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Abstract—This paper studies information flows via timing
channels in the presence of automatic memory management. We
construct a series of example attacks that illustrate that garbage
collectors form a shared resource that can be used to reliably
leak sensitive information at a rate of up to 1 byte/sec on a
contemporary general-purpose computer. The created channel is
also observable across a network connection in a datacenter-like
setting. We subsequently present a design of automatic memory
management that is provably resilient against such attacks.

I. INTRODUCTION

When a computer system allows third-party code to access
sensitive information, it is necessary to ensure confidentiality
of the sensitive information handled by the code. Language-
based information flow control is a popular approach to solve
this problem [33]. This approach uses programming language
techniques to analyze information flows in the untrusted
programs before and/or during the execution in a way that
prevents potentially insecure code. The advantage of this
approach is that it is allows fine-grained control, compared
to coarse-grained systems approaches. The disadvantage is
that source-code analysis is limited to flows that only have
control graph representation, and that allows malicious code
to still leak sensitive data using runtime side-channels such as
CPU caches [28], schedulers [43], or programming-languages
features such as lazy evaluation [8].

This paper studies another important aspect of program
runtime – automatic memory management. We show that
memory management represents a vulnerable shared resource
through which an attacker can launder sensitive information.
We present a series of simple attacks on modern runtimes, in
particular Java sequential and parallel garbage collections and
V8 default garbage collector, that illustrate the potential of
the attack.

Attack model. We consider a threat model where an
attacker-provided program operates on confidential information.
The attacker observes the public input and output of the
program, but does not observe either the secret input or the
output. Furthermore, the attacker code is subjected to a number
of syntactic and runtime checks that prevent it from directly
leaking the secret input.

We assume that the attacker program consists of secret-
dependent (high) and secret-independent (low) computations.
High computations can access sensitive data, but cannot
directly communicate with the attacker. Low computations

may communicate with the attacker or affect the public output,
but their execution cannot immediately depend on secrets.

Figure 1 illustrates the high-level idea behind the attacks. The
attacks are designed so that the high computation influences the
amount of allocated and reclaimable memory, which in its turn,
influences the timing of allocations in the low computations,
via the garbage collector. If there is no free space at the time
of an allocation in the low computation, invocation of the
garbage collector introduces observable delays. This delay is
observed by two timing observations, before and after the the
allocation in the low computation. The attacks do not rely on
measuring the timing of the high computations – these in fact
are considered to be secret-independent.

The low computation can do its timing observations using
a number of ways. Our initial set of attacks uses the system
clock. However, access to the local clock is not essential. Local
time measurements can be substituted by external ones if the
low computation has network access and can send dummy
messages.

We further demonstrate that the observed channel can
be amplified to leak arbitrary amount of information. Our
experiments achieve the rate of nearly 1 byte/sec on a modern
general-purpose laptop.

The attacks may not be surprising in hindsight, but their
consequences are important. Automatic memory management
is crucial in the implementation of modern object-oriented
or functional programming languages. For strong-information
security, a secure runtime is a must. Existing prototypes rely
on source-to-source compilation [26, 34] or language-based
monitoring [16, 35], yet they reuse commodity runtimes that are
vulnerable to the types of attacks we describe here. We note that
while there have been remarks in the literature about the danger
of memory management in information flow settings [29], we
are not aware of previously published attacks or proposals that
focus on the timing channels through memory management.

To address the problem of leaks via garbage collection, we
study a model of a programming language that uses abstract
secure runtime and security types to enforce security. Our
programming language includes a command for obtaining the
current time, which allows us to cover a wide range of attacker
models, because internal timing differences in a program can
be converted into publicly observable output. Note the formal
semantics of the language is designed so that it isolates leaks via
garbage collection from other timing channels by using a non-
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Fig. 1: Attack scenario – high computations are marked in
gray; low computations are marked in white; both low and high
computations share the memory management component (GC).
Heap manipulation by the high process affects the state of the
GC in a way that is later observable by the low computation.

standard prmitive at ` with bound e do c. This primitive pads
the execution time of command c by the value of expression e .

We observe that garbage collection creates a bi-directional
information flow channel. Securing garbage collection requires
that high allocations cannot be collected in low computations
and vice versa. We prove that the combination of these runtime
restrictions with standard information flow type system is
sufficient to close leaks via memory management.

In summary, the contributions of this paper are the following:

1) We develop the first amplifiable covert channel via
automatic memory management. We show that the channel
can be observed locally and over a network.

2) We observe that garbage collection creates a bi-directional
information channel, which severely restricts the design
space of securing automatic memory management. We
present formal requirements that secure garbage collectors
must satisfy.

3) We demonstrate that a secure garbage collector can be
incorporated with traditional information flow analysis to
provably establish a noninterference property.

The rest of the paper is structured as follows. Section II
provides a background on timing channels and garbage
collection. Section III explains our attacks and their results.
Sections IV–V develop a formal language model for a small
imperative language with allocatable arrays and garbage
collection. Section VI designs a type system necessary for
secure coordination with the runtime. Section VII studies
the resulting security guarantees. Section VIII discusses the
applicability of real-time garbage collectors in the light of the
discovered attacks. Sections IX and X discuss the related work
and conclude.

The proofs of the formal statements and the experimental
artifacts can be found in the supplementary technical docu-

ment 1.

II. BACKGROUND

Programming languages that focus on information flow
security statically reject programs that contain information
flow violations, such as explicit and implicit flows. A common
approach is to add security labels to types, corresponding to
the confidentiality of the information stored in a variable of the
given type. A natural consequence of security labels on types
is the notion of a program counter label pc that determines the
security context of the execution.

However, many such approaches ignore other potential
sources of information leakage. A particularly dangerous source
of information leaks is time.

Timing dependencies in programs may be direct or indi-
rect [45].

if (h > 0) {
/* long computation */

}
else {
skip

}

An example of a direct
timing dependency is the
program on the left, where
the decision to take one
branch or the other depends
on a confidential guard h.
While direct timing attacks
are difficult to close, they

have control-flow representation, and thus are amenable to
language-based mitigation [1, 45].

Indirect timing channel attacks are caused by interaction
with the runtime system of the programming language, or the
hardware upon which the program is running on. As such,
they are much harder to close, because that requires careful
interaction between the programming languages technology
and the underlying runtime, often including the OS and the
CPUs.

The focus of this paper is on indirect timing channel created
by one aspect of language runtime system, specifically the
automatic memory management.

We start with a brief overview of basic garbage collection
concepts.

A. Garbage collection techniques

A garbage collector discovers which parts of the heap contain
objects that will definitely not be accessed in the future, and
then reclaims the memory occupied by these objects, allowing
that memory to be reused.

Objects stored in the heap can point to other objects, and
the heap objects thus form a directed graph. The root nodes
of this object graph are the variables in the program, which
provides “entry points” into the graph.

Determining whether an object will be accessed in the future
is an undecidable problem [22], and thus garbage collection
schemes conservatively approximate this property by assuming
that every object reachable from the root nodes of the object
graph will be accessed in the future.

The two garbage collection strategies attacked in this paper
are mark-and-sweep collectors, and copy collectors.

1http://users-cs.au.dk/askarov/gc-timing/



a) Mark-and-sweep: A mark-and-sweep garbage collector
operates in two phases: A marking phase, where all reachable
objects are marked as “live”, and a sweep phase, where
unmarked objects in the heap are reclaimed. Note that the
cost of a mark-and-sweep collection is the sum of the cost
of marking, and the cost of sweeping. The cost of marking
is linear in the size of the reachable objects, and the cost of
sweeping is linear in the size of the entire heap.

One way to avoid having the cost be linear in the size of
the entire heap is to use a copy collecting algorithm.

b) Copy collection: A copy collecting garbage collector
partitions the heap in two partitions of equal size. These
partitions are called from-space and to-space. An invariant
of this algorithm is that at any point during the execution of
the program, only the from-space is modified.

When the from-space partition is filled, the collector builds
a copy of the object graph in the to-space partition. This is
known as the evacuation phase. Afterwards all of the memory
in the from-space is reclaimed, and the to-space becomes the
new from-space, and vice versa.

c) Generational collection: Efficient garbage collectors
avoid traversing the entire object graph by assuming the weak
generational hypothesis which states that “most objects die
young” [18, 37], meaning that newly allocated objects on the
heap become unreachable fast.

The heap can then be partitioned in several partitions, known
as generations. All allocations are initially stored in a small
“young” generation, and a garbage collection invocation need
only traverse this small partition. When an object survives a
collection, it is moved to an “older” generation.

