unclear if the
results generalize to code repositories like Github. Obtaining
labeled relevance judgments and corpora for code search is
an interesting direction for future work. Since the quality
of the search results above is, in an absolute sense, quite
low to begin with, an experiment on a better-tuned search
system which uses modern IR techniques to increase search
quality may yield different results. The final limitation is the
small sample size of our experiment. Due to the difficulty
of finding appropriate data sets and relevance judgments, we
only evaluated search quality for one dataset, and leave a
more thorough evaluation as an open problem.

VIII. VENDOR RESPONSE

We disclosed via email to the three services investigated.
Xen.do immediately removed relevance scores from API re-
sponses as a preliminary mitigatition. GitHub forwarded the
issue to Elastic.co, their search service provider. Elastic.co
suggested several countermeasures in their response. To
mitigate our attacks, Elastic.co suggested small deployments
could use an index-per-tenant, but they admitted that this
could be cost prohibitive for large deployments. In some
cases, services can disable scoring and ranking if the resulting
functionality loss is acceptable. Another approach is to put
sensitive terms in the fields that are not used for ranking,
an approach suggested by Alex Brasetvik of Elastic.co. This
will prevent the side channel being exploited for those terms,
though some services might find reliably identifying sensitive
information within tenants’ data challenging. We believe the
public-corpus DFs countermeasure presented in section VII
is the best approach due to its scalability and deployability.
Orchestrate.io’s parent company, CenturyLink, announced
that the service vulnerable to our attack will be shut down
on March 17th, 2017.

IX. CONCLUSION

We presented STRESS attacks. These demonstrate that
the industry-standard method for multi-tenant search leads
to an exploitable side channel, even in complex distributed
systems. We developed efficient attacks on two services,
GitHub and Orchestrate, and verified exploitability of another
service Xen.do. Using our side channel we estimated the time
and cost required to extract information like phone and credit
card numbers from private files stored in these services.

Our case studies only hint at the scope of affected
systems. As mentioned, we also confirmed that following
best practice guides for building multi-tenant search on top
of AWS ElasticSearch, AWS CloudSearch, Searchly, bonsai,

and Swifttype would lead to a DF side channel. Some
of these search-as-a-service systems are in turn used by
other cloud services, such as Heroku, which may therefore
inherit any side channel. We have not yet performed in-depth
experimentation with applications using these services, so it
may be that noise or other subtleties prevent, e.g., brute-force
term recovery attacks or accurate DF estimation. That said,
services would do well to revisit their use of shared search
indexes in order to prevent STRESS attacks.

Along another dimension, we have focused on attacks
whose search queries include a single term. But many search
services allow more sophisticated queries such as phrase or
wildcard queries. We began thinking about how to exploit
these, but have not yet seen how they could provide attacks
better than our single-term ones. Future work may do better.

Based on our experiments we recommend that the imple-
mentations move away from the simple filter-based approach
to multi-tenancy. We suggested possible countermeasures,
such as using document frequencies taken only from public
documents, and our preliminary evaluation suggests this
approach will be very practical for deployments.

ACKNOWLEDGMENTS

We would like to thank all the anonymous reviewers for
their comments and suggestions. We would also like to thank
the employees at Elastico, GitHub, and Xen.do for their
helpful discussions during our disclosure process. This work
was supported in part by NSF grants CNS-1558500, CNS-
1330308, CNS-1453132, the Defense Advanced Research
Projects Agency (DARPA) and Space and Naval Warfare
Systems Center, Pacific (SSC Pacific) under contract No.
N66001-15-C-4070, and a generous gift from Microsoft.

Ristenpart and Grubbs have large financial stakes in
Skyhigh Networks.

REFERENCES

[1] Index Aliases. https://www.elastic.co/guide/en/elasticsearch/
reference/current/indices-aliases.html#filtered, 2016.

[2] Amazon. Amazon Cloudsearch. https://aws.amazon.com
/cloudsearch.

