
An Experimental Security Analysis
of an Industrial Robot Controller

Davide Quarta∗, Marcello Pogliani∗, Mario Polino∗,
Federico Maggi∗†, Andrea Maria Zanchettin∗, and Stefano Zanero∗

∗Dipartimento di Elettronica, Informazione e Bioingegneria – Politecnico di Milano, Italy
{davide.quarta, marcello.pogliani, mario.polino, andreamaria.zanchettin, stefano.zanero}@polimi.it

†Trend Micro Inc.
federico maggi@trendmicro.com

Abstract—Industrial robots, automated manufacturing, and
efficient logistics processes are at the heart of the upcoming
fourth industrial revolution. While there are seminal studies on
the vulnerabilities of cyber-physical systems in the industry, as
of today there has been no systematic analysis of the security of
industrial robot controllers.

We examine the standard architecture of an industrial robot
and analyze a concrete deployment from a systems security
standpoint. Then, we propose an attacker model and confront
it with the minimal set of requirements that industrial robots
should honor: precision in sensing the environment, correctness
in execution of control logic, and safety for human operators.

Following an experimental and practical approach, we then
show how our modeled attacker can subvert such requirements
through the exploitation of software vulnerabilities, leading to
severe consequences that are unique to the robotics domain.

We conclude by discussing safety standards and security
challenges in industrial robotics.

I. INTRODUCTION

Industrial robots are mechanical, multi-axis “arms” used
mainly in the manufacturing sector, or for automation in gen-
eral. The International Federation of Robotics forecasts that,
by 2018, approximately 1.3 million industrial robot units will
be employed in factories globally, and the international market
value for “robotized” systems is approximately of 32 billion
USD [1]. In all of their forms, robots are complex automation
devices that heavily interact with the physical world—in this
sense they are cyber-physical systems (CPSs)—and include
multiple hardware and software components: mechanical actu-
ators, controllers, sensors, human-interaction devices, control
logic, firmware, and operating systems. Moreover, the growing
integration of computerized monitoring of physical production
processes leads to robots being interconnected among them-
selves and with external services. For instance, in the “Industry
4.0” vision, an enterprise-management system automatically
orders any part needed to complete the scheduled production,
reconfigures the robotized production lines, and tracks their
operational status [2].

Along with the major improvements to safety, efficiency,
and production time, this increased complexity and inter-
connection offers a novel attack surface, with consequences
ranging from the compromise of the controlling machines up
to effects on the production chain. One may even conceive

that, in the future, a manufacturer could leverage these novel
attack opportunities to affect the reputation of a competitor—
not to mention the possibility that enemy nations could attack
each others’ factories manufacturing critical goods [3].

A further exacerbating factor is that robot controllers cannot
be promptly patched, since updates may require unacceptable
downtime, or even introduce regressions and new software
bugs that render the software unusable. This “patching prob-
lem” makes the exploitation window of a vulnerability much
longer, eventually increasing the impact of an attack.

Taking advantage of new interconnections to compromise
devices originally designed to work in isolation is a pattern
already observed, for instance, in the automotive [4], [5] and
industrial control system (ICS) sectors. After Stuxnet [6], other
successful attacks have been recently observed: In 2014, an
attack on a German steel mill caused the inability to shut
down a blast furnace. In 2015, 295 security incidents were
reported to the U.S. ICS CERT [7], of which 22 reached the
core of critical control systems.

Unfortunately, even a simple Shodan query (Section II)
shows that sometimes industrial robots are exposed on the
Internet without being properly secured. Alarmed by this
finding, we ran a survey among robot users, and discovered
that they either do not regard a security incident involving
a robot as realistic, or are not fully aware of the potential
damages.

Various informal communications [8] already discussed the
risks caused by security vulnerabilities in industrial robots,
highlighting lack of awareness by both developers and public.
More recently, researchers have raised concerns about the
cyber attack resiliency of unmanned aerial vehicles (UAVs) [9]
and robots for tele-operated surgery [10]. However, the main
focus was the need for secure communication protocols [11],
without analyzing system-specific attacks.

To the best of our knowledge, there is no systematic analysis
of the attack surface and of the impact of cyber attacks
against industrial robots enabled by software vulnerabilities
and architectural flaws. In this paper, we systematically ana-
lyze the feasibility of attacking a modern industrial robot by
exploring concrete attack vectors that, when exploited, can
subvert the interaction between a robot and the surrounding

Internet GPRS

DMZ
FW

internal
network

FW

robot
network

controller

operator robot

vendor

APN

...
factory 1 factory N

Figure 1. A high-level depiction of an Industry 4.0 ecosystem, to help the
reader contextualize our work.

environment, thereby violating its basic requirements. In other
words, we wonder to what extent, starting from the exploita-
tion of the “cyber” components of a robot, an attacker can
affect the physical environment. To answer this question, we
propose a domain-specific attacker model, discuss how certain
combinations of software vulnerabilities enable classes of
attacks unique to industrial robots (e.g., circumventing safety
measures, impairing the precision of movements), and evaluate
their potential impact. More specifically, we enumerate five
classes of attacks, based on the observation that a robot
working under normal circumstances should at least be able to
read accurately from sensors, execute its control logic, perform
precise movements, and not harm humans.

To show the feasibility of the attacks, we present a case
study on a modern industrial robot sold by a major man-
ufacturer. Due to standards and architectural commonalities
among most modern industrial robots, the robot we chose is
representative of a large class of industrial robots. Guided by
our attacker model, we discover various vulnerabilities that
allow an attacker to completely and remotely compromise the
robot-controlling computers, and show how we used them to
implement some of the proposed classes of attacks.

In summary, we present the following contributions:
• We define an attacker model for industrial robots, de-

scribing the capabilities of an adversary to successfully
develop and convey attacks;

• Starting from the “core” architectural features of a generic
industrial robot, we describe concrete, robot-specific at-
tack classes;

• We conduct an experimental security assessment on a de-
facto-standard robot;

• We analyze how, concretely, an attack can leverage soft-
ware vulnerabilities to carry out robot-specific attacks,
evaluating their impact, and discussing the future security
challenges.

II. CONTEXT AND MOTIVATION

We contextualize our work using a high-level Industry 4.0
example scenario (Figure 1), which derives from our domain

knowledge, the standard architectures of industrial robots (Sec-
tion IV), and some of the answers to our survey (summarized
in Section II). We intentionally designed this scenario to be
vendor-agnostic and simple, while representing a complete and
realistic deployment: Robots are connected to their network
via a controller, which can be approximated as a computer that
controls the robot and includes human-interaction subsystems
(e.g., joysticks, switches, I/O and diagnostic ports). In the best
scenario, robots are connected to an isolated subnet. However,
we found out that such subnet is still often remotely accessible,
either through a connection to the Internet, or via dedicated
vendor access (e.g., via GPRS).

The motivation for this work stems from the following key
observations:

Interconnected Robots. Industrial robots are “connected”
primarily for programming and maintenance purposes—a use
case specified by ISO standards [12]. For instance, in a large
car production plant developed by KUKA Robotics, all the
259 robots are connected to central control and monitoring
systems [13]. The industrial robot ecosystem is also empha-
sizing a richer human-robot interaction (HRI) and complex
APIs to integrate robots and ICT ecosystems. For example,
ABB controllers expose a Robot Web Service API [14], an
HTTP REST API that allows external programs to speak
with the robot controller. The availability of easy-to-use APIs
has led to the creation of intermediate layers that allow the
control of robots, even from consumer-grade devices such as
smartphones [15], [16].

It is not hard to envision a pervasive future for industrial
robots, because they are following the same natural evolution
that characterized other digital devices such as smartphones. In
2011, the Robot App Store (http://www.robotappstore.com/),
an application-distribution platform supporting many commer-
cially available consumer robots and drones, opened to the
public. ABB hosts the RobotApps forum (https://robotapps.
robotstudio.com), where users can exchange 3D models,
videos, add-ins and “apps”.

First Observation. The increased connectivity of computer
and robot systems is (and will be) exposing robots to cyber
attacks. Indeed, nowadays, industrial robots—originally con-
ceived to be isolated—are exposed to corporate networks and
to the Internet.

Software-defined Safety. The design of industrial robots
emphasizes safety concerns: Robots are traditionally designed
to operate in a workspace physically separated from humans
(e.g., a cage). However, vendors are introducing several models
of collaborative robots (or cobots), able to work nearby
humans (e.g., ABB’s YuMi, FANUC’s CR-35iA [17], and
Universal Robots’ cobots). This, alongside with the gradual
shift of safety devices’ implementations from hardwired logic
to more flexible software-based implementations, increases the
relevance of safety concerns.

Second Observation. Safety is of increasing importance
in robotics, but the implementation of safety mechanisms in
software is increasing the potential impact of security issues:

An attacker may disrupt operations and indirectly pose safety
threats to human operators.

Robot Users and Cybersecurity. To understand how much
industrial robotics practitioners and researchers are aware
of cyber security risks deriving from industrial robots, we
performed a preliminary investigation.

We sent a survey to 50 domain experts, both from academia
(i.e., members of the automatic control and robotics com-
munity) and from the industry, including representatives of
relevant scientific and technical societies. We received 20
answers, and we manually followed up to investigate some
of them further. Appendix A details the results of this survey.
The proposed questions (common for all subjects) were aimed
at understanding how industrial robots are deployed, how
safety measures are used, how robots are programmed, and,
in general, to obtain a picture of the users’ perception of
security risks. About 30% of the participants found the default
safety measures of the deployed robots “too limiting” for
specific use cases, and, in fact, 60% told us that they had to
customize them. The answers also unveiled issues related to
the development cycle of robot programs: In many cases, em-
ployees are not accountable for changes to the robot program
code. Regarding security practices, 28% of the respondents did
not enforce access control policies on the robot’s controller,
30% had robots accessible from the Internet, and 76% never
performed a professional cyber security assessment on their
infrastructure. More than 50% of the respondents did not
consider cyber attacks a realistic threat, and those who do,
were mainly concerned about safety issues.