A minor collection is a collection that only traverses the
object graph in the young generation, and a major collection
is a collection that traverses both generations.

III. ATTACKING JVM AND V8

This section presents two general amplifiable timing attack
strategies that exploit the garbage collector in order to leak one
bit of information. Both attacks work for two garbage collection
strategies used by Java, as well as for the generational mark-
sweep/mark-compact strategy used in V8.

The section also presents a technique for amplifying the
one-bit leak to a general N-bit leak that works for all of the
garbage collection strategies mentioned above.

A. High dependency in low context

This attack exploits the fact that during evacuation from
from-space to to-space, the amount of bytes copied depends on
the reachable nodes at the current point in the program. Thus,
by creating a sufficiently large difference in reachable and
unreachable nodes, the time required to perform a minor/major
garbage collection becomes observable.

Figure 2 demonstrates the attack in Java. The example leaks
whether h > 0 by observing the time difference caused by the
allocation on line 15. If the value of diff is large then h > 0,
and otherwise h ≤ 0.

1 int[] a = new int[size1];
2 int[] b = null;
3 int[] c = null;
4 int[] d = null;
5 if (h > 0) {
6 b = new int[size1];
7 d = a;
8 }
9 else {

10 c = new int[size1];
11 b = a;
12 }
13 c = null;
14 long before = System.nanoTime ();
15 int[] x = new int[size2];
16 long after = System.nanoTime ();
17 long diff = after - before;

Fig. 2: Program leaking one bit of information based on
evacuation time.

The attack works as follows. Suppose that constants size1

and size2 are chosen so that the following constraints hold,
where collectionThreshold is an experimentally obtained
constant that triggers garbage collection, and S is the number
of bytes required to represent an integer in Java.
• 2 · S · size1 ≤ collectionThreshold
• S · (2 · size1 + size2) ≥ collectionThreshold

Line 1 allocates a new array, and keeps a reference to that
array in the variable a. If h > 0 we allocate a new array on
line 6 and store a reference to this array in the variable b. On
the other hand, if h ≤ 0 we allocate a new array and store
the reference in the variable c, which will become unreachable
as soon as we reach line 13. Note that on line 11 we keep
a reference to the array allocated on line 1, meaning that a
and b point to the same array. Now assume the allocation on
line 15 invokes the garbage collector. If h > 0 there will be
two distinct arrays that need to be copied from from-space
to to-space, meaning that 2 · size1 integers will be copied.
However, if h ≤ 0 then the only array which is reachable, and
thus should be copied, is the array allocated on line 1. Thus we
only copy size1. This difference in the number of bytes that
should be copied creates an observable difference in timing.

B. Low modification in high context

The previous program demonstrated how the evacuation of
sensitive information in public contexts can lead to a covert
channel. The next attack shows how garbage collection of
public information in a sensitive context also leads to a covert
channel. Consider the program in Figure 3 and suppose that
constants size1 and size2 are chosen so that the following
constraints hold.
• S · size2 ≤ collectionThreshold
• S · (size1 + size2) ≥ collectionThreshold

If h > 0 the allocation on line 2 partially fills up the heap,
so that the allocation on line 7 triggers a garbage collection,
and thus the value of diff is large. However, if h > 0 is false



1 if(h > 0) {
2 int[] b = new int[size1];
3 b = null;
4 }
5
6 long before = System.nanoTime ();
7 int[] c = new int[size2];
8 long after = System.nanoTime ();
9 long diff = after - before;

Fig. 3: Program leaking one bit of information based on the
presence of a garbage collection.

then no garbage collection occurs on line 7, as the size of the
memory does not exceed the implementation’s threshold for
garbage collection. This results in a small value for diff.

C. Amplifying the attacks

We now amplify the leakage of the attacks described in
Section III-A and III-B. This leads to an attack that leaks the
value of a 32 bit integer. To illustrate the technique we describe
how the attack from Section III-A can be extended.

First, note that the attacks cannot be extended naively by
repeating the algorithm for each bit. To see why, assume this
approach is taken and that we enter the first iteration with 0%
of the available memory having been allocated. We would like
to keep this 0% allocated memory as a loop invariant, so that
we can repeat the attack for each bit.

Next, we might allocate memory equal to 75% of the
available memory, which we turn into garbage by removing
any referencing to the allocated memory. We then perform a
“leaky allocation” of some amount of memory which will cause
a garbage collection to occur (ie. we request strictly more
than 25% of the available memory, such that we in total have
requested strictly more than 100% of the available memory,
forcing a GC to occur). This collects the 75% of available
memory, but it also gives us a non-zero block of memory in
return, meaning that we enter the next iteration of the loop
with a non-zero percent of the available memory having been
allocated. Thus the invariant has been broken.

Thus we must modify the attack in several ways. The
resulting attack is shown in Figure 4.

First, we repeat the attack N (where N ∈ [10, 20] is
sufficient) times and measure each trial run. If the allocation
duration is larger than some threshold, we store the time
required to perform the allocation in the array times. By
filtering out allocations with short allocation times we filter
out iterations that does not lead to an invocation of the garbage
collector.

Second, instead of allocating one array when filling up the
memory, we allocate K arrays, where K is usually less than
10. This increases the evacuation time since more memory will
need to be copied. Larger values of K will lead to a greater
timing difference between a zero bit and a one bit, at the cost
of a greater allocation time. Thus there is a time/precision trade
off.

1 long[] times = new long[N];
2 int guess = 0;
3
4 for(int bit = 31; bit >= 0; --bit) {
5 for(int i = 0; i < N; ++i) {
6 int [][] a = new int[K][size];
7 int [][] b = null;
8 int [][] c = null;
9 int [][] d = null;

10 if ((( secret >> bit) & 1) > 0) {
11 b = new int[K][size];
12 d = a;
13 }
14 else {
15 c = new int[K][size];
16 b = a;
17 }
18 c = null;
19 long before = System.nanoTime ();
20 int[] c = new int[size2];
21 long after = System.nanoTime ();
22 if(after - before > threshold) {
23 times[i] = after - before;
24 }
25 else {
26 times[i] = 0;
27 }
28 }
29
30 long sum = 0;
31 int numOfGCs = 0;
32 for(int i = 0; i < times.length; ++i) {
33 long t = times[i];
34 if(t != 0) {
35 sum += t;
36 ++ numOfGCs;
37 }
38 }
39 if(numOfGCs == 0) {
40 ++bit;
41 continue;
42 }
43 if(sum / numOfGCs > DELTA) {
44 guess += Math.pow(2, bit);
45 }
46 }

Fig. 4: Program leaking 32 bits of information based on
evacuation time.

Third, we compute the average allocation time for each
of the trial runs which invoked the garbage collector. If the
average garbage collection time is above some chosen DELTA
we conclude that the current bit is one, and zero otherwise.

Finally, in case no garbage collection occurs we retry
the current iteration. Note that the probability of invoking
a collection in subsequent tries is increased because more
memory has been allocated from the previous tries of the same
iteration, meaning that several tries of the same iteration is
rare.



D. Results
The blue plot of Figure 5a shows the output of running the

program described in Figure 4 on the secret input 5342121
with the serial garbage collection strategy used by Java when
invoked with the parameter -XX:+UseSerialGC. Similarly the
red part of the figure shows the output of the same program,
with modified constants, on the same secret input with the
parallel collection strategy used when invoking Java with the
parameter -XX:+UseParallelGC.2

Figure 5b shows the output obtained by running a similar
attack on the V8 JavaScript engine using Node.js. This attack
follows the same pattern as the attack in Figure 4, and has
therefore been omitted.

The experiment results are gathered from a machine with
the following specs: Intel(R) Core(TM) i7-5557U CPU @
3.10GHz, Memory: 8 GB. NodeJS version 6.2.0. Java version
“1.8.0_77”, Java(TM) SE Runtime Environment (build 1.8.0_77-
b03), Java HotSpot(TM) 64-Bit Server VM (build 25.77-b03,
mixed mode).

All figures show a clear distinction in garbage collection
time consumption in the aftermath of processing a one bit, and
processing a zero bit.

a) Observations over network: The timing observations
in these attacks are of sufficient magnitude to be observed over
an internal network, e.g., in a datacenter-like setting, with ping
latency of 0.5ms. Figure 5c shows the timing observed by a
client communicating with a server over 25 trials, where each
trial consists of the following operations:

1) first, the server sends a ping to the client
2) then, the server performs an allocation similar to the

allocation on line 15 in Figure 2
3) finally, the server sends another ping to the client.