[3] Amazon. Amazon Elasticsearch service. https://aws.amazon.
com/elasticsearch-service.

[4] D. J. Bernstein. Cache-timing attacks on AES, 2005.
[5] J. K. Blitzstein and J. Hwang. Introduction to Probability.

Chapman and Hall/CRC, 2014.
[6] Bonsai – Hosted Elasticsearch. https://bonsai.io, 2016.
[7] S. Büttcher and C. L. A. Clarke. A security model for full-text

file system search in multi-user environments. In Proceedings
of the 4th Conference on USENIX Conference on File and
Storage Technologies - Volume 4, FAST’05, 2005.

[8] A. Cholakian. Elasticsearch at GitHub. http:
//exploringelasticsearch.com/github interview.html, 2014.

[9] Couchbase – NoSQL database. http://www.couchbase.com.
[10] Cratedb. https://crate.io.
[11] elastic.co. Updating a whole document. https://www.elastic.

co/guide/en/elasticsearch/guide/current/update-doc.html,
2016.

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-aliases.html#filtered
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-aliases.html#filtered
https://aws.amazon.com/cloudsearch
https://aws.amazon.com/cloudsearch
https://aws.amazon.com/elasticsearch-service
https://aws.amazon.com/elasticsearch-service
https://bonsai.io
http://exploringelasticsearch.com/github_interview.html
http://exploringelasticsearch.com/github_interview.html
http://www.couchbase.com
https://crate.io
https://www.elastic.co/guide/en/elasticsearch/guide/current/update-doc.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/update-doc.html

[12] Elasticsearch. Discovering the need for an indexing strategy in
multi-tenant applications. https://www.elastic.co/blog/found-
multi-tenancy, 2015.

[13] Elasticsearch. Term Filter query. https://www.elastic.co/
guide/en/elasticsearch/reference/current/query-dsl-filtered-
query.html, 2016.

[14] Elasticsearch. https://www.elastic.co/products/elasticsearch,
2016.

[15] W. foundation. Wikipedia Dump download. https://dumps.
wikimedia.org/enwiki/.

[16] A. Futoransky, D. Saura, and A. Waissbein. The ND2DB
attack: Database content extraction using timing attacks on the
indexing algorithms. In WOOT, 2007.

[17] N. Gelernter and A. Herzberg. Cross-site search attacks.
In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 1394–1405.
ACM, 2015.

[18] GitHub. Sensitive data exposure. https://bounty.github.com
/classifications/sensitive-data-exposure.html, 2016.

[19] GitHub on Elastic.co case study. https://www.elastic.co/use-
cases/github, 2014.

[20] Google. Google app engine. https://cloud.google.com
/appengine.

[21] Add-ons - Heroku Elements. https://elements.heroku.com
/addons#search, 2016.

[22] Hibernate commmuity documentation, chapter 10.9: Multi-
tenancy. https://docs.jboss.org/hibernate/search/5.3/reference/
en-US/html/ch10.html#section-multi-tenancy.

[23] M. S. Inci, B. Gülmezoglu, G. I. Apecechea, T. Eisenbarth,
and B. Sunar. Seriously, get off my cloud! cross-vm rsa key
recovery in a public cloud. IACR Cryptology ePrint Archive,
2015:898, 2015.

[24] B. Klimt and Y. Yang. The enron corpus: A new dataset
for email classification research. In European Conference on
Machine Learning, pages 217–226. Springer, 2004.

[25] K. Kluge. Personal communication.
[26] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new

benchmark collection for text categorization research. Journal
of machine learning research, 5(Apr):361–397, 2004.

[27] Lucene. https://lucene.apache.org/, 2016.
[28] Lucene Practical Scoring function. https://www.elastic.

co/guide/en/elasticsearch/guide/current/practical-scoring-
function.html, 2016.

[29] Lucene’s scoring function. http://lucene.apache.org/core/3 5
0/api/core/org/apache/lucene/search/Similarity.html.