Third Observation. According to our survey, awareness of
security risks seems scarce. Moreover, as detailed in Sec-
tion III, we found evidence of 28 robots directly exposed to
the Internet, with an accessible FTP server.

Given the premises outlined in this section, we believe that an
experimental security analysis of industrial robots is beneficial
for both the research community and the industry.

Therefore, in this work, we (a) define an attacker model; (b)
introduce industrial-robot-specific attacks based on the tasks
that a robot must be able to perform, and, in general, on the
properties that it must possess; and (c) experimentally verify
the feasibility of such attacks on a standard robot architecture
under the defined attacker model.

III. ATTACKER MODEL

We model attackers according to their goals, their level of
access to the system, and their capabilities.

A. Attacker Goals and Threat Scenarios

The attacker wants to obtain control of the target industrial
robot as a means to carry out attacks, leveraging the unique
fact that the system is interacting with the physical world.
We reason about attacker profiles through four example threat
scenarios (which are not necessarily the only possible ones).

Production Outcome Altering. The attacker may want to
inject faults and micro-defects in the production. These defects

can cause immediate or delayed financial loss, and damaged
reputation, resulting in an advantage for competitors and
potentially damaging the brand reputation. Depending on the
manufactured goods, defects can also cause fatalities (e.g., in
automotive, transportation or military fields).

Physical Damage. An attacker could damage machinery, or
cause injuries to people working in the factory, for instance
by disabling or substantially altering safety devices.

Production Plant Halting. According to the extent of the
damages caused by the cyber-attack, the production may
or may not be promptly restarted (e.g., the time to repair
varies greatly). Although financial losses due to downtime are
difficult to estimate, and vary greatly according to the type
and size of the targeted company, the vice president of product
development at FANUC stated [18] that “unplanned downtime
can cost as much as $20,000 potential profit loss per minute,
and $2 million for a single incident.”

Unauthorized Access. An attacker may want to steal sen-
sitive data (e.g., source code; information about production
schedules and volumes).

B. Access Level

We broadly distinguish between network and physical attack
vectors. We focus exclusively on accessible hardware compo-
nents that allow access to the digital attack surface, ignoring
attacks that involve breaking or tampering with the physical
security of the robot controller’s case.

Network Attacker. Even when the robot is not directly
exposed to the Internet, industrial robot controllers can be
connected to the factory LAN, or to (vulnerable) remote
service facilities. The techniques and tactics used to gain
network access are beyond the scope of this work. However, an
attacker usually leverages various entry points to compromise
a computer connected to the factory network, even resorting
to offline methods (e.g., USB sticks [19]) used to pivot attacks
against internal devices.

Remote Exposure. We found that, sometimes, controllers
are reachable from the outside. For about two weeks, we
monitored Shodan and ZoomEye, two search services that
index data from Internet scans, repeatedly querying them
for string patterns contained in the FTP banner of the top
robot manufacturers (e.g., “ABB Robotics,” “FANUC FTP,”
as detailed in Table I). Despite we limited our search to the
top manufactures and to FTP, the findings support our remote-
attacker assumption. We found three distinct Internet-exposed
ABB controllers, one of them providing unrestricted access
using anonymous credentials (i.e., the authentication system
was disabled). For ethical reasons, we did not directly attempt
to connect to those systems; instead, we used only the data
provided by the search services to filter out false positives.

Some industrial robots embed proprietary remote access
devices, used, for example, by the vendor for remote mon-
itoring and maintenance. Such devices are industrial routers,
often dubbed with vendor-specific terms such as “service box.”
The connection between the industrial router and the remote

Table I
INTERNET-EXPOSED INDUSTRIAL AUTOMATION DEVICES, ACCORDING TO

ZOOMEYE AND SHODAN SEARCH RESULTS

Search string Entries Country

ABB Robotics 5 DK, SE
FANUC FTP 9 US, KR, FR, TW

Yaskawa 9 CA, JP
Kawasaki E Controller 4 DE

Mitsubishi FTP 1 ID

service center can happen over the Internet, through a VPN, or
through a GPRS network that can use the commodity carrier-
provided APNs, or vendor-specific APNs configured on M2M
SIMs. In the latter case, if not properly configured, all factories
using robots from the same vendor will share the same APN
and will be able to connect to one another.

Industrial routers provide a helpful attack surface to gain
access to a robot controller. For example, an attacker could
target a widespread vendor of such appliances, whose products
are also resold by robotics OEMs as part of their support con-
tracts. Among these vendors, eWON is quite representative.
A simple Shodan query for the default banner of the em-
bedded web server (Server: eWON) yielded 1,044 results,
without accounting for customized banners. The web-based
configuration console is easily “fingerprintable,” and attackers
could exploit vulnerabilities or misconfigurations in the router
to gain access to the robot. For example, we analyzed a
eWON device in a black-box fashion and discovered a severe
authentication-bypass vulnerability that allows an attacker to
read the configuration and device information (e.g., event
logs).

Physical Attacker. The simplest and most common type of
physical attacker is the robot operator, who uses the robot’s
handeld HRI interface (i.e., a joystick with a touchscreen
display) on a regular basis to program the robot or manually
pilot its arm(s).

A slightly more sophisticated profile is the “casual” at-
tacker (e.g., malicious contractor or technician), who is able
to plug a device into the robot controller’s openly accessible
RJ-45 (or equivalent) port. This grants full access to the robot
controller’s computer via Ethernet or other I/O interfaces. As
detailed in Section IV, even standard Ethernet access can
mean that the attacker is allowed to send and receive network
frames to and from various sub-systems of the controller
through an unfiltered connection. The physical attacker can
leverage further vectors, for instance internal I/O interfaces
that the controller uses to communicate directly with the
robot’s components (e.g., DeviceNet over CANbus, as found
on ABB’s controllers). Thus, a casual physical attacker is
strictly more powerful than a network attacker.

C. Attacker Characterization

Attacker Profile. Following and simplifying the taxonomy
introduced in [20], the most likely profile for attacks requiring
physical access is an insider, whereas network attacks can
be performed by a broader set of cybercriminals. Given the

safety-critical and economic characteristics of the targets, we
need also to consider nation-state level attackers. To model
them, we assume that they would be able to reach the same
access level and target knowledge typical of an insider, while,
at the same time, would be able to launch sophisticated attacks
from remote endpoints. Such attackers would also not be
constrained by costs.

Technical Capabilities. We assume attackers to be familiar
with the structure of the target industrial robot, and to possess
the technical skills to perform reverse engineering without
exploiting any insider technical knowledge. Realistically, they
can rely on publicly available information (e.g., controller soft-
ware and firmware available for download from the vendor’s
website), and some reverse engineering. As a matter of fact,
we learned most of the details described in this paper by
reading freely available technical documentation. Therefore,
an attacker can do the same.

Access to Equipment. We consider it to be trivial for an
attacker to access a copy of the controller’s firmware binary
executables in order for them to reverse engineer the software
and discover vulnerabilities. Indeed, some vendors make the
controller firmware, or simulation environments, freely avail-
able for download from their website (e.g., the controller’s
firmware for ABB robots is included in the RobotWare distri-
bution as part of the RobotStudio suite).

Depending on the attackers’ budget, they may or may
not be able to test exploits before carrying out an attack,
as this would require access to a full-fledged deployment.
If unable to access a real robot, an attacker can leverage
simulators distributed by vendors in order to gain technical
knowledge about the target, and to prepare an attack payload.
For example, ABB’s RobotStudio suite allows one to make
use of a simulated environment. The simulator is contained in
a shared library that shares most of the code (and, thus, most
of the vulnerabilities) with the firmware of the controller’s
computer. This is clearly an advantage to the attacker, who
can gather complete access to platform-specific details without
accessing an actual controller.

On the other hand, some vendors (e.g., COMAU and Kuka)
provide their software only to customers. In this specific case,
the attacker needs at least temporary physical access to a robot
controller to dump a copy of the firmware. When not uploaded
remotely, the firmware is usually loaded from a removable
medium such as a MMC, which can be leaked—or stolen—
from the company that has access to the robot’s software as
part of a support contract. This does not necessarily require
an insider attacker, but just minimal knowledge about the
controller, and short-term network or physical access to the
robot.

Similarly to other specialized CPS domains (e.g., avionics
and ICS), used or reconditioned industrial robot parts are
available for sale without restrictions. The cost of such parts
may vary, and a complete robot with its controller has a
relatively high price tag. However, we do not consider such
a price out of reach for our attacker. For example, search-

controller

robot
network

service
network

axis I/O

“move axis 1
30° left”

status LEDs
stop

auto/man

programmer

program task

end effector I/O
(e.g., “open pliers”)

Internet

operator

GPRS

Figure 2. Black-box view of a standard industrial robot architecture. The
programmer or the operator issue high-level commands to the controller (e.g.,
via a REST API, with a program on the HRI interface, moving the joystick).
The controller translates such commands into low-level inputs for the actuators
(e.g., end effectors, servo motors) through dedicated I/O interfaces. The
controller is also reachable through a remote-access interface.

ing online marketplaces (e.g., globalrobots.com, ebay.com,
alibaba.com) shows that the IRB 140 manipulator from ABB,
which matches the reference setup we used in our experimental
analysis, can be purchased for a price ranging from $13,000
to $28,950 together with an outdated S4C controller; other
manipulators with an IRC5 controller can be found in the price
range of $24,999 to $35,500. Ultimately, access to specific
features (e.g., the GPRS remote service box of the robot that
we analyzed) is more complex, as these are only available
directly from the vendor as part of support contracts.

IV. INDUSTRIAL ROBOTS ARCHITECTURES

This section describes the basic structure of an industrial
robot, including common components, the tasks it can perform,
and how such tasks translate from high-level commands to
concrete actions. A visual overview of a generic industrial
robot system is given in Figure 2.