Figure 5c thus shows the difference in the delay between the
two pings sent by the server during step (1) and (3). The red
bars show the delay when roughly half as much memory should
be garbage collected.

b) Rate: By measuring the execution time of the program
in Figure 4 over 25 iterations we calculate the rate of the
channel obtained. This yields a channel rate of 0.98 bytes per
second.

In the sections to follow, we construct a formalism for
studying these attacks. We first introduce a standard imperative
language using a small-step semantics, with a few technical
deviations to facilitate an isolated study of garbage collection.
We extend the semantics to incorporate garbage collection
transitions, and prove that our garbage collection semantics
satisfies functional correctness. Finally we add a standard
type system for information flow which, when combined with
the semantics of Section IV-B, implies resilience against the
presented attacks.

IV. LANGUAGE

This section presents a design of a small imperative pro-
gramming language with automatic memory management. The

2The appendix contains a link to supplementary material with a VM
containing all of our examples.

key element of the design is that careful combination of the
guarantees obtained via typing and the runtime constraints on
the memory management eliminate timing leaks via garbage
collection.

a) Syntax: Figure 6 describes the syntax of our language.
It is a standard imperative language [41, 33, 45] extended
with heap allocated arrays and the corresponding getters and
setters, a command for obtaining the current time, and the two
security-related constructs, as explained below. For expressions,
n ranges over the set of integers Z and x, y, z range over
variables. Finally, op ranges over binary integer operations.
A special expression null corresponds to the only memory
location representable at the source level.

b) Non-standard features: The runtime of the language
has an explicit notion of time that may be observed program-
matically using command x := time(). This particular design
choice has the advantage that it provides a powerful attacker
model without complicating the formal setup, e.g., introducing
intermediate outputs. This includes a network attacker who
observes timing of the network communication, as well an
attacker providing untrusted code with access to a clock, which
may in general be needed for functionality.

Our formal semantics (cf. Section IV-A) models the time
using simple instruction counting – operational steps in the
computation. This simplification is sufficient for our purposes of
expressing the fundamental constraints necessary to eliminate
timing leaks via memory management. Naturally, a realistic
implementation would need to soundly relate the operational
steps with the wall-clock, but that is outside of the scope of
the current work.

In order to secure the behavior of the garbage collec-
tor at runtime, the language contains a notion of the run-
time program counter level. The program counter is ma-
nipulated via two security-relevant constructs. Command
at ` with bound e do c raises the program counter level,
while command restore ` when n lowers it. Note that restore
command never appears in the program source, but is explicitly
inserted in the operational semantics to restore the level of
the program counter level after an at ` with bound e do c
command [23].

Another aspect of at and restore commands is that they
implement lightweight predictive mitigation [45, 4, 44] of
direct timing channels, i.e., channels that have control-flow
representation, such as secret conditionals. An execution of
statement at ` with bound n do c is padded to take exactly n
steps. The execution is blocked if c takes more than n steps.
This particular design aspect provides clear containment of
direct timing channels, which in its turn allows isolated study
of the leaks via memory management.

A. Semantic enivronments

Our formal semantics partitions the program memory into
memory environment m, which models variables that are
typically allocated on stack, and the heap environment h.

a) Values, variables, and locations: A value in the
language is either an integer or a location in the heap, including



051015202530

5

10

15

20

Bits 0 through 31

Ti
m

e
in

m
s

(a) Running leaky program with
a blue: serial (red: parallel) col-
lection strategy on secret input
5342121

051015202530

1

2

3

4

5

Bits 0 through 31

Ti
m

e
in

m
s

(b) Running the GC strategy of V8
on secret input 5342121

0 5 10 15 20 25

5

10

15

Experiment number

Ti
m

e
in

m
s

(c) Measuring ping delay between
computers over a network connec-
tion.
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e ::= n | null | x | e op e

c ::= skip | x := e | c; c | if e then c else c | while e do c

| x := new`(e, e) | x := y[e] | x[e] := e

| x := time() | at ` with bound e do c

| restore ` when n

Fig. 6: Syntax of the language. The boxed command is not
part of the surface syntax.

null. For our purposes it is sufficient to leave heap locations
abstract, and our model simply assumes a set Loc of abstract
heap locations that may be distinguished from each other. We
further assume that the set of locations is disjoint from the set
of integer values. Let v range over values Val, and denote the
set of all variables as Var.

b) Memory and heap environments: Memory environment
is a partial function m : Var→ Val. For convenience, we also
use the set notation, and write (x, v) ∈ m when m(x) = v.

For heap environment, an important characteristic of our
model is that allocations on the heap are tagged with security
levels. This is necessary for constraining collecting behavior,
as explained later in this section.

We define a heap as a partial function h : Loc → (N →
Val) × L from heap locations to pairs consisting of lookup
functions and security levels. A lookup function is a partial
function from the integer offsets to values stored in the heap.
We write (loc, µ, `) ∈ h when h(loc) = (µ, `), where loc is
the abstract location, µ is the lookup function, and ` is the
security level. We refer to ` as the heap level of loc. When
heap h can be split into two disjoint heaps h1 and h2, we write
h = h1 ] h2.

c) Maximum heap size: Our model considers both un-
bounded and bounded heaps. The semantics is parametrized
with the function that returns the maximum size of the heap
mx : L → N∪{∞} that returns the maximum amount of heap
memory available for allocation at that security level. Unless
explicitly specified, the formal results apply to both bounded
and unbounded heaps.

When the current size of the heap h at a particular level `
needs to be compared against the maximum available space,
we compute the current size using function size`(h) ,∑

(loc,µ,`)∈h |dom(µ)| .

B. Semantics w/o collection

We start by introducing the semantics of the language w/o
garbage collection. Section V presents the semantics of garbage
collection.

Semantic configurations have the form 〈c, pc,m, h, t〉,
where c is the current program, pc is the runtime program
counter level, m and h are the memory and the heap respec-
tively, and t is the time counter. Terminal configurations are
marked by the dedicated stop command. The semantics is
a combination of a standard big-step evaluation relation for
expressions, and a small-step transition relation for commands.

1) Expressions: Figure 7 presents the evaluation relation
〈x,m〉 ⇓ v for expression semantics. Note how this relation
only includes standard memory; all heap-related operations are
modeled as commands.

2) Commands: Figures 8 and 9 present the semantics of
commands in the absence of garbage collection. None of the
standard commands touch the heap or the program counter level;
moreover they all take one computation step. This semantics is
given by rule (S-LIFT-STANDARD) in Figure 9 together with
the standard transition relation 〈c,m〉 � 〈c′,m′〉, defined in
Figure 8.

The remaining of the rules in Figure 9 present the transition
relation for the and non-standard commands.

Rule (S-TIME) updates variable x with the current value of
the time counter.

Rule (S-NEW) models the allocation in partition `. The
amount of allocated memory is computed by evaluating
expression e. The command extends the heap with the new
lookup function µ, and updates the variable in the memory
with the value of the new location. The lookup function µ
uses the default value computed by evaluating expression einit .
The rule has two notable constrains. First, the location must
be fresh, expressed by the premise loc /∈ dom(h). Second,
there must be enough available space in the heap at partition
` for the allocation, which is expressed by the premise



〈n,m〉 ⇓ n 〈null,m〉 ⇓ null

m(x) = v

〈x,m〉 ⇓ v

〈ei,m〉 ⇓ vi i = 1, 2 v1 op v2 = v

〈e1 op e2,m〉 ⇓ v

Fig. 7: Semantics of expressions

〈skip,m〉 � 〈stop,m〉
〈e,m〉 ⇓ v

〈x := e,m〉 � 〈stop,m[x 7→ v]〉

〈c1,m〉 � 〈c′1,m′〉 c′1 6= stop

〈c1; c2,m〉 � 〈c′1; c2,m
′〉

〈c1,m〉 � 〈stop,m′〉
〈c1; c2,m〉 � 〈c2,m

′〉

〈e,m〉 ⇓ n n 6= 0⇒ i = 1 n = 0⇒ i = 2

〈if e then c1 else c2,m〉 � 〈ci,m〉

〈e,m〉 ⇓ n n 6= 0

〈while e do c,m〉 � 〈c; while e do c,m〉

〈e,m〉 ⇓ n n = 0

〈while e do c,m〉 � 〈stop,m〉

Fig. 8: Semantics of standard commands

size`(h
′) ≤ mx(`), where h′ refers to the heap updated after

the allocation.
Rule (S-SET) updates the array at a specified index. This

is expressed as in-place update of the lookup function. Rule
(S-GET) retrieves the value stored at a particular index in an
array; the result is stored in the memory.