[30] C. D. Manning, P. Raghavan, and H. Schütze. Introduction
to Information Retrieval. Cambridge University Press, New
York, NY, USA, 2008.

[31] E. C. Micheli, G. Margaritis, and S. V. Anastasiadis. Ef-
ficient multi-user indexing for secure keyword search. In
EDBT/ICDT Workshops, pages 390–395, 2014.

[32] Microsoft. Multi-tenant data architecture. https://msdn.
microsoft.com/en-us/library/aa479086.aspx, 2006.

[33] How Mingle built its Elasticsearch cluster on AWS.
https://www.thoughtworks.com/mingle/news/scaling/2015/
01/06/How-Mingle-Built-ElasticSearch-Cluster.html, 2015.

[34] Elasticsearch: the definitive guide. https://www.elastic.co/
guide/en/elasticsearch/guide/current/shared-index.html, 2016.

[35] MySQL full text search. http://dev.mysql.com/doc/refman/5.
7/en/fulltext-search.html, 2011.

[36] Orchestrate. How we improved elasticsearch indexing.
https://www.ctl.io/developers/blog/post/improved-
elasticsearch-indexing, 2014.

[37] OriginLab. http://originlab.com/, 2016.

[38] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and
countermeasures: the case of AES. In Cryptographers” Track
at the RSA Conference, pages 1–20. Springer, 2006.

[39] A. Parker-Wood, C. Strong, E. L. Miller, and D. D. Long.
Security aware partitioning for efficient file system search. In
2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–14. IEEE, 2010.

[40] C. Percival. Cache missing for fun and profit, 2005.
[41] PostgreSQL. https://www.postgresql.org.
[42] Lucene’s practical scoring function. https://www.elastic.

co/guide/en/elasticsearch/guide/current/practical-scoring-
function.html.

[43] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
you, get off of my cloud: exploring information leakage in
third-party compute clouds. In Proceedings of the 16th ACM
conference on Computer and communications security, pages
199–212. ACM, 2009.

[44] Searchify. https://www.searchify.com.
[45] Searchly – Elasticsearch as a service. https://http://www.

searchly.com, 2016.
[46] A. Singh, M. Srivatsa, and L. Liu. Efficient and secure search

of enterprise file systems. In IEEE International Conference
on Web Services (ICWS 2007), pages 18–25. IEEE, 2007.

[47] I. Soboroff. Information retrieval evaluation demo. https://
github.com/isoboroff/trec-demo.

[48] Apache Solr. http://lucene.apache.org/solr/, 2016.
[49] Swiftype. Customer case studies. https://swiftype.com/custom

ers, 2016.
[50] Swiftype - site search and enterprise search. https://swiftype.

com, 2016.
[51] V. Varadarajan, Y. Zhang, T. Ristenpart, and M. M. Swift. A

placement vulnerability study in multi-tenant public clouds. In
USENIX Security, pages 913–928, 2015.

[52] Vulnerability.ch. Creative commons: Donors data leak. https:
//vulnerability.ch/tag/github/, 2014.

[53] Wikipedia. Okapi BM25. https://en.wikipedia.org/wiki/
Okapi BM25.

[54] Wikipedia. Term frequency-inverse document frequency.
https://en.wikipedia.org/wiki/Tf-idf, 2016.

[55] Z. Wu, Z. Xu, and H. Wang. Whispers in the hyper-space:
High-speed covert channel attacks in the cloud. In USENIX
Security symposium, pages 159–173, 2012.

[56] Xendo. Xendo security blog. https://help.xen.do/hc/en-us/
sections/200689704-Security, 2016.

[57] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and
R. Schlichting. An exploration of l2 cache covert channels
in virtualized environments. In Proceedings of the 3rd ACM
workshop on Cloud computing security workshop, pages 29–
40. ACM, 2011.