Scope. The scope of our analysis is defined by all the com-
ponents that must be part of a standard industrial robot. For
instance, we exclude the overall control of the manufacturing
process, as it involves multiple external control systems and
parts that would require a per-deployment analysis in order to
obtain a thorough security assessment.

The only optional components in our scope are remote-
access devices, which are commonly offered by vendors. This
decision is due to the security relevance of such devices, and
to account for remote adversaries in the attacker model.

A. Architecture, Components and Functionality

Industrial robots are extensively standardized [21]: They
are architecturally, functionally, and technically similar across
vendors, and share a minimum set of requirements.

Robot. An industrial robot is an “automatically controlled,
re-programmable, multipurpose manipulator programmable in
three or more axes, which can be either fixed in place or mobile
for use in industrial automation applications” (ISO 8373 [22]).
Mechanically, an industrial robot is an arm with two or more
joints, terminated by an end effector (e.g., pliers, cutter, laser
beam welder) that interacts with the environment. The main

global
memory

operator
interface

sensory
processing

knowledge
models

decision
strategies

primitive
level

action
level

task
level

servo
level

SENSORS ACTUATORS

Figure 3. Abstract representation of the control system architecture of a
robot controller. The arrows represent the data flow, and the blocks represent
“generic” modules. From left to right, the controller acquires measurements
from the environment, uses its knowledge and internal state to process the
inputs, takes a decision, and actuates it. The functionality of the robot can be
expressed at various levels of abstraction, from the highest level at the top
(task, e.g., what the operator wants the robot to do), to the lowest level at the
bottom (servo, e.g., current to apply to the motor’s driver).

characteristic of an industrial robot is its multipurpose nature,
which implies a high level of complexity in the controller.

Controller. The robot controller is a complex device, typi-
cally enclosed in one or more chassis, “hiding” a multitude
of interconnected electrical and computer systems. A robot
controller is designed with an emphasis on efficiency, complex
motion description, nonlinear control, and interaction with
human operators.

By exploring the current product lines from leading vendors
such as ABB, COMAU, Yaskawa, FANUC, and Kuka, we
confirm that they all share a common architecture, types of
components, and functional characteristics. We noticed that
most of the controllers on the market also implement a similar
software architecture, with operator interfaces running on
Windows CE-based embedded systems (or equivalent), and
one or more real-time VxWorks-based controller computers.

Control System. The controller implements a control system
to supervise the robot’s activities, making it one of the most
safety- and security-critical components: It embodies the logic
and functionality required to monitor and pilot the mechanical
parts of the robot, and to communicate with the environment.

As a reference, throughout this paper, we will refer to the
functional model proposed in [23] and depicted in Figure 3.
Horizontally, the control system is split into three functional
modules, and four hierarchical levels. The sensory processing
modules capture the state of the system (e.g., via various
sensors and servo motors position). The knowledge models
modules hold the “knowledge” of the system and of the
environment. The decision strategies modules translate high-
level tasks into actions. Vertically, the task level consists of the
task specifications given by the user. The action level translates
the symbolic commands from the task level into motion
paths. The primitive level computes the motion trajectory and
manages the control strategy. Finally, the servo level reads
measurements from sensors (e.g., position, velocity, torque),

and engages the control algorithms to provide a drive signal
to the servo motors.

Human-Robot Interaction. The human operator is in charge
of monitoring, starting, and stopping the operations of the
robot, whereas the programmer is in charge of writing task
programs (i.e., the set of instructions that define the specific
task of the robot).

The interaction between human and robot via a user inter-
face is generically called human-robot interaction (or HRI).
For example, operators and programmers can monitor the
status of the robot, and program it through the teach pendant, a
hand-held unit connected to the controller via wired or wireless
connection (Figure 4b shows a real pendant by ABB). The
teach pendant looks like a “heavy duty” tablet, augmented with
physical buttons and joysticks. In Figure 3 the HRI interfaces
(the teach pendant or the operator’s computer running specific
control software) are generically represented by the “operator
interface.”

The operator needs to interact with multiple functional
levels in order to control the robot (e.g., to program tasks,
to modify configurations, and to stop servomotors in case of
an emergency), and to be informed on the system state for
supervision and intervention (e.g., which motor is moving, is
the robot in manual or automatic mode?). Moreover, the oper-
ator can permanently modify the robot’s knowledge (e.g., load
a program, move the robot’s arm), which in turn changes the
decisions taken by the control system.

Robot Programming. The controller accepts task specifica-
tions written using a domain-specific programming environ-
ment. These programs can be written online or offline.

Online programming is common in modern robotic applica-
tions: The robot is “piloted” to record a sequence, by moving
(specifically, jogging) the axes in the desired position using
the teach-pendant’s joystick, and storing the recorded data
(e.g., coordinates of the position) read via the joint position
transducers. This technique is called “teaching by showing.”

Offline programming environments allow one to build more
complex programs on a simulated robot replica. Although
source code can be written with text editors (see Appendix C),
programming is aided by simulators (e.g., ABB’s RobotStudio
or Universal Robot’s URSim), which offer a software repre-
sentation of the robot, allowing programmers to experiment
with new features, and write and debug programs in a safe
environment. The resulting program can be loaded on the real
controller.

Robot programs are stored in the controller’s global mem-
ory. It holds the functional blocks needed to exchange infor-
mation between levels and modules, and maintain estimations
of the state of the whole system (e.g., known position on each
axis) and of the environment (e.g., temperature, weight of the
piece held by the pliers).

Automatic vs. Manual Mode. The controller can work in
automatic or manual mode. In automatic mode—intended for
regular operations of the robot in production—, the controller

Table II
ATTACK SUMMARY WITH VIOLATED REQUIREMENTS

Attack Safety Integrity Accuracy

Control Loop Alteration 3 3 3
User-perceived Robot State Alteration 3 7 7
Robot State Alteration 3 3 3
Production Logic Tampering 3 3 3
Calibration Parameters Tampering 3 3 3

loads and executes task programs from the global memory;
in manual mode, the robot performs movements according
to inputs issued by the operator through the teach pendant.
Manual mode allows both a reduced-speed mode, used for
programming the robot, and a high-speed mode, used for
testing.

B. Summary of Requirements

Accuracy. The robot should read precise values from sen-
sors, and should issue correct and accurate commands to
the actuators, so that the movements are performed within
acceptable error margins. A violation of this requirement could
translate into small defects in the outcome. For example, if
the robot is used for welding, a minimal change in how the
weld is carried could structurally undermine the workpiece,
which in the case of a car body could possibly mean tragic
consequences for the end user safety.

Safety. Given their paramount importance, safety require-
ments are rigidly specified by ISO standards. They can be
summarized as: expose sufficient and correct information so
that operators can take safe and informed decisions; allow
operators to engage emergency procedures; execute emergency
procedures quickly and safely.

Integrity. The robot controller should minimize the risk
that badly written control logic could result in damage to
its physical parts. Violating this requirement means physically
damaging the manipulator, or even the controller itself, since
several high-voltage electric parts are used by the controller
to drive the servo motors.

We consider an attack to be any physical damage to the ar-
chitecture, or any violation of these requirements—if initiated
through a digital vector.

V. ATTACKING INDUSTRIAL ROBOTS

This section describes industrial-robot-specific attack oppor-
tunities to violate the accuracy, safety, and integrity require-
ments. For each attack, we describe the targeted functional
level in the model of Figure 3. Table II summarizes the attacks
and the corresponding requirements they violate. Instead,
in Section VI-G we discuss how an attacker can leverage
digital vulnerabilities to carry out these attacks.

A. Attack 1: Control Loop Alteration

This attack targets the servo level. It leverages the fact
that, for flexibility and code-reusability purposes, kinematics
and configuration parameters are read from a file or defined
dynamically at runtime. An attacker able to access a configu-
ration file can modify these parameters.

For the attacker, the most interesting parameters to modify
are the ones affecting the robot movements: An extreme
parameter modification can completely violate functional and
safety requirements.

Closed Loop Control Parameters Detuning. A precise
control of the position of each link is crucial to ensure that
the robot is closely following the desired trajectory, especially
over long periods of time. To this purpose, industrial robots
adopt closed loop control techniques, such as industry-standard
Proportional Integral and Derivative (PID) and Proportional
position Integral and proportional Velocity (PIV) control sys-
tems, for the angular position of each joint axis.

In general, the aim of a closed loop control system is to
make the controlled variable follow a reference signal (set
point) as closely as possible. The values of its parameters
affect “how well” the controlled variable is able to track the
set point, thus influencing the precision of the movement, and
the voltage of the servo motors. With a sub-optimal tuning, the
controller will only slowly reach the desired position, violating
the accuracy requirements. This, in turn, affects the quality
of the outcome (i.e., the workpiece can be milled too much,
or the welding process can be compromised). Furthermore,
wrong parameters may lead to controller instability, causing
overshoots over the desired set point. This can result in a
violation of safety properties, and cause mechanical stress that
could damage the robot.

Open Loop Control Parameters Detuning. Speed and po-
sition control are usually implemented with additional open-
loop actions, employing filters to smooth the signal generated
by the closed loop control. This means that any change to
the configuration of this part will directly and immediately
affect the outputs (position and speed). This could severely
amplify resonance effects, violating the integrity requirements
of the robot, or cause overshoots of joints, bypassing the safety
boundaries.

Robot Arm and Workpiece Configuration Tampering.
Since a single model of controller must drive different robots,
the physical characteristics of the manipulator (i.e., arm and
joints) are configurable. This configuration is part of the
knowledge model of the robot, and will affect the overall
dynamics of the system. The workpiece and the manipulator
are part of the system, because they have a characteristic
weight, shape, and center of gravity and mass, which change
over time (e.g., when the workpiece is cut in half, or another
manipulator is installed).