Rule (S-AT) updates the program counter label. Additionally,
this rule computes the time n the at command is expected to
consume. This rule inserts a restore command that restores the
program counter, and the expected time t + n by which the
restore should be reached.

Rule (S-RESTORE-PROGRESS) restores the program counter
label and continues with the execution of the body of the
restore command only if the current time matches the expected
time specified in the restore command. Rule (S-RESTORE-
WAIT) skips until the current time matches the argument of the
restore command. Note that if the body of at happens to take
more time than expected, the semantics blocks the execution.

V. SEMANTICS FOR SECURE GARBAGE COLLECTION

The previous section defined the program semantics w/o
garbage collection transitions, i.e., the size of the heap would
monotonically increase throughout the execution. This section
defines the collection semantics that specifies how garbage
collection is allowed to affect the heap.

The main insight is that the runtime program counter label
constrains which parts of the heap can be collected and when.

When the runtime program counter is low, only low parts of
the heap can be collected; when the runtime program counter
is high, only high parts of the heap can be collected. While, on
first sight, this isolation-like constrain may appear unnecessarily
strong in an information-flow setting, it is necessary, because
the garbage collection represents a bi-directional information
flow channel. We explain this using two simple examples
inspired by our experiments from Section III.

A. Motivating security restrictions on GC

This section presents two examples that motivate our
restrictions on garbage collection semantics. Each of the
examples demonstrates the danger of collecting parts of the
memory that do not match the current program counter level.
Note that while the examples are written in the style that
follows our typing discipline of Section VI, the typing is not
required here.

1) Implicit flows when collecting L in H: Consider program
below, where we assume that N and M are constants, and v
is picked sufficiently pessimistically to bound the execution of
the at command.

1 // new array of size N with
2 // default element value 0
3 y := newL (N, 0);
4 y := null;
5 // the y-array can now be reclaimed
6 at H with bound v do {
7 if h > 0 {
8 // new array of size M that
9 // requires GC

10 x := newH (M,0)
11 } else {
12 skip
13 }
14 }
15 t1 := time ();
16 // GC time depends on
17 // if y-array has been
18 // collected earlier
19 y := newL (N,0);
20 t2 := time ();
21 low := t2 - t1

Note how the high conditional is guarded by the at command
that ensures that the execution of the conditional takes v steps.
This means that the value of t1 does not depend on which
branch of the conditional is taken.

However, if semantics of garbage collection allows low parts
to be collected inside at, say before executing the allocation
on Line 10, then t2 − t1 is likely to be small. This motivates
that garbage collection should not collect low allocations when
the program counter level is high.

2) Implicit flows when collecting H in L: This example
shows that collecting high allocations when the program counter
is low is also dangerous. Suppose we are given constants M , N ,
and v as described earlier, and consider program below.

1 // new array of size M with
2 // default element value 0
3 x := newH (M, 0);
4 at H with bound v do {



S-LIFT-STANDARD
〈c,m〉 � 〈c′,m′〉

〈c, pc,m, h, t〉 mx
_ 〈c′, pc,m′, h, t+ 1〉

S-TIME

〈x := time(), pc,m, h, t〉 mx
_ 〈stop, pc,m[x 7→ t], h, t+ 1〉

S-NEW
〈e,m〉 ⇓ n

loc /∈ dom(h) size`(h
′) ≤ mx(`) 〈einit ,m〉 ⇓ v h′ = h[loc 7→ (µ, `)] µ(x) =

{
v 0 ≤ x < n

undef otherwise

〈x := new`(e, einit), pc,m, h, t〉
mx
_ 〈stop, pc,m[x 7→ loc], h′, t+ 1〉

S-SET

〈e1,m〉 ⇓ n 〈e2,m〉 ⇓ v 0 ≤ n < |dom(µ)| loc = m(x) (µ, `) = h(loc) µ′(x) =

{
v x = n

µ(x) otherwise

〈x[e1] := e2, pc,m, h, t〉
mx
_ 〈stop, pc,m, h[loc 7→ (µ′, `)], t+ 1〉

S-GET
〈e,m〉 ⇓ n loc = m(y) µ = h(loc) v = µ(n)

〈x := y[e], pc,m, h, t〉 mx
_ 〈stop, pc,m[x 7→ v], h, t+ 1〉

S-AT
〈e,m〉 ⇓ n t′ = t+ n

〈at ` with bound e do c, pc,m, h, t〉 mx
_ 〈c; restore pc when t′, `,m, h, t+ 1〉

S-RESTORE-PROGRESS
t = t′

〈restore ` when t′, pc,m, h, t〉 mx
_ 〈stop, `,m, h, t+ 1〉

S-RESTORE-WAIT
t < t′

〈restore ` when t′, pc,m, h, t〉 mx
_ 〈restore ` when t′, pc,m, h, t+ 1〉

Fig. 9: Semantics of heap and non-standard commands

5 if h > 0 {
6 x := null
7 // array x can now be reclaimed
8 } else {
9 skip

10 }
11 }
12 t1 := time ();
13 // GC time depends on whether
14 // array x is reclaimable
15 y := newL (N,0);
16 t2 := time ();
17 low := t2 - t1

As before, the timing of the high conditional is protected with
an at command. Consider allocation on Line 15 that may trigger
garbage collection. If semantics of the GC allows collecting
high allocation in the low program counter, the amount of time
that the collector spends here will depend on whether the array
x can be reclaimed, affecting the value of t2. This motivates
that garbage collection should not collect high allocations when
the program counter is low.

B. Formal semantics for garbage collection

Using the above examples as guideline, we now formulate
the formal semantics for secure garbage collection. The
rule for garbage collection is given by transition relation
〈c, pc,m, h, t〉 99K 〈c, pc,m, h′, t′〉 that relates two config-
urations before and after collection. Collection does not update
the current command or memory or the program counter level,
but updates the heap and consumes some time.

Figure 10 presents the collection rule formally. To explain
the rule, we introduce the auxiliary concepts that it uses.

1) Abstract collection relation: The amount of time con-
sumed by the collection is in general implementation-specific.
We require the implementation to provide an interface for
collecting specific parts of the heap. We model this by an
abstract relation h m

δ h′, where h is a subheap, and where
h′ is the result of collection in h that takes time δ, given
memory m. An important constraint that we place on the  
relation is that if two subheaps and starting memories are
isomorphic, then it must take the same amount of time to



GC-COLLECT

reach(m,h1 ] h2) ∩ dom(h2) = ∅ h2
6=pc = ∅

h1 = h1
6=pc ] h1

=pc h1
=pc ] h2  

m
δ h1

=pc

〈c, pc,m, h1 ] h2, t〉 99K 〈c, pc,m, h1, t+ δ〉

Fig. 10: Reduction rule for garbage collection

collect in them. To formally express this, we introduce the
notion of substitutions. This notion of substitution is closely
related to the one by Banerjee and Naumann [6]. As we will see,
the substitution is also used later in the paper when defining
our GC requirement.

Definition 1. (Substitution) A substitution φ : Val→ Val is a
mapping such that

1) φ is identity on integers:

∀n . φ(n) = n.

2) φ is injective on locations:

∀loc loc′ . φ(loc) = φ(loc′)⇒ loc = loc′.

3) φ maps locations to locations:

∀loc ∈ Loc . φ(loc) ∈ Loc.

Given a substitution φ, we write φ(m) = {(x, φ(v)) |
(x, v) ∈ m} and φ(h) = {(φ(loc), φ ◦ µ, `) | (loc, µ, `) ∈ h}.
For the remaining parts of the paper it is assumed that
substitutions are bijective. That is,

∀v, v′ . φ(v) = v′ ⇔ φ−1(v′) = v.

We write h ∼=φ w (resp. (m,h) ∼=φ (s, w)) when φ(h) = w
(resp. (φ(m), φ(h)) = (s, w)) and h ∼= w (resp. (m,h) ∼=φ

(s, w)) when there exists a bijection φ such that h ∼=φ w (resp.
(φ(m), φ(h)) = (s, w)). Two heaps are then isomorphic when
h ∼= w.

Using the notion of substitution, we formulate our assump-
tion on the abstract collection relation.