[58] S. Zerr, D. Olmedilla, W. Nejdl, and W. Siberski. Zerber+
r: Top-k retrieval from a confidential index. In Proceedings
of the 12th International Conference on Extending Database
Technology: Advances in Database Technology, pages 439–
449. ACM, 2009.

[59] B. Zhang. A new, experimental approach to implement
multi-tenancy with Lucene 4. https://community.jivesoftware.
com/community/developer/blog/2013/06/24/a-new-experim
ental-approach-to-implement-multi-tenancy-with-lucene-4.

[60] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-
tenant side-channel attacks in PaaS clouds. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 990–1003. ACM, 2014.

https://www.elastic.co/blog/found-multi-tenancy
https://www.elastic.co/blog/found-multi-tenancy
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-filtered-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-filtered-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-filtered-query.html
https://www.elastic.co/products/elasticsearch
https://dumps.wikimedia.org/enwiki/
https://dumps.wikimedia.org/enwiki/
https://bounty.github.com/classifications/sensitive-data-exposure.html
https://bounty.github.com/classifications/sensitive-data-exposure.html
https://cloud.google.com/appengine
https://cloud.google.com/appengine
https://elements.heroku.com/addons#search
https://elements.heroku.com/addons#search
https://docs.jboss.org/hibernate/search/5.3/reference/en-US/html/ch10.html#section-multi-tenancy
https://docs.jboss.org/hibernate/search/5.3/reference/en-US/html/ch10.html#section-multi-tenancy
https://lucene.apache.org/
https://www.elastic.co/guide/en/elasticsearch/guide/current/practical-scoring-function.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/practical-scoring-function.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/practical-scoring-function.html
http://lucene.apache.org/core/3_5_0/api/core/org/apache/lucene/search/Similarity.html
http://lucene.apache.org/core/3_5_0/api/core/org/apache/lucene/search/Similarity.html
https://msdn.microsoft.com/en-us/library/aa479086.aspx
https://msdn.microsoft.com/en-us/library/aa479086.aspx
https://www.thoughtworks.com/mingle/news/scaling/2015/01/06/How-Mingle-Built-ElasticSearch-Cluster.html
https://www.thoughtworks.com/mingle/news/scaling/2015/01/06/How-Mingle-Built-ElasticSearch-Cluster.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/shared-index.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/shared-index.html
http://dev.mysql.com/doc/refman/5.7/en/fulltext-search.html
http://dev.mysql.com/doc/refman/5.7/en/fulltext-search.html
https://www.ctl.io/developers/blog/post/improved-elasticsearch-indexing
https://www.ctl.io/developers/blog/post/improved-elasticsearch-indexing
http://originlab.com/
https://www.postgresql.org
https://www.elastic.co/guide/en/elasticsearch/guide/current/practical-scoring-function.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/practical-scoring-function.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/practical-scoring-function.html
https://www.searchify.com
https://http://www.searchly.com
https://http://www.searchly.com
https://github.com/isoboroff/trec-demo
https://github.com/isoboroff/trec-demo
http://lucene.apache.org/solr/
https://swiftype.com/customers
https://swiftype.com/customers
https://swiftype.com
https://swiftype.com
https://vulnerability.ch/tag/github/
https://vulnerability.ch/tag/github/
https://en.wikipedia.org/wiki/Okapi_BM25
https://en.wikipedia.org/wiki/Okapi_BM25
https://en.wikipedia.org/wiki/Tf-idf
https://help.xen.do/hc/en-us/sections/200689704-Security
https://help.xen.do/hc/en-us/sections/200689704-Security
https://community.jivesoftware.com/community/developer/blog/2013/06/24/a-new-experimental-approach-to-implement-multi-tenancy-with-lucene-4
https://community.jivesoftware.com/community/developer/blog/2013/06/24/a-new-experimental-approach-to-implement-multi-tenancy-with-lucene-4
https://community.jivesoftware.com/community/developer/blog/2013/06/24/a-new-experimental-approach-to-implement-multi-tenancy-with-lucene-4