Any unexpected modification of these parameters can result,
for example, in an amount of applied force exceeding the
safety limits, or simply destroying the workpiece or surround-
ing environment.

In the case of co-bots, which operate with no physical
fencing [24], this aspect raises safety concerns, to the point
that standards (e.g., ISO TS 15066 [25]) define the maximum
force and pressure levels that a co-bot can apply against each
relevant part of the human body.

Safety Limits Tampering. The control loop parameters com-
prise the speed limits (e.g., when in manual mode) and the
characteristics of the brakes (e.g., minimum activation time).
Although safety measures are mechanically actuated, since
control loop parameters can be configurable at runtime, the
attacker is given an opportunity to bypass safety measures, or
to change the precision of the robot’s movements.

B. Attack 2: User-Perceived Robot State Alteration

The operator interface must provide timely information at
least on the motor state (on/off) and on the operational mode
(manual/automatic). Moreover, standards [12] mandate that
safety-critical conditions (e.g., restarting a robot from the stop
status) require a deliberate user confirmation.

Unfortunately, some of these conditions (as well as the
user’s acknowledgment) are communicated via software, not
through electrical components (e.g., LEDs, buttons). This is
the case of current models of co-bots. Thus, the impact of
a mere UI-modification attack is remarkable. Altering the UI
could hide or change the true robot status, fooling operators
into a wrong evaluation of the risk, and, consequently, creating
a substantial safety hazard.

C. Attack 3: Robot State Alteration

The attacker can go beyond altering the perceived state:
Under some conditions, the attacker could alter the true state
of the robot, while the operator remains unaware. This attack
could be combined with other attacks to obtain a greater
impact: For instance, a workpiece could be altered without
even the controller noticing.

Motor State. In some controllers, such as in ABB’s YuMi
co-bot, the switch between “manual” and “automatic” mode
is triggered via a software panel implemented in the teach
pendant, not via a hardwired physical switch. As a result, the
human operator would trust the robot when in manual mode
and operate nearby it, while the attacker could be silently
changing the mode of operation to move the robot arm(s) at
full speed causing physical harm to the nearby human.

Software or Wireless Safety Features. Some vendors imple-
ment safety features, such as emergency stop (e-stop) buttons,
in software. Worse, modern teach pendants, which of course
must include an e-stop button, are wireless (e.g., COMAU’s
wireless teach pendant).

Therefore, safety features are subject to man-in-the-middle
or interface-manipulation attacks. For example, a man-in-the-
middle attacker can cause denial of service (i.e., forcefully
stopping the robot during normal operation). Moreover, an
attacker can disable safety features, thus preventing legitimate
users from triggering the e-stop procedure in case of emer-
gency, with clear implications to the safety of the operator.

D. Attack 4: Production Logic Tampering

This attack refers to the task level. If the controller does not
enforce end-to-end integrity of the task program, an attacker
can leverage a file-system or authentication-bypass vulnerabil-
ity to arbitrarily alter the production logic. For example, the

attacker could insert small defects, trojanize the workpiece, or
fully compromise the manufacturing process.

E. Attack 5: Calibration Parameters Tampering

This attack targets the sensory processing and knowledge
model levels. It is essential for any control system to know
the precise axial positions, and to compute the error; thus, the
first time a robot is connected to a controller, or after any con-
figuration change, the sensing equipment must be calibrated.
Calibration is used to compensate for known measurement
errors when triggering servo motors.

The calibration data, initially stored in the sensing equip-
ment, is transmitted to the controller during system boot. Then,
the controller uses its local copy of the data.

When the robot is not moving, an attacker can manipulate
the calibration parameters on the controller. When the robot
starts moving, such manipulation has the effect of forcing
a servo motor to move erratically or unexpectedly, because
the true error in the measured signal (e.g., joint position) is
different from the error that the controller knows. This has the
concrete consequence of violating all of the requirements.

If such a malicious manipulation happens while the robot
is moving, there are two possible outcomes. If the controller
does not supervise speed and positions, the outcome is the
same of the previous case, with the additional effect that not
only the final position of a joint will be affected, but also the
maximum speed. Instead, if the controller supervises speed
and positions, it can detect unexpected movements, and engage
stopping procedures. While the latter case does not result in a
violation of any requirement, if the attacker repeatedly triggers
such manipulations at “runtime,” it can lead to a denial of
service attack: The robot will persist in the stop status.

VI. CASE STUDY

To evaluate the feasibility of the presented attacks for an
adversary described by our model, we evaluate the attack
surface of a reference robot from a leading vendor (ABB)
that implements the architecture described in Section IV.

After presenting an in-depth technical analysis of the de-
ployed robot (Section VI-B), we practically analyze its attack
surface and security model (Section VI-C), and we present
a set of vulnerabilities that, if exploited, lead to a complete
compromise of the controller (Section VI-D and VI-E). As a
proof of concept, in Section VI-G we show how to use them
to violate safety, integrity, and accuracy requirements, leading
to industrial-robot-specific types of attacks.

Note. We experimentally verified the presence and the exploitability
of the vulnerabilities that we discovered, and promptly disclosed them
to the vendor (Appendix B). Where applicable, we include a reference
to the vendor’s security advisory. While most of the vulnerabilities
have been fixed, some are not easily solvable without breaking the
boot process. We remark that, even though most controllers share
the same industrial standards and have a similar architecture, this
does not necessarily means that they share the same software or
implementation vulnerabilities. The focal point of our results are not

the specific instances of the vulnerabilities that we found, but, rather,
their usage in complex attacks to industrial robot architectures.

A. Experimental Setup

Our experimental setup consists of an ABB 6-axis IRB140
industrial robot, capable of carrying a 6 kg payload, equipped
with the widely-deployed IRC5 controller (Figure 4) running
RobotWare 5.13.10371, and the Windows CE-based FlexPen-
dant (teach pendant). The IRB140 must operate in a cage and
relies on the default, standard safety measures.

Overall, the total cost of our experimental setup, including
the industrial robot, controller, cage, cabling, compressed air
piping, and installation fees, is around $75,000, excluding the
vendor’s 24/7 maintenance service contract.

B. Technical Analysis of IRB140/IRC5

Figure 4c schematizes the components of the IRC5 con-
troller, with the internal and external data connections. All the
internal components are easily reachable since the lock present
on the chassis is only meant to prevent accidental electrical
shocks and can be easily bypassed with a screwdriver.

Flex Pendant (FP). The ABB FlexPendant is an ARM-
based system equipped with a touch screen, manufactured by
Keba [26], with a pre-installed .NET Compact Framework
3.5. It is designed to run custom applications developed
using a vendor-provided .NET-based SDK. The FlexPendant is
equipped with safety devices (i.e., emergency stop and dead-
man switch), which are electrically connected to the panel
board, and ethernet-connected to the main computer.

When the robot is in manual mode, the operator can make
it move by issuing commands via the teach pendant, and
must keep the teach pendant’s dead-man switch pressed at all
times while the robot is moving. Instead, in automatic mode,
the robot runs previously stored programs in an unattended
fashion.

Main Computer (MC). The main computer is based on the
Intel x86 architecture, and runs the VxWorks 5.5.1 RTOS.
Being responsible for the task, action, and primitive level con-
trol, it orchestrates the execution of tasks and coordinates the
controller’s components: It interprets the task program code
written in ABB’s RAPID language, manages the execution of
tasks, chooses the best control strategy, applies forward and
inverse kinematics, and implements the path planning strategy.

Axis Computer (AXC). The AXC—a PowerPC-based board
running the VxWorks 5.4.2 RTOS—implements the “servo
level” of the abstract control system in Figure 3. This computer
controls the servo motors that operate the joints through the
drive and contactor units. The contactor unit is a switching
device that controls the status of the motors (on/off), whereas
the drive unit provides power to the motors of the manipulator.

In addition, the AXC feeds back to the MC any data needed
in the planning phase (e.g., position and revolution counters).

1The controller we used only supports RobotWare 5.x. However, we verified
with ABB and by manual reverse engineering that our findings also apply to
the latest version of RobotWare 6.x at the time of running the experiments.

(a) Caged arm and end effector. (b) Controller and teach pendant.

factory LAN

FlexPendant

panel board

IRB 140

e-stop

auto /
manualRS-485

RobotStudio

RS-485

Ethernet

Ethernet

24V DS

DeviceNet

Service Box

GPRS

Ethernet (WAN)

service net
(vendor)

status LEDsRS-485

I/O board

24V digital signal

End Effector

service LAN

SMB

motors on/off

enable/speed/...

contactor unit

axis
computer

(AXC)

drive
unit

main computer (MC)

Ethernet
(LAN port)

Ethernet
(service port)

IRC5 Control Unit

24V DS

24V DS

RS232

(c) Dashed lines are optional connections.

Figure 4. Experimental setup: ABB IRB140 industrial robot (left), IRC5 controller and teach pendant (center), and schematics (right).

Finally, to estimate the error and complete the control loop
that generates the drive signals, it acquires from sensors the
position and status of each servo motor.

Panel Board (PB). The panel board, or safety board, is
mostly based on discrete integrated circuits and relays that
block the robot when safety-critical conditions occur. It imple-
ments the safety requirements mandated by the standards (ISO
12100 [27]): Therefore, it is not programmable by the user.
The PB is connected to the MC via a 1 MHz RS485 single-
duplex connection, used to send a heartbeat packet containing
the current status of the robot: motors on/off, emergency stop
status, operating mode (manual reduced speed, manual full
speed, automatic).

The MC periodically sends a keepalive signal to the PB,
and will interrupt the MC whenever a change in the operating
state is detected. For efficiency, this is implemented through
an FPGA wired to the MC’s PCI board.