Assumption (Abstract collection). Consider two memories m
and s and two heaps h and w and a substitution φ such that
(s, w) = (φ(m), φ(h)). Then h m

δ h′ implies w  s
δ w
′

If two heaps are isomorphic they are equal up to renaming
of locations, and the specific names of locations should not
affect the behaviour of garbage collection.

2) Heap partitioning based on a level: Given a heap h and
a level `, write h=` for the heap that includes all allocations
tagged with security level `:

h=` , {(x, µ, `′) ∈ h | `′ = `}.
and similarly, define the complement partition as

h6=` , {(x, µ, `′) ∈ h | `′ 6= `}.
Given a level `, any heap h can be decomposed into a disjoint
union of its partition and its complement: h = h=` ] h6=`.

3) Reachable locations: Since deciding whether or not a
location will be accessed in the future is undecidable [22],
we follow real world implementations of garbage collection
schemes, and treat a variable as live if it is reachable from the
current set of variables in the program. The set of reachable
values is then the values that are pointed to by variables in the
memory, or by following a chain of reachable locations on the
heap.

Definition 2 (Reachable locations). Given a memory m and
a heap h, the set of reachable locations reach(m,h) ⊆ Loc is
the smallest set such that

1) all locations in memory m are reachable:

cod(m) ∩ Loc ⊆ reach(m,h)

2) if loc ∈ reach(m,h) and h(loc) = (µ, `) then locations
that the allocation µ points to are reachable:

cod(µ) ∩ Loc ⊆ reach(m,h)

Note that reach is monotonic, as expressed by the following
lemma.

Lemma 1 (Monotonicity of heap reachability). Given two
heaps h and w, if h ⊆ w then reach(m,h) ⊆ reach(m,w).

With these definitions at hand, let us examine the garbage
collection rule in Figure 10. The rule is defined when the
program heap is split in two disjoint heaps h1 and h2, where
h2 is collected after the transition. That it is functionally
safe to collect h2 is ensured by the first premise of the rule
that stipulates that no location in h2 is reachable from the
current configuration. The remaining premises induce security
restrictions on the collection. We restrict h2 to only contain
allocations that are exactly at the level of the program counter
level pc – this is expressed by the requirement h2

6=pc = ∅,
which could alternatively be stated as h2

=pc = h2. The idea
is to constrain collections at a specific level only when the
program counter matches that level. The rule further splits the
non-collectable heap h1 into two parts, based on the security
level: the pc-part h1

=pc and its complement h1
6=pc . Only the

pc-part of the heap is used when invoking the abstract collector.

C. Functional correctness

The remaining part of this section shows that our garbage
collection strategy is functionally correct. That is, the collector
never claims memory that is accessed in the future. We start
with a formal definition of dangling pointer-freedom.

Definition 3 (Dangling pointer-freedom). Given a memory m
and heap h, say that (m,h) is free of dangling pointers when

1) all locations in the memory point to a valid location in
the heap:

cod(m) ∩ Loc ⊆ dom(h)

2) pointers within heap are valid:

∀(µ, `) ∈ cod(h) . cod(µ) ∩ Loc ⊆ dom(h)



Informally, if m and h do not contain dangling pointers,
then extending the heap does not increase reachability.

Lemma 2. Given memory m and h such that (m,h) is free
of dangling pointers then for all heaps w ⊇ h, it holds

reach(m,h) = reach(m,w)

For functional correctness, we show that adding the garbage
collection rule in Figure 10 to the set of possible transitions
does not modify the memory, nor the reachable part of the
heap.

There is a technical challenge to overcome. The specific
location allocated in the heap, and stored in the memory,
depends on the current size of the heap (cf. the semantics in
Figure 9). Thus by adding a garbage collector, which reduces
the size of the heap, the locations allocated and stored in the
memory will be different from the locations allocated without
first reducing the size of the heap.

We therefore prove that the reachable parts of the heaps will
be equal up to renaming of locations. We use the notion of
substitution introduced earlier in Section V-B1 to relate pairs
of memories and heaps that have isomorphic reachable parts
but may have different amounts of garbage.

Definition 4 (Matching up to garbage). Consider two pairs of
memory and heaps (m,h) and (s, w). Say that (s, w) matches
(m,h) up to garbage via substitution φ, written (m,h) 'φ
(s, w) if reach(φ(m), φ(h)) = reach(s, w).

We write (m,h) ' (s, w) if there exists φ s.t. (m,h) 'φ
(s, w).

The following lemma states that the semantics does not
depend on garbage.

Let ω(`) = ∞ denote the constant ∞ function. The
relation

ω
_ defines the semantics in an abstract setting with

unbounded available memory.

Lemma 3 (Garbage independence in unbound heaps). For all
heaps h and w such that w ⊇ h, and (m,h) and (m,w) are
free of dangling pointers it holds that if

〈c, pc,m, h, t〉 ω_ 〈c′, pc′,m′, h′, t′〉

then 〈c, pc,m,w, t〉 ω
_ 〈c′, pc′, s′, w′, t′〉 and (m′, h′) '

(s′, w′).

The next lemma states that garbage collection only collects
garbage from the heap. That is, if garbage collection collects
some portion of the heap, then succeeding transitions do not
depend on the portion of the heap that has been collected.

Lemma 4 (Garbage only). If (m,h) is free of dangling pointers
and

〈c, pc,m, h, t〉 mx
_ 〈c′, pc′,m′, h′, t′〉

then for all s, w such that (s, w) is free of dangling pointers,
and (s, w) ' (m,h) we have

〈c, pc, s, w, t〉 mx
_ 〈c′, pc′, s′, w′, t′〉.

and (s′, w′) ' (m′, h′).

We can now state functional correctness of the garbage col-
lection scheme. Intuitively, the reachable heap does not change
when interleaving the reductions with garbage collections. This
is expressed as a pair of theorems, in the style of the work
by Morrisett et al. [22]. The first theorem states that running the
GC followed by a regular transition is comparable to running a
regular transition. The second one states that running a regular
transition is comparable to running the GC followed by a
regular transition.

Note that in the statements of the theorems below the
time component of the configurations is reset. This ensures
that the result of running command x := time() is the
same. Furthermore, the first theorem additionally qualifies the
semantics to be unbounded in maximum available size. This
is needed because otherwise the execution may run out of
available heap.

Theorem 1 (Functional correctness for unbound heaps with
time reset). Consider memory m and heaps h and w such
that (m,h) and (m,w) are free of dangling pointers. If
〈c, pc,m, h, t〉 99K 〈c, pc,m,w, t′′〉 and 〈c, pc,m,w, t〉 ω

_
〈c′, pc′,m′, w′, t′〉 then 〈c, pc,m, h, t〉 ω

_ 〈c′, pc′, s′, h′, t′〉
and (m′, w′) ' (s′, h′).

Theorem 2 (Functional correctness with time reset). Con-
sider memory m and heaps h such that (m,h) is free of
dangling pointers. If 〈c, pc,m, h, t〉 mx

_ 〈c′, pc′,m′, h′, t′〉 then
〈c, pc,m, h, t〉 99K 〈c, pc,m,w, t′′〉 and 〈c, pc,m,w, t〉 mx

_
〈c′, pc′, s′, w′, t′〉 and (s′, w′) ' (m′, h′).

D. GC or normal steps

As a final element in this section, we define a top-level GC
or normal step as a transition function that nondeterministically
interleaves normal and collection steps.

NORMAL-STEP

〈c, pc,m, h, t〉 mx
_ 〈c′, pc′,m′, h′, t′〉

〈c, pc,m, h, t〉 mx−→ 〈c′, pc′,m′, h′, t′〉

GC-STEP
〈c, pc,m, h, t〉 99K 〈c, pc,m, h′, t′〉
〈c, pc,m, h, t〉 mx−→ 〈c, pc,m, h′, t′〉

We use this top-level relation in studying security properties
of our programs in Section VII.

VI. TYPE SYSTEM

In addition to the secure garbage collection described in
the previous section, our enforcement mechanism additionally
relies on a typing discipline. The typing discipline is mostly
standard for an imperative security-typed language with ar-
rays [10, 39, 25, 31, 9], with a few minor technical deviations
that we explain below. In particular, the type system ensures
not only confidentiality, but also integrity by viewing values
that depend on time commands as tainted. This restricts the
extent to which the result of the time command affects the
control flow or the heap shape of the program.



WF-INT

` `wf int ξ

WF-ARRAY
` v `p `ref v `p `p `wf τ

` `wf array`p [τ ] (`ref , ◦)

Fig. 11: Type well-formedness

A. Time taint and generalized security levels

We introduce a time lattice; a two-point lattice with the
elements ◦ and •. Here, ◦ corresponds to to untainted values,
and • corresponds to tainted values. We let ι range over
elements of this lattice, and define an ordering vt such that
for all ι ∈ {◦, •} it holds that ι vt ι, and ◦ vt •. We define
the corresponding least upper bound operator as tt.

A generalized security level ξ is a combination of both a
confidentiality level ` and a taint level ι. With this, we have the
following grammar for the security levels in the type system.

ι ::= ◦ | •
ξ ::= (`, ι)

We lift lattice operations to generalized security levels, and
denote the resulting ordering and least upper bound operations
as � and g, respectively.

Types are given by the following grammar

σ ::= int | array`[τ ]

τ ::= σ ξ

Here, τ is a security annotated type that consist of a base
type with a security level. Base types σ are either integers or
arrays of some type τ that specify the confidentiality level of
the partition where the array lives.

Given a base type σ and security levels ξ1, ξ2, define the
operator for raising of the type σ ξ1 to level ξ2 as

(σ ξ1)
ξ2 , σ (ξ1 g ξ2)

The lattice ordering � induces a subtyping relation on the
types

ξ1 � ξ2 σ1 = σ2

σ1 ξ1 <: σ2 ξ2

Note that invariance in the base types, even if the base type
is array`p [τ ] (`ref , ◦), is required because the arrays are
mutable [24].

B. Well-formedness of reference types

Figure 11 presents well-formedness conditions of types w.r.t.
references. The security level on the left-hand side of the
turnstile is a lower bound on the heap level that can store
values of type τ . A type τ is well-formed when ⊥ `wf τ . These
rules prevent creation of references from the high partitions
into the low ones, and are later lifted to define well-formedness
of configurations.

T-INT

Γ ` n : int ξ

T-NULL
⊥ `wf array`[τ ](`ref , ◦)

Γ ` null : array`[τ ] (`ref , ◦)

T-VAR

Γ ` x : Γ(x)

T-OP
Γ ` ei : int ξi i = 1, 2

Γ ` e1 op e2 : int (ξ1 g ξ2)

Fig. 12: Typing rules for expressions

C. Typing rules

We assume a memory typing environment Γ that maps
variable names to types. In the remaining of the paper, we
require that the memory typing environments are well-formed
w.r.t. all types defined in it. The typing judgment for expressions
has form Γ ` e : τ . Figures 12 presents the typing rules for
expressions.

The typing judgment for commands has form Γ, pc ` c.
Figure 14 present the typing rules for commands, where pc is
the static program counter level. The rule (T-SKIP) is trivial.
Rule (T-ASSIGN) is standard in how it prevents both implicit
and explicit information flows using the program counter level.
The rule (T-TIME) requires the assigned variable to be marked
as tainted, and is otherwise similar to assignment in its treatment
of implicit flows. Rule (T-IF) is slightly non-standard. First, it
prevents branching on high data if the pc is low. Note that the
rule does not raise the level of the program counter label in the
branches. Instead, high conditionals must occur syntactically
in a scope where the pc-level is explicitly raised using at
command. Second, branching on high values is allowed only if
the value is not tainted by time commands. This is visualized
in Figure 13. Rule (T-WHILE) imposes a similar restriction,
and is otherwise standard.

Rule (T-NEW) requires that both pc-level and the level of
the expression that determines the size of the array flow to
the variable that stores the reference. This prevents the size
of a high array from depending on low values. The level `
on the command that is interpreted by the allocation semantic
(cf. Rule (S-New) in Section V) must be as restrictive as the
level `2 of the reference.

Rule (T-SET) requires that both the pc-level and the
expression used for indexing flow to the level of the array
reference. This prevents indexing into a low array using high
expressions. It also requires the type of the right-hand side
expression to flow to the type of the array on the left, taking
implicit flows via pc-level into account.

Rule (T-GET) is similar. It requires that the pc-level and the
level of the index expression flows to the level of the array
reference, and rules out both explicit and implicit flows in the
assignment.

Finally, rules (T-AT) raises the level of pc, Furthermore, an
explicit time bound is provided for this command, which allows
the programmer to control the time consumed by commands
when the pc is high.
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Fig. 13: Lattice for confidentiality and integrity. Branching and
heap manipulation is allowed on values whose type is in the
gray area.

T-SKIP

Γ, pc ` skip

T-ASSIGN
Γ ` e : σ ξ σ (ξ g (pc, ◦)) <: Γ(x)

Γ, pc ` x := e

T-IF
Γ ` e : int (`, ◦) ` v pc Γ, pc ` ci i = 1, 2

Γ, pc ` if e then c1 else c2

T-WHILE
Γ ` e : int (`, ◦) ` v pc Γ, pc ` c

Γ, pc ` while e do c

T-SEQ

Γ, pc ` ci i = 1, 2

Γ, pc ` c1; c2

T-NEW
Γ ` esize : int (`size , ◦) Γ ` einit : τ

Γ(x) = array`[τ ] (`x, ◦) pc t `size v `x
Γ, pc ` x := new`(esize , einit)

T-SET
Γ ` eidx : int ξidx Γ ` e : σ ξ Γ(x) = array`[τ ] ξx

ξidx g (pc, ◦) � ξx σ (ξx g ξ) <: τ

Γ, pc ` x[eidx ] := e

T-GET
Γ ` eidx : int ξidx (pc, ◦)g ξidx � ξy

Γ(y) = array`[σ ξ] ξy σ (ξ g ξy) <: Γ(x)

Γ, pc ` x := y[e]

T-TIME
Γ(x) = int (`, •) pc v `

Γ, pc ` x := time()

T-AT
Γ ` e : int (`′, ◦) `′ v pc v ` Γ, ` ` c

Γ, pc ` at ` with bound e do c

Fig. 14: Typing rules for the surface language commands

Because the information flow constraints imposed by the
type system are standard, they can also be enforced using
dynamic or hybrid monitors [32, 5].

Note that the type system permits time measurements in both
low and high context; this directly models attacker capability
to make internal timing measurements (cf. Section III); weaker
attacker models, i.e., the ones where attacker does not have
access to system clock but only to network messages, can be
addressed in a similar manner.

1) Properties of the type-system: The type system ensures
two important properties. To state these, we need a heap typing
environment [38] that maps allocated locations to types.

Definition 5 (Heap typing environment). A heap typing is a
partial function Σ : Loc→ τ that maps heap locations to their
types.

The intuition for Σ is that given a location loc, allocated
by a command x := new`(e, einit), where Γ ` einit : τ , we
have Σ(loc) = τ . Similarly to memory typing environments,
we assume that types defined by the heap typing environment
are well-formed.

We can now state the first property, which we split into two
sub-properties: one for typing environments Γ, and one for
heap typing environments Σ.

First, the typing environment Γ gives us an adequate view
of the heap level of locations. More specifically, if a variable x
points to a location loc, then the heap level of loc equals to
the partition level specified by Γ(x).

Similarly, we can state this property for a heap typing
environment Σ. Let loc be a location. Then Σ(loc) records
the type of the “content” stored at loc. So, if Σ(loc) =
array`p [τ ] (`ref , ◦) it means that the content of location loc
has a heap level of `p. That is, following loc twice leads to a
heap allocation with a heap level equal to `p.

The second property is that the type system prevents creating
pointers from high heap levels into the low heap levels. This
property is important because a pointer from a high heap level
to a low heap level would allow modifying low heap level
pointers in a high program context.

Definition 6. Given a memory m, a heap h, an typing
environment Γ and a heap typing environment Σ we say that
(m,h) is well-formed wrt. (Γ,Σ) if

1a) For all variables x s.t. Γ(x) = array`p [τ ] (`ref , ◦),
m(x) = loc, and h(loc) = (`, µ), it holds that ` = `p.

1b) For all locations loc s.t. Σ(loc) = array`p [τ ] (`ref , ◦),
h(loc) = (`, µ), µ(n) = loc′, and h(loc′) = (`′, ν) it holds
that `′ = `p.

2) If h(loc1) = (`1, µ1), and µ1(n) = loc2 for some n ∈ N,
and h(loc2) = (`2, µ2) then `1 v `2.

We define well-formed configurations to be configurations
in which the command is well-typed, the memory and heaps
are heap level bound and are free of dangling pointers. Finally
we also capture the intuition about the relation between Γ and
Σ: That Σ contains the type of the “content” of a location,
wheres Γ contains the type of the location.