Network Connections. The MC is the most exposed compo-
nent of the robot: It communicates, through ethernet connec-
tions, with any external devices and with the teach pendant.
Internally, the AXC and MC also communicate through a
standard ethernet connection. The controller, and ultimately
the MC, can be connected to a local network through the
LAN ethernet port, whereas a secondary ethernet port (the
“service port”) enables direct connection with a client host for
maintenance and programming purposes. Although, by default,
any host connected to the service port is assigned an IP address
on a separate subnet, the MC bridges the service port to the
FlexPendant’s ethernet connection.

Furthermore, on the external side of the chassis, there are
a host-mode USB port directly connected to the MC, the
main power switch, the emergency stop button, and a keyed
switch to change the operating mode (manual or automatic),
connected to the panel board. Notably, the USB port can mount
mass-storage devices.

C. Attack Surface and Security Model

Modern industrial robots expose a considerable attack sur-
face for both network and physical attackers. The main entry

Table III
ATTACK SURFACE BY CHANNEL

Access Channel

Physical - USB port
- Industrial bus access via, e.g., after-market end effectors
- Ethernet: LAN service port
- Direct access to internal devices (e.g., axis computer)

Local - LAN port

Remote - WAN access to (un-firewalled) LAN port
- WAN access to remote service facilities, i.e., service box

Wireless - Wireless (e.g., GSM) access to remote service facilities

points are summarized in Table III. We will focus on the
network attack surface, a sub-set of the physical (local) sur-
face. Both the MC and the FP expose a number of network
services that are essential for the operation of the robot.
There are standard services such as FTP, used to share files
and system information between the robot and the internal
network, and custom services. The RobAPI [28] is a custom
service that offers the most extensive network attack surface: It
is a complex and partially authenticated API that both the FP
and any host connected via the service or LAN port can use
to “talk” to the MC. RobAPI clients are expected to use the
RobotStudio suite, but of course valid RobAPI messages can
be crafted and encapsulated inside standard TCP/IP frames.
Moreover, the MC exposes a UDP-based discovery service,
used by the FlexPendant and by RobotStudio to automatically
discover robot controllers on the network. The FP instead
uses broadcast UDP packages to send debug information
and messages. The AXC communicates with the MC via
a proprietary protocol on top of Ethernet. This protocol is
uninteresting for our purposes since it is not directly exposed.

The MC is the most sensitive entry point, as it exposes
various services to the network, and gaining unauthorized
access to this component leads to a complete compromise of
the controller. It performs sensitive operations on its own, and
the communication between internal components of the robot
is implicitly trusted. For this reason, we dedicate a separate
section to its security analysis: Section VI-D.

User Authentication System. According to the documenta-

tion, the User Authentication System (UAS) is optional, and in
place “for protecting data and functionality from unauthorized
use” [29]. When the UAS is enabled, the controller enforces
access control rules according to a simple role-based model.
When logging in through a client device (e.g., FlexPendant, or
a computer running RobotStudio), a username and password
are required. A user belongs to one or more groups; a group
specifies multiple grants that define the actions users are
allowed to perform on the controller. Grants are divided into
application grants and controller grants: The controller grants
are enforced on the main computer, whereas the application
grants are validated by specific applications running on the
client device without involving the controller. For example,
the grant that allows one to manage the UAS settings, or the
grant that allows a user to read or write files are controller
grants; the grant that controls access to a specific menu on
the FlexPendant is an application grant. An API also allows
developers to use the UAS to perform access control in custom
FlexPendant applications.

Boot Process. When the controller is powered on, the MC
boots, and exposes an FTP service to allow the AXC and the
FP to download their firmware image. The AXC will use hard-
coded credentials to connect to the MC, while the FP will use
credentials that have been stored in the Windows registry (set
to default values). The FP will be responsible for retrieving
the correct version of the image out of many present on the
MC. Any firmware or application file coming from the FTP
server is implicitly trusted.

D. Security Analysis of the Main Computer

Unsecured Network Surface and Command Injection.
Network-exposed services are an important attack surface. For
example, an attacker can abuse the FTP-exposed file system to
read and modify configuration and program source files and,
ultimately, to control the actions that the robot executes.

Exposing the file system over the network may lead to
deeper consequences. In the VxWorks RTOS, filesystem oper-
ations are used to access devices, which are mounted in a sin-
gle directory hierarchy. On the MC, a custom device driver is
mounted at /command. When reading files in the /command
directory, the device driver returns information about the
MC. The FlexPendant’s boot loader, for instance, uses this
mechanism to read the main computer’s environment variables,
synchronize the clock, and retrieve startup information. Any
file written over FTP to the path /command/command or
/command/command.cmd is interpreted as a script: Each
line of the script must contain a command (out of a set defined
by the driver), a white space, and a parameter. The remote
service box uses this functionality to automatically configure
itself.

Interestingly, the command shell executes an arbitrary
VxWorks symbol passed as a parameter (ABBVU-DMRO-
124642, fixed as of RobotWare 5.15.12, 6.03.02 and 5.61.07):
This feature can be leveraged by an attacker to bypass the UAS
or to execute functions in an unintended way. For example,

by writing a file containing the line shell reboot, the
main computer performs a warm restart; with the command
shell uas_disable, the user authentication system is
temporarily disabled (and, as a side effect, the system reboots).

Weak Authentication. The UAS protects the controller from
unauthorized FTP and RobAPI access. We found that, due to
implementation flaws, an attacker can bypass it.

First, to allow the FP to retrieve configuration information,
authentication is disabled during the system boot: During this
phase, the default static credentials can be used to access the
shared file system. In fact, the FlexPendant boot loader logs
in with a specific username and a hard-coded password. If
the attacker knows when a reboot takes place or is able to
trigger one, the controller can be remotely accessed using
those credentials.

Second, the UAS comes with a default user, without pass-
word, that cannot be changed or removed. Although it is
possible to revoke the sensitive permissions granted to this
user, the documentation explicitly warns that there is a risk of
being locked out by changing the group membership of the
default user, without fully explaining the security implications
of leaving meaningful grants assigned to it.

Third, we found that a specific user, used by the service box
to exchange data with the main computer, has a set of hard-
coded credentials that are embedded in the MC’s firmware
and cannot be changed (ABBVU-DMRO-124644, fixed as of
RobotWare 6.01). Although this user can only access FTP
paths related to the /command device driver, this makes the
aforementioned command injection vulnerability exploitable
without authentication.

Naı̈ve Cryptography. An attacker with read-only filesystem
access is able to tamper with the UAS configuration, changing
the privileges of existing accounts and changing or retrieving
the password of all users. The UAS configuration (including
the plain-text passwords of all users) is stored in an XML file
obfuscated through a bit-wise XOR operation with a random
key; as the key is stored at the beginning of the obfuscated
file itself, the obfuscation is completely useless. The vendor
considers this behavior “by design,” and asserts that the UAS’s
purpose is more related to safety (assign users different roles
and prevent users from making mistakes) than to security.

More generally, encryption schemes are used to safeguard
the integrity of some specific and safety-critical configuration
files, such as the ones containing sensitive control loop param-
eters. We found such schemes to be weak obfuscation/integrity
mechanisms rather than proper encryption: keys are derived
from the file name and, in some cases, part of the file content.
By reverse engineering the controller firmware, we found all
the information needed to reconstruct the encryption keys: An
attacker who can access a firmware update, or who has file
system access, is able to read and modify safety- and accuracy-
critical configuration files.

Memory Corruption. A proprietary protocol, RobAPI, is
used to access a set of services exposed by the controller:

changing the configuration, moving the robot, obtaining in-
formation about the current task, and controlling the task
program execution. RobAPI consists of messages that are
exchanged synchronously (i.e., request-response) and asyn-
chronously (i.e., through event subscriptions). Most of the
RobAPI functionality is authenticated through the UAS. Upon
authentication (once per TCP connection), the MC returns
a user ID that the client sends as part of all the messages.
The exposed RobAPI functionality is also divided into a set
of domains. For example, the CONTROLLER domain gives
access to general settings, and the RAPID domain controls
the execution of RAPID programs.

We found an exploitable memory error in the code that
receives RobAPI requests for the DHROOT domain. The error
is a textbook stack-based buffer overflow in the function
DHROOT_SET_REQ. More precisely, when the command
DomainHookTest is invoked, the property field of the
request string is copied to a buffer using the strcpy()
function, without checking whether the user-provided string
fits in the statically allocated space. The specific vulnerable
endpoint does not require authentication (ABBVU-DMRO-
124645, fixed in release 5.15.12, 6.03.02 and 5.61.07).

Similarly, we were able to find other stack-based buffer
overflows exploitable in a similar way in the parsing routines
of the /command endpoint (ABBVU-DMRO-128238, fixed
in releases 5.15.13, 6.04 and 5.61.07). We experimentally
validated that an attacker can exploit these vulnerabilities to
obtain remote arbitrary privileged code execution on the MC.
As the MC firmware does not have mitigation mechanisms
against the exploitation of memory corruption errors, and there
is no privilege separation between processes or between user
and kernel land, exploiting memory corruption is trivial.

E. Security Analysis of the FlexPendant

Missing Code Signing. The boot image that the FP downloads
from the MC is not signed, and we verified that it can be easily
modified by an attacker who is able to reverse engineer the
file format. We used this issue to implement the UI attack
depicted in Figure 6.

We were able to reverse engineer the image format, which
is a ZIP-compressed binary containing the file name, size
and content. In Section VI-G we show that an attacker can
use this vulnerability to execute arbitrary code on the FP, by
tampering with the data exchanged between MC and FP (e.g.,
by previously compromising the MC or—if the attacker is
local—through network attacks such as ARP spoofing).

Memory Corruption. We found a memory error in the exe-
cutable TpsStart.exe, executed during the FP’s startup process.
If an attacker is able to tamper with a specific file when it
is retrieved from the MC (/command/Timestamp), they
can trigger a stack-based buffer overflow by making sure that
the retrieved file name is longer than 512 bytes (ABBVU-
DMRO-124645, fixed in release 5.15.12, 6.03.02 and 5.61.07).
Exploiting this vulnerability can block the FlexPendant boot,
resulting in a denial of service, which in turn offers to the

attacker the opportunity to expect a reboot—and thus launch
some of the previously mentioned exploits.