Definition 7 (Well-formed configuration). Given a configura-
tion 〈c, pc,m, h, t〉, a typing environment Γ and a heap typing
environment Σ, say that the configuration is well-formed w.r.t.
Γ, Σ, if

1) c 6= stop⇒ Γ, pc ` c
2) (m,h) is free of dangling pointers.
3) (m,h) is well-formed wrt. (Γ,Σ).
4) If Γ(x) = array`p [τ ] (`ref , ◦) and m(x) = loc then

Σ(loc) = τ .

By a standard proof of preservation [42] the semantics can
be shown to preserve the well-formedness of configurations.

VII. SECURITY GUARANTEES

This section presents the security guarantees obtained by
combining the properties of partitioned allocation semantics
(Section IV), constrained garbage collection (Section V), and
security types (Section VI).

For garbage collection in isolation we obtain a property of
timing-sensitive noninterference.

For programs in general, the semantic security property
obtained in this section is termination-insensitive timing-
sensitive noninterference. While this may appear unorthodox,
given the usual expectation that timing-sensitivity implies
termination-sensitivity, we believe it makes sense in our setting,
where the attacker has access to the internal clock of the
computation, yet there are many ways via which the program
may diverge. The sources of divergence may be infinite
loops – that we allow, heap exhaustion – also possible in
our semantics, or other fatal errors that we do not currently
model. In that light, even though we allow termination channels
in this work, it remains a channel that cannot be efficiently
magnified [3]. Note however that termination-insensitivity is
not a fundamental restriction in our work. Because our type
system is relatively standard, it should be possible to apply
orthogonal techniques [21] to obtain termination or progress-
sensitive security.

Our notion of noninterference is parametrized over the heap
size, because of the parametrization of the semantics.

A. `-equivalence

In order to formalize our security conditions, we introduce
`-equivalence [45] for memories and heaps.

We define the set of low-reachable locations, written
reach`(Γ,Σ,m, h), as the set of locations loc satisfying
the predicate reach`(loc,Γ,Σ,m, h), which is specified in
Figure 15. Intuitively, this is the set of locations reachable
by following only pointers with a low confidentiality level
according to the memory and heap typing environments. An
important property of low reachability is that, when a location
maps to a low heap level, then the low reachability of that
location coincides with its reachability as per Definition 2.

Lemma 5 (Adequacy of low reachability). Let (m,h) be well-
formed wrt. (Γ,Σ) and let ` be a security level. If h(loc) =
(`, µ) and `′ v ` then loc ∈ reach`(Γ,Σ,m, h) if and only if
loc ∈ reach(m,h).

Γ(x) = array`p [τ ] (`ref , ◦) `ref v ` m(x) = loc

reach`(loc,Γ,Σ,m, h)

reach`(loc,Γ,Σ,m, h) Σ(loc) = array`p [τ ] (`ref , ◦)
`ref v ` h(loc) = (`′, µ) µ(n) = loc′

reach`(loc
′,Γ,Σ,m, h)

Fig. 15: Low-reachability

Lemma 5 will be a crucial part of the proof of garbage
collection noninterference in Section VII-B.

a) Memory low-equivalence: We first consider a definition
of low-equivalence for memories. This relation is induced by Γ.

m
Γ,φ∼ ` s , ∀x ∈ dom(Γ) . m(x)

Γ(x)
= φ,` s(x)

Whenever Γ is clear from the context, we omit it for clarity.
b) Memory and heap low-equivalence: As we wish to we

reason about garbage collection, which identifies and removes
unreachable locations, reasoning about locations that are low
reachable is not sufficient to prove the desired non-interference
results. Thus, we define the set of low locations as not only
the low reachable ones, but also the locations which has a low
heap level. This is captured in the following definition.

Definition 8 (Low locations). Given security typing Γ, heap
typing environment Σ, memory m, and heap h, the set
Low`(Γ,Σ,m, h) is the smallest set such that

1) Low reachable locations are contained in the set.

reach`(Γ,Σ,m, h) ⊆ Low`(Γ,Σ,m, h)

2) Locations with a low heap level are contained in the set.

∀loc . h(loc) = (`′, µ) ∧ `′ v `⇒ loc ∈ Low`(Γ,Σ,m, h).

We can now define heap low equivalence similarly to memory
low-equivalence. As we will often be relating two environments,
we use the abbreviation Σ1,2 to mean a set of heap typing
environments Σ1 and Σ2. The same abbreviation is used for
memories and heaps.

Crucial for the non-interference is the idea that if two
locations are related by a bijection φ, then one location is
reachable if and only if the other location is reachable. This is
captured in the following definition.

reach-iffτφ,`(Σ1,2,m, h, s, w) ,

∀loc1 loc2 . φ(loc1) = loc2 ⇒
loc1 ∈ reach`(Γ,Σ1,m, h)⇔ loc2 ∈ reach`(Γ,Σ2, s, w)

The final relation specified by STATE-LOW-EQ, written

(m,h)
Γ,Σ1,2≈φ,` (s, w), is parametrized by the level ` of the low-

equivalence (typically low), the typing environment Γ, the two
heap typing environments Σ1 and Σ2, and the substitution φ
that witnesses the isomorphism between the heaps h and w.
This is the main relation of interest during execution, as this



SAME-TYPE-INT

n1 ≡ n2

SAME-TYPE-LOC

loc1 ≡ loc2

VAL-LOW-EQ

τ = σ (`′, ι) v ≡ u `′ v `⇒ φ(v) = u

v
τ
=φ,` u

HEAP-LOC-EQ-NON-REACH

loci /∈ reach(mi, hi) for i = 1, 2
dom(µ1) = dom(µ2) hi(loci) = (`′, µi) for i = 1, 2

heap-loc-eqτφ,`(m1,2, h1,2, loc1, loc2)

HEAP-LOC-EQ-REACH

loci ∈ reach(mi, hi) for i = 1, 2 dom(µ1) = dom(µ2)

hi(loci) = (`′, µi) for i = 1, 2 ∀n . µ1(n)
τ
=φ,` µ2(n)

heap-loc-eqτφ,`(m1,2, h1,2, loc1, loc2)

STATE-LOW-EQ

m
Γ,φ∼ ` s reach-iffτφ,`(Σ1,2,m, h, s, w)

∀loc1 loc2 . φ(loc1) = loc2 ∧
Σ1(loc1) = τ ∧ Σ2(loc2) = τ ∧
loc1 ∈ Low`(Γ,Σ1,m, h) ∧
loc2 ∈ Low`(Γ,Σ2, s, w)

⇒ heap-loc-eqτφ,`(m, s, h, w, loc1, loc2)

(m,h)
Γ,Σ1,2≈φ,` (s, w)

Fig. 16: Low-equivalence on memories and heaps

what relates the parts of the environments that the attacker can
observe. It relates the low reachability of the two environments,
and specifies that the memories are related, and finally the last
relation expresses that if two low locations are related by φ
and have data labeled at a common type τ then they must have
the same heap level, and if the locations are reachable then the
values associated with this location (i.e. the codomain of µ1 and
µ2 in HEAP-LOC-EQ-REACH) have to be equivalent at type τ .
When Γ and Σ1,2 are irrelevant, we write (m,h) ≈φ,` (s, w)

for (m,h)
Γ,Σ1,2≈φ,` (s, w).

B. Noninterference for garbage collection

Using the definition of memory and heap low-equivalence
we can formulate the noninterference result for the garbage col-
lector. Our definition of noninterference for garbage collection
is possibilistic [20] in its nature. Intuitively, it states that for
a GC-transition that takes some time there is a GC-transition
that takes as much time and yields a low-equivalent resulting
heap and memory.

Theorem 3 (Garbage collection noninterference). Assume
typing environment Γ, level ` and heap typing environ-
ments Σ1 and Σ2. Consider two well-formed configurations

〈c1, pc,m, h, t〉 and 〈c2, pc, s, w, g〉 wrt. Γ,Σ1, and Γ,Σ, a

substitution φ such that (m,h)
Γ,Σ1,2≈φ,` (s, w). Assume pc v `.

If 〈c1, pc,m, h, t〉 99K 〈c1, pc,m, h
′, t + δ〉 then there is w′

and ψ such that

〈c2, pc, s, w, g〉 99K 〈c2, pc, s, w
′, g + δ〉

and (m,h′)
Γ,Σ1,2≈ψ,` (s, w′).

Proof sketch. Unfolding we have h = h=pc ] h6=pc ] hgc ,
where hgc is the subheap being collected. Pick
• w=pc = φ(h=pc),
• wgc = φ(hgc).