Poor Runtime Isolation. Programmers can develop appli-
cations that run on the FlexPendant in two ways: using the
RAPID programming language with the ScreenMaker utility,
or using the FlexPendant SDK.

The RAPID language allows one to control robot positions,
to perform I/O processing, and to use network sockets. How-
ever, it does not allow one to manipulate processes or call
native APIs, and it provides only limited file system access.

The FlexPendant SDK allows richer access, and is thus
more interesting to an attacker. The SDK is composed of .NET
Compact Framework 3.5 assemblies, Visual Studio templates
and a compliance tool that generates a DLL library used
by the Application Host Framework to load the assembly
as part of the “graphical teach pendant unit”. We found out
that the compliance tool, as part of the checks it performs,
tries to ensure that the code does not use a set of forbidden
operations: reflection capabilities and the use of some specific
.NET namespaces that allow access to raw filesystem and
RobAPI capabilities intended to be used only in vendor-
provided libraries, not in custom applications. The tool per-
forms this check by means of regular expressions and by using
a disassembler for the .NET bytecode (ILDasm).

Alas, the version of the compliance tool provided with
the SDK does not enforce these restrictions at all. It is also
evident that an attacker could bypass this by simply modifying
the compliance tool itself: There is no way to perform these
security checks on the programmer’s side in a completely safe
manner.

In addition, we found some limitations in the opera-
tions allowed with the FlexPendant SDK: Access to the
filesystem is naı̈vely regulated through a blacklisting pro-
cess implemented in the FileSystemDomain class of the
ABB.Robot.Controllers namespace. This blacklist de-
nies access to the CTRLROOT and INTERNAL directories. Us-
ing assemblies part of the namespace ABB.Robotics.Dcl,
which should be blacklisted by the compliance tool, we can
obtain full unrestricted access to the shared file system, and
execute any operation allowed by the full RobAPI (obeying
only the UAS privileges—when applied). This also allows re-
flashing the memory of the pendant, resulting in full compro-
mise of the TPU.

In some versions of the IRC5 controller (e.g., the IRC5
Compact used in ABB’s YuMi), the switch between automatic
and manual mode is performed entirely via software, and not
delegated to a physical key wired to an electrical circuit and a
speed limiting line. Alarmingly, the YuMi is a co-bot, which
operates nearby the operator, with no cage required. Since hav-
ing full privileged access to the teach pendant means that an
attacker is able to patch system-level .NET assemblies, or even
to overwrite the firmware with a customized malicious one,
this also allows an attacker to abuse software-defined switches
to toggle the operating mode without user intervention, posing
significant safety risks to the operators.

Furthermore, although Microsoft dropped support for the
.NET Compact Framework 3.5, the vendor will continue to
provide the FlexPendant SDK on future pendants for backward
compatibility reasons—meaning that the FP will continue run-
ning an old, unsupported, and potentially vulnerable version
of the .NET framework [30].

F. Attack: Controller Exploitation

We will now describe a multi-step exploitation path, com-
prising several of the presented vulnerabilities. This can be
leveraged to seize complete control by the most general of the
adversaries: a remote network attacker who has no knowledge
of valid UAS credentials, and who can connect to the RobAPI
and FTP services.

1) Main Computer Compromise. We used the FTP static
credentials we discovered to access the /command
driver, and, alternatively, exploited the memory errors
found in the RobAPI to gain initial access.

2) Authentication Bypass. We temporarily disabled the
UAS and triggered a full system reboot. To this end, we
invoked uas_disable via the shell function of the
FTP /command, and, alternatively, via the exploitation
of the remote code execution vulnerability (e.g., the
RobAPI memory error).

3) Payload Upload. With full FTP access without cre-
dentials, we permanently disabled UAS by editing the
obfuscated configuration file, and then uploaded custom,
malicious, .NET DLL (or RAPID code) to the running
system directory on the controller.

4) Persistent Access We triggered another reboot via FTP
(/command shell function), causing the FlexPendant to
auto-execute the uploaded malicious .NET libraries—or
the MC to load the malicious RAPID files.

In the FlexPendant context, due to the lack of proper sandbox-
ing, the attacker has now complete access to the OS resources,
and any arbitrary remote code execution vulnerability in the
RobAPI would imply unrestricted control of the MC. Another
possibility is to leverage full unrestricted access to the FTP to
upload a maliciously crafted RobotWare image, allowing the
attacker to compromise all the other components, because the
firmware images are not signed.

Command & Control. Although not essential, we used the
FTP-accessible file system as a simple command & control
server to exchange data with the compromised FlexPendant,
without needing a direct network connection to it. Alterna-
tively, an attacker can load a RAPID module that is executed
on the MC and acts as a relay between the FP and the remote
attacker. We can consider that, at this point, our attacker has
completely compromised the robot controller: We describe the
attacks’ implementation starting from this assumption.

G. Attack: Robot Exploitation

We can now explain how we implemented robot-specific
attacks to show that an adversary can affect the production
chain after compromising the robot controller.

0.448 0.449 0.45 0.451 0.452 0.453
−0.3

−0.2

−0.1

0

x [m]

z
[m

]

Set point
Normal

Under attack

Figure 5. (Section VI-G1: Accuracy Violation) End effector 2D trajectory
when the robot is programmed to move south/north on a straight line.

As discussed in Section VIII, some attacks presented in
Section V can have a disruptive impact, up to the entire
cost of the deployment or the violation of safety policies
and regulations. When unable to implement an attack entirely,
we discussed our implementation with a domain expert, who
confirmed its feasibility and its potential destructive effects.

1) Accuracy Violation: The robot we analyzed uses a closed
loop controller to control the joint position. For each joint,
a PID controller ensures that its angular position follows, as
closely as possible, the reference trajectory needed to complete
the task. As mentioned in Section V-A, if an attacker is able
to “detune” the controller, they can reduce the accuracy of the
movement and, ultimately, impair the precision of the system.

The PID parameters are stored in a robot-specific configura-
tion file on the MC file system2; this file is naı̈vely obfuscated
as described in Section VI-D.

To precisely measure the trajectory of the end effector under
nominal and attack conditions, we decoded such data from
the RS232 service port and real-time ethernet, by enabling a
debug functionality in the MC, which allowed us to collect the
coordinates of the position at fast sampling intervals. While
doing so, we did not interfere with the attacker’s capabilities.

By leveraging the remote code execution vulnerability, we
modified the control-loop configuration files, which are naı̈vely
obfuscated and, thus, easily modifiable. In particular, we
changed the proportional gain of the first joint’s PID controller,
setting it to 50% of its original value. Then, we programmed
the robot to perform a straight horizontal movement. Figure 5
shows the trajectory of the end effector projected on the hori-
zontal plane, which is notably altered. Although the maximum
difference between the position under normal conditions and
under attack is small (less than 2 mm), according to the specific
machining that the robot is performing, it can be enough to
destroy the workpiece.

2) Safety Violation: To violate safety requirements, we
used the User-Perceived Robot State Alteration approach (Sec-
tion V-B) to trick the operator into thinking that the robot is in
manual/motor-off mode, whereas it is in auto/motor-on mode.
Recall that in auto/motor-on mode, an attacker is able to load a

2As an example, the configuration file for the IRB140 robot is located
in the robotware directory under robots/irb1_140/irbcfg/sec_
140_0.81_5_typea_1.cfg.enc.

Figure 6. (Section VI-G2: Safety Violation) Modified teach pendant showing
motors off/manual mode while in auto/motor on.

program task that pilots the robot, while the operator believes
that the robot is in manual/motor-off mode, and thus it is safe
to get close to it.

We implemented this attack by leveraging the lack of code
signing in the FP firmware, which we reverse engineered
to find the routines that implement the user interface. We
modified the strings that are output on the display, to show
false information to the operator, and re-packaged the binary
firmware. Then we used the authentication bypass on the FTP
server to load the binary on the MC’s file system, and we
waited for the next reboot that had the effect of loading the
malicious firmware onto the teach pendant. As an alternative,
we could have leveraged the command-injection vulnerability
to force the MC to reboot remotely. Figure 6 shows the
modified UI.

Although we did not have access to the YuMi co-bot, we
noticed that it shares the same software as the IRC5 controller
with only insubstantial modifications. By reverse engineering
the .NET assemblies of the YuMi’s FlexPendant, we found
evidence suggesting that the mode of operation can be changed
via software as described in Section V-C.

3) Integrity Violation: It is possible to violate integrity
properties through the control-loop alteration approach (Sec-
tion V-A), and the calibration-parameters tampering approach
(Section V-E). We wanted to overshoot the joints in order to
make the robot collapse on itself, and to force the servo motors
beyond its physical, structural limits; this attack is costly and
potentially destructive, because its goal is to damage the robot.

Alternatively, an attacker could use the robot state alteration
approach (Section V-C) to repeatedly and abruptly start and
stop a servo motor, causing wear to the electro-mechanical
components, the brakes, and the servo motor itself.

We implemented the software stages of this attack using two
vulnerabilities: first, we created valid encrypted configuration
files containing arbitrary calibration parameters; second, we
modified them on the controller, exploiting the remote code
execution bug in the MC.

At this point, instead of starting the robot, we showed
the modified configuration files to a domain expert (a lab

technician who normally operates the robot), who confirmed
the destructive effects on the robot. Additionally, we checked
the effect of such configuration changes on the sections of
the code that implement the control and supervision routines,
which we reverse engineered manually. The only integrity
checks that we found in the speed and position supervision
routines can be easily bypassed modifying the MC’s control
logic through the use of any of the vulnerabilities we found.

VII. DISCUSSION

A. Cyber Security and Safety Standards

Industrial robots standards emphasize safety requirements.
For example [12], [31], they define performance requirements,
stopping functions, e-stop features, required pendant controls,
and speed bounds. Unfortunately, none of the standards ex-
plicitly account for cyber-security threats: Although some of
them have mild security implications, they do not explicitly
account for adversarial control during risk assessment.

Instead, cyber security issues in ICS [32] and automo-
tive [33] have received better attention from standardization
bodies. We hope that our work will serve as motivation to
develop similar standards for industrial robots.

B. Security Measures and Challenges

The already hard task of designing a secure architecture
without sacrificing functionality is exacerbated by challenges
in providing timely security updates, a well-known problem
in embedded systems and ICS [34]. Compared with other ICT
systems, industrial robots have a very long lifetime, which
increases the burden on vendors to support several deployed
devices, leading to so-called “forever-day” vulnerabilities (i.e.,
well known vulnerabilities that are never patched). Moreover,
there is friction to adding system-level hardening features,
which renders the exploitation of vulnerabilities more probable
than on mainstream OSs. This is amplified by the so-called
“patching problem” well known to ICS security practitioners:
As industrial robots are critical to productivity, customers may
be worried about potential downtime or regressions caused
by software updates, and refrain from timely patching their
systems.

We overview the main challenges that arise when applying
even textbook-level security practices in the industrial robots
domain.

1) Human interaction: Human intervention can modify the
outcome of the attacks we presented or stop them. For exam-
ple, if emergency stops are implemented by means of electro-
mechanical switches (i.e., not via software), an operator who
spots an abnormal behavior can promptly halt the robot.

However, some attacks can alter the user-perceived robot
state (section V-B), confusing the operator, whose reaction
time will be too slow to counteract a quick and unexpected
movement of the robot. Furthermore, attacks can be more
effective when used in a stealthy way, e.g., by introducing
small defects or stealing intellectual property.

2) Attack Detection and System Hardening: Effective and
readily applicable attack-detection approaches are needed to
provide a short- to medium-solution for threat mitigation.

Attack Detection (Short Term). Research and industry ef-
forts should provide short-term solutions to mitigate the impact
of vulnerabilities. For example, detection and correction of
anomalies must be explored, rather than focusing on access
control techniques only. As for automotive systems [5], pre-
vention measures may interfere with the production chain and
induce downtime: thus, a delicate balance between detection
and prevention should be considered.

System Hardening (Short/Medium Term). As it is hard
to patch all vulnerabilities in complex software, medium- to
long-term solutions include system hardening to make reliable
exploitation more expensive. Implementing these techniques in
legacy embedded platforms is challenging; they may require
hardware support and design changes.

Notably, it is far easier to exploit memory corruption vul-
nerabilities in the robot we analyzed than in mainstream OSs.
Industrial robots, like many embedded systems, employ real-
time operating systems (RTOSs) with poor or no hardening
features. Surprisingly, although RTOSs are used in critical
tasks, most research in this area is focused on determinism,
efficiency and safety, rather than on system security.

An effective, short-term way to harden a RTOS is by
enabling OS- and compiler-based mitigations, such as ASLR,
DEP, and canaries. This set of functionality is common, but is
not always supported in embedded systems.

Another effective containment measure is to enforce priv-
ilege separation at the OS level, and to require physical
separation of critical functionality across different subsystems.
The challenging part here is the trade-off between security
and real-time requirements. For instance, the VxWorks 5.x
OS used in ABB’s RobotWare 5.x executes all code in kernel
mode and is built as a monolithic ELF binary. Although
VxWorks 6 supports user- and kernel-mode demarcation since
2004 for platforms having an MMU (the so-called real-time
process model), this functionality is not used even in newer
versions of RobotWare (over twelve years later).

This reasoning also applies also to functionality aimed
at executing custom code: Even though the flexibility of
industrial robots requires the execution of customized soft-
ware, they do not need access to any functionality of the
underlying OS. Custom applications and robot programs can
be limited to a sandboxed environment, following the principle
of least privilege. For example, Microsoft .NET’s Application
Domains [35] can be used as a light sandboxing mechanism
in .NET-based embedded systems such as the teach pendant.

3) Software Design and Deployment Challenges: We iden-
tified some steps that vendors can adopt to reduce the im-
pact of security issues. Although well-known in the security
community, applying them in this domain is challenging, due
to time-consuming patching processes, as well as non-trivial
changes in the controller design.

Program Protection (Short Term). Removing or making
it easy for the users to disable detailed debug outputs and

symbols can play a key role in increasing the cost of an
attack, especially for casual attackers. In the system we
analyzed, the executable binary of the main computer was
not stripped, and detailed debug output was readily available
from the serial console, which eased reverse engineering and
exploit development. We also observed that the FlexPendant
broadcasts detailed debug information through UDP packets,
making it accessible to a physical attacker connected to the
service port of the main computer.

Secure Software Development Lifecycle (Long Term). In
general, enforcing secure software engineering practices can
improve code robustness and harden the underlying platform.
Such practices range from forbidding the use of unsafe C
library functions (e.g., strcpy, strcat, sprintf), to
using static-analysis tools to find potentially problematic code
regions and unsafe implementation patterns. These practices
must be a part of a comprehensive process that takes security
into account during the whole software development lifecycle.
Unfortunately, the fact that we have found textbook vulnera-
bilities in one of the most widely deployed robot controllers is
an indicator that not even basic static checking was in place.

Secret Management (Medium Term). In our case study we
observed frequent use of (i) static, wired-in credentials, shared
among the devices of the same model, (ii) obfuscation of
passwords (as opposed to hashing and salting), and (iii) naı̈ve
“encryption” of configuration files. These measures create a
false sense of security. For example, a superficial review of
the software source code may imply that certain functionality
is strongly authenticated, whereas it is instead accessible with
a password readily available in the firmware executable.

Component Interconnection Hardening (Medium Term).
In the domain of industrial robots (as well as the ICS and auto-
motive ones), the threat model assumes the internal network to
be trusted. This assumption is not realistic in scenarios where
a component is compromised: Even if such a component is
not critical to the operation of the system, it may grant the
attacker access to the trusted network. An effective hardening
measure is to move toward an Industry-4.0-compliant threat
model, without a trusted internal and factory network, where
the boundary between internal and external is dynamic. This
implies, for instance, appropriately filtering inputs coming
from connected components as if they were coming from an
untrusted party, and taking into account eavesdropping and
tampering of messages.

For example, some UI alteration attacks (Section V-B) can
be mitigated by not trusting the teach pendant: A switch hard-
wired to the controller can be used to require the operator’s
acknowledgment before critical state changes.

Code and Configuration Signing (Medium Term). An
effective system-level mitigation is the implementation of code
signing mechanisms with strong authentication.

Broadly speaking, we can distinguish between three types
of executable code: vendor-provided firmware, program task
code, and custom software developed on top of a vendor-
provided software development kit (SDK). It is expected that
only the vendor can develop and run updated firmware for the

robot components. For custom code, the customer must be able
to sign code for its own robots (but not for other customers’
ones): This way, an attacker who can upload arbitrary files to
the robot file system would not gain arbitrary code execution.

Solving the problem on a global scale is challenging due
to the trade-off between safety and security, and development
and deployment time and effort. A possible way to tackle it
is using a PKI with the vendor as a certification authority,
issuing per-customer certificates.

Fortunately, commercial embedded OSs and hardware plat-
forms are moving toward supporting secure boot capabilities
(e.g., the Security Profiles in VxWorks 7), which would allow
implementing a full code-signing chain.

A mechanism to keep the flexibility of the teach pendant
programming model intact, if sandboxing mechanisms are in
place to limit the privileges of user-provided program task
code, is to enforce the code signing policy only when the robot
is running in automatic mode. Before switching to automatic
mode, the code can be signed offline or even online (e.g., via
smart-card devices connected to the teach pendant).

In the system we analyzed, we found various “encrypted”
configuration files. It is unclear if the intended use of encryp-
tion for these configuration files is to avoid casual tampering
with the configuration or if the developers had a more complex
threat model in mind. However, these configuration files
control safety parameters and signal routings, and are critical
for the operation of the robot; if this is the case, requiring that
the configuration files are signed (with the same infrastructure
in place for custom code) will address this problem effectively.

VIII. LIMITATIONS

Cost of Exploit Testing. The high cost and limited avail-
ability of industrial robotics equipment affected the depth of
our analysis: we could not perform experiments carrying a
substantial risk of permanently breaking electro-mechanical
components of the robot (e.g., drive the robot after reaching its
physical operating limits). We were bound to respect several
security and safety regulations, and not authorized to make
such experiments whenever the exact outcome could not be
forecast with good accuracy. For example, we could not per-
form experiments involving introducing excessive controller
instability, or where the outcome depended on specific features
of the controller that we could not simulate.

Generality. We restricted our case study analysis to standard
features of the ABB IRB140/IRC5 robot/controller, without
considering optional equipment that could increase the attack
surface. Thus, our analysis is conservative. For example, the
robot controller supports an optional I/O board based on
DeviceNet FieldBus [36], which are known to be insecure [4],
[5]. This opens an interesting attack scenario, which we
defer to future research, where compromised after-market end
effectors can gain unauthorized access to the robot.

Survey. While we think that the survey results are inter-
esting by themselves, a survey targeting more participants is
needed to make results statistically significant.

IX. CONCLUSIONS

This paper represents the first step in a broader exploration
of security issues in the industrial robotics ecosystem.

We explored, theoretically and experimentally, the chal-
lenges and impacts of the security of modern industrial robots.
We built an attacker model, and showed how an attacker
can compromise a robot controller and gain full control of
the robot, altering the production process. We explored the
potential impacts of such attacks and experimentally evaluated
the resilience of a widespread model of industrial robot (rep-
resentative of a de facto standard architecture) against cyber
attacks. We then discussed the domain-specific barriers that
make smooth adoption of countermeasures a challenging task.