By definition no location in hgc is reachable, and so they are not
low-reachable either. Then since reach-iffτφ,`(Σ1,2,m, h, s, w)
no location in wgc = φ(hgc) must be low-reachable and since
all locations in wgc have heap level pc v `adv it follows that
no location in wgc is reachable, meaning that it is safe to GC
this part of the heap.

By definition of GC we have h=pc ] hgc  m
δ h=pc and so

w=pc ] wgc  s
δ w

=pc by the GC assumption from Section V.

A property of the state low equivalence relation is that
garbage collection when pc 6v `adv results in a state which is
low equivalent to the state before garbage collection.

Lemma 6 (High garbage collection). Assume typing environ-
ment Γ and level `. Consider configuration 〈c, pc,m, h, t〉 and
assume pc 6v `. If 〈c, pc,m, h, t〉 99K 〈c, pc,m, h′, t′〉 then
(m,h) ≈id,` (s, h′).

C. Noninterference for programs

Formal attacker observations. To simplify the technical
presentation we assume that the secrets in the computation are
all stored in the initial memory.

We present our noninterference condition using the notion of
attacker knowledge [2, 12]. The attacker knowledge is the set of
possible memories that are are consistent with the memory after
a sequence of program transitions. We assume that programs
start with empty heap ∅ and an initially low pc level ⊥.

Definition 9 (Attacker knowledge at level `). Given program
c, initial and final memories m and m′, final heap h′, security
level ` and maximum heap size function mx, define attacker
knowledge as

kmx
` (c,m,m′, h′) , {s | m Γ,id∼ ` s ∧

〈c,⊥, s, ∅, 0〉 mx−→∗ 〈stop, pc′, s′, w′, t′〉 ∧

∃φ,Σ1,2 . (m′, h′)
Γ,Σ1,2≈φ,` (s′, w′)}

Note that the larger attacker knowledge set corresponds to
attacker obtaining less information. Smaller knowledge sets
correspond to more precise information. Singleton knowledge
set means the attacker knows the exact initial memory with
which the execution started.



Definition 10 (Set of terminating memories). Given a program
c we define Mmx

` (c,m) as the set of initial `-equivalent
memories that lead to a terminating configuration when the
heap is bounded by mx.

Mmx
` (c,m) = {s | m Γ,id∼ ` s ∧

〈c,⊥, s, ∅, 0〉 mx−→∗ 〈stop, pc′,m′, h′, t′〉}
Using attacker knowledge and the set of initial memories

we can define the noninterference policy [15]. Intuitively, a
program satisfies noninterference if any memory and heap
produced by a terminating sequence of program steps does not
exclude any possible initial memory.

Definition 11 (Termination-Insensitive Noninterference at `
for heap size mx). Given a heap bounding function mx, a
program c satisfies mx-noninterference up to level ` if for all
initial memories m such that

〈c,⊥,m, ∅, 0〉 mx−→∗ 〈stop, pc′,m′, h′, t′〉
implies

kmx
` (c,m,m′, h′) ⊇Mmx

` (c,m).

Intuitively, this definition says that a program c satisfies
termination-insensitive noninterference when, given two termi-
nating executions of the same program with low equivalent
initial memories m and s and final memories m′ and s′, it is
possible to construct a terminating execution of c starting at
initial memory s which results in a final memory s′′ such that
s′′ is low equivalent to s′.

Theorem 4 (Soundness of the enforcement). Given a pro-
gram c, if Γ, pc ` c then c satisfies noninterference for
unbounded semantics for all levels `.

Proof sketch. Given two terminating executions of program c:

〈c,⊥,m, ∅, 0〉 mx−→∗ 〈stop, pc1,m
′, h′, t′〉

〈c,⊥, s, ∅, 0〉 mx−→∗ 〈stop, pc2, s
∗′, w∗′, g∗′〉

(call these executions A and B resp.) our goal is to construct
an alternative run (call this execution C)

〈c,⊥, s, ∅, 0〉 mx−→∗ 〈stop, pc1, s
′, w′, t′〉

where (m′, h′) is ≈-equivalent to (s′, w′).
To show this, we start by defining an auxiliary “bridge”

relation on pairs of configurations. The relation records that
starting from some configuration cfg1, the execution “steps
over” a number of intermediate steps, that do not modify the
low parts of the memory or the heap, or terminates, resulting
in configuration cfg2. Each of the A and B executions can
be broken down into a sequence of consecutive “bridging”
steps. We construct the execution C one bridge-step at a time,
starting from the initial configurations. The key invariant used
in the proof is that bridging configurations in C execution
are low-equivalent with the respective configurations in A and
“taint”-equivalent with the respective configurations in B. Our
workhorse bridge noninterference shows that whenever a pair

of related configurations in A and B can take a bridge step,
it is possible to construct a matching bridge step in C that
“mimics the timing behavior” of A. i.e., it generates the same
events and takes the same execution time as A. This is proved
by induction on the number of the intermediate steps, followed
by an induction over the structure of command c. In order
to show the termination of the high commands constructed
in C run, we observe that the taint equivalence of B and C
configurations implies that they agree on the control flow, and
one can further construct high GC steps in C to match the
high GC steps in B.

VIII. CONNECTIONS TO REAL TIME GARBAGE COLLECTION

Wadler [40] defined the term real time garbage collection as
any garbage collection system guaranteeing that the execution is
not suspended for long periods of time. Many such collectors
have been presented previously [30, 17, 36, 13], and they
are a crucial part of building real time systems in managed
languages [7].

As the main goal of real time garbage collectors is to
reduce the amount of time the garbage collector suspends
the program execution, such collectors could be seen as an
effective mitigation against the attacks presented in Section III.

While we have not performed experiments against existing
real time garbage collectors at this point, we expect that
real time garbage collectors are not sufficient for mitigating
these attacks. To see this, consider the second program from
Section V-A that illustrates the danger of collecting H in
L. An “eager” real-time garbage collector may manifest the
behavior that this example warned against. Additionally, if
a practical implementation of real-time garbage collection
algorithm occasionally stops the world for collection, this
allows attacks similar to the first example in Section V-A.

IX. RELATED WORK

Conceptually, this work fits into the framework introduced
by Zhang et al. [45], where the interaction between the language
semantics and the underlying abstract runtime happens via
security labels. The work by Zhang et al. does not however
consider automatic memory management.

Many modern programming language features can be used
to create timing channels, and programming language designers
must secure the entire execution stack. Buiras and Russo [8]
show that a programming language with lazy evaluation leak
information because of sharing. Buiras and Russo [8] breaks
the information flow control of the Haskell library LIO by
leveraging the way thunks are shared between threads. They
present a method for leaking one bit of information, along with
a technique to amplify the attack. As a solution, they propose
a restriction on sharing of thunks between threads, but do not
prove noninterference.

Secure-multi-execution [11] guarantees timing-sensitive non-
interference by running multiple copies of the program, at the
cost of changing the semantics of insecure programs. In order
for the secure-multi-execution to provide guarantees against



leakage via memory management it must be necessary to run
each copy with a separate collector, effectively enforcing the
constraints of Section V. Without such isolation, the shared
GC is likely to represent a source of timing channels.

The idea of partitioning heaps based on security levels
appears in the work on Relational Hoare Type Theory (RHTT)
by Nanevski et al. [27] that provides two different allocation
primitives: lalloc for public allocations and alloc for secret ones.
Locations obtained by different primitives return disjoint values,
which is necessary for defining heap low-equivalence, in many
ways similar to our work. However, Nanevski et al. [27] do
not consider neither automatic collection nor timing-sensitivity.

The idea of the runtime pc-level is related to the floating label
concept in Haskell LIO library [35] that relies on lightweight
threads to eliminate internal timing leaks in applications. It
is not clear how to combine secure scheduling necessary
for concurrent information flow with restrictions on garbage
collection that we present here.

Recent years have seen a surge of efforts on verification
of garbage collector algorithms and implementations [19, 14].
While these project focus on basic safety properties, they may
provide a foundation for design of implementations that would
satisfy our security requirements.

X. CONCLUSION

This paper presents a series of examples that demonstrate
feasibility of information leaks via garbage collection. To
effectively control such leaks, a tight integration between
runtime and the source-level language is needed. We observe
that even despite drastic simplifications in the design of the
language to simplify aspects such as direct timing attacks,
closing leaks via garbage collector requires strong assumptions
from the language implementors.
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