Interesting future research directions include exploring
multi-robot deployments, co-bots, and the safety and security
implications of the adoption of wireless connections. Also, an
improved survey would produce statistically significant results.
We definitely plan to analyze controllers from other vendors,
to further confirm the generality of our approach.

ACKNOWLEDGMENTS

We wish to thank all of the reviewers of previous versions of
this paper for suggesting critical improvements. This project has
received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant
agreement nr. 690972; and from the “FilieraSicura” project, funded
by Cisco Systems Inc. and Leonardo SpA.

REFERENCES

[1] I. F. R. Carsten Heer, “Survey: 1.3 million industrial
robots to enter service by 018,” 2016. [Online]. Avail-
able: http://www.ifr.org/index.php?id=59&df=2016FEB Press Release
IFR Robot density by region EN QS.pdf

[2] D. Zuehlke, “Smartfactory - towards a factory-of-things,” Annual Re-
views in Control, vol. 34, no. 1, pp. 129–138, 2010.

[3] A.-R. Sadeghi, C. Wachsmann, and M. Waidner, “Security and privacy
challenges in industrial internet of things,” in Proceedings of the 52nd
Annual Design Automation Conference. ACM, 2015, p. 54.

[4] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive
experimental analyses of automotive attack surfaces,” in Proceedings of
the 20th USENIX Security Symp. USENIX Association, 2011.

[5] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage, “Ex-
perimental security analysis of a modern automobile,” in Proceedings
of the 2010 IEEE Symp. on Security and Privacy. IEEE Computer
Society, 2010, pp. 447–462.

[6] M. Brunner, H. Hofinger, C. Krauß, C. Roblee, P. Schoo, and S. Todt,
“Infiltrating critical infrastructures with next-generation attacks,” Fraun-
hofer Institute for Secure Information Technology (SIT), Munich, 2010.

[7] “Nccic/ics-cert year in review 2015,” 2015. [Online].
Available: https://ics-cert.us-cert.gov/sites/default/files/Annual Reports/
Year in Review FY2015 Final S508C.pdf

[8] C. Nobile, “Robots vulnerable to hacking,” 2012. [Online]. Avail-
able: http://www.roboticsbusinessreview.com/article/robots vulnerable
to hacking/

[9] A. Y. Javaid, W. Sun, V. K. Devabhaktuni, and M. Alam, “Cyber security
threat analysis and modeling of an unmanned aerial vehicle system,” in
Homeland Security (HST), 2012 IEEE Conference on Technologies for,
Nov 2012, pp. 585–590.

[10] T. Bonaci, J. Herron, T. Yusuf, J. Yan, T. Kohno, and H. J. Chizeck, “To
make a robot secure: an experimental analysis of cyber security threats
against teleoperated surgical robots,” arXiv preprint arXiv:1504.04339,
2015.

[11] S. Morante, J. G. Victores, and C. Balaguer, “Cryptobotics: Why
robots need cyber safety,” Frontiers in Robotics and AI, vol. 2,
no. 23, 2015. [Online]. Available: http://www.frontiersin.org/humanoid
robotics/10.3389/frobt.2015.00023/full

[12] ISO, “10218-2: 2011: Robots and robotic devices–safety requirements
for industrial robots–part 2: Robot systems and integration,” Geneva,
Switzerland: International Organization for Standardization, 2011.

[13] Microsoft, “Kuka creates a connected factory with iot,” 2016.
[Online]. Available: https://www.microsoft.com/en-us/cloud-platform/
customer-stories-kuka-robotics

[14] ABB Robotics, “Robot web services,” 2015. [On-
line]. Available: http://developercenter.robotstudio.com/Index.aspx?
DevCenter=Robot Web Services

[15] J. Lambrecht, M. Chemnitz, and J. Krüger, “iphone industrial
robot control - kuka kr 6,” 2011. [Online]. Available: https:
//www.youtube.com/watch?v=yFi7UL70zTo

[16] ——, “Control layer for multi-vendor industrial robot interaction pro-
viding integration of supervisory process control and multifunctional
control units,” in 2011 IEEE Conference on Technologies for Practical
Robot Applications, April 2011, pp. 115–120.

[17] J. R. Hagerty, “New robots designed to be more agile and work next
to humans: Abb introduces the yumi robot at a trade fair in germany,”
Wall Street Journal, vol. 13, 2015.

[18] L. Cruz, “Digitization and iot reduce production downtime,”
https://newsroom.cisco.com/feature-content?type=webcontent&
articleId=1764957, 2016.

[19] M. Tischer, Z. Durumeric, S. Foster, S. Duan, A. Mori,
E. Bursztein, and M. Bailey, “Users really do plug in usb drives
they find,” 2016. [Online]. Available: https://cdn.elie.net/publications/
users-really-do-plug-in-USB-drives-they-find.pdf

[20] M. Rocchetto and N. O. Tippenhauer, “On attacker models and profiles
for cyber-physical systems,” in European Symposium on Research in
Computer Security. Springer, 2016, pp. 427–449.

[21] S. Moon and G. S. Virk, “Survey on iso standards for industrial and
service robots,” in ICCAS-SICE, 2009, Aug 2009, pp. 1878–1881.

[22] International Organization for Standardization, Robots and robotic de-
vices - Vocabulary, ser. International standard; ISO 8373. International
Organization for Standardization, 2012.

[23] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: modelling,
planning and control. Springer Science & Business Media, 2010.

[24] I. Bonev, “Should we fence the arms of universal robots?” http://coro.
etsmtl.ca/blog/?p=299, 2014.

[25] ISO, “Ts 15066: 2016: Robots and robotic devices–collaborative robots,”
Geneva, Switzerland: International Organization for Standardization,
draft.

[26] Keba, “Keba - automation by innovation,” 2016. [Online]. Available:
http://www.keba.com/

[27] ISO, “12100: 2010,” Safety of machinery — General principles for
design — Risk assessment and risk reduction, vol. 1, 2010.

[28] ABB Robotics, Application manual: Robot Application Builder, Robot-
Ware 5.0. ABB Robotics, 2009.

[29] ——, Operating manual - Trouble shooting, IRC5. ABB Robotics,
2010.

[30] ABB Forums, “Information to all users of flexpendant sdk,”
2014. [Online]. Available: https://forums.robotstudio.com/discussion/
8080/information-to-all-users-of-flexpendant-sdk

[31] ISO, “Iso 10218-1: 2011: Robots and robotic devices–safety require-
ments for industrial robots–part 1: Robots,” Geneva, Switzerland: Inter-
national Organization for Standardization, 2011.

[32] K. Stouffer, J. Falco, and K. Scarfone, “Guide to industrial control
systems (ics) security,” NIST special publication, vol. 800, no. 82, pp.
16–16, 2011.

[33] SAE, “J3061: 2016,” J3061 Cybersecurity Guidebook for Cyber-
Physical Vehicle, 2016.

[34] D. Papp, Z. Ma, and L. Buttyan, “Embedded systems security: Threats,
vulnerabilities, and attack taxonomy,” in Privacy, Security and Trust
(PST), 2015 13th Annual Conference on, July 2015, pp. 145–152.

[35] Microsoft, “Application domains overview,” 2016. [Online]. Available:
https://msdn.microsoft.com/en-us/library/2bh4z9hs(v=vs.90).aspx

[36] ABB Robotics, Application Manual: DeviceNet, Robot Controller,
RobotWare 5.0. ABB Robotics, 2004.

[37] R. A. Hirschfeld, F. Aghazadeh, and R. C. Chapleski, “Survey of
robot safety in industry,” International Journal of Human Factors in

Manufacturing, vol. 3, no. 4, pp. 369–379, 1993. [Online]. Available:
http://dx.doi.org/10.1002/hfm.4530030405

[38] ABB Robotics, “Multiple Vulnerabilities in ABB RobotWare,”
2016. [Online]. Available: https://library.e.abb.com/public/
a6b4cd9bf68c4f2f917365d3b4e32275/SI20107\%20-\%20Advisory\
%20for\%20Multiple\%20Vulnerabilities\%20in\%20ABB\
%20RobotWare.pdf

APPENDIX A
SURVEY ANSWERS

As far as we know, the only user survey about the safety or
the security of industrial robots in literature was carried out in
1993 and was mainly focused on safety [37]. As summarized
in Section II, we contacted 50 experts in the field, choosing
among:

• researchers in the field of robotics,
• engineers working with top robot manufacturers (e.g.,

ABB, KUKA, Comau),
• experts from companies whose core business is based on

using industrial robots,
• two IEEE RAS TCs (“Energy, environment, and safety

issues in robotics and automation,” and “Safety, security
and rescue robotics”),

• the chair of the “Industrial Robotics” Topic Group at EU
Robotics,

• two prominent mailing lists.
We received answers from 20 subjects. Some of them

followed up via email for a more in-depth conversation.
Given the nature of our questions, we required the users of

the survey to express a strong opinion on the subject, in order
to avoid a possible central tendency bias.

An interesting result of the survey is that the overall care
about safety, and the use of safety measures since the time of
publishing of the last survey on safety [37], has increased,
with 60% of the respondents employing some customized
form of protection measures (i.e., human tracking by sensors,
electronic defenses). The same cannot be said for cyber
security: assessments on the ICT infrastructure have been
conducted only by ∼ 23% of the respondents, and the share
of respondents that conducted security assessment of the
networks that controls the robot operations is just the ∼ 11%.

Moreover only 47% of the respondents consider a cyber
attack against industrial robots a realistic threat: of these, only
1 respondent is a developer working in the industry and 1 has
experience with robots both in both an industrial and academic
context.

APPENDIX B
COORDINATED DISCLOSURE

We reached out to the vendor in order to promptly disclose
any vulnerabilities found during the research described in
this article, and offered a possibility to share their remarks
in the final version of this article. Following our disclosure,
the vendor (ABB) confirmed and patched (or mitigated) all
the vulnerabilities described in this paper. Also, the vendor
released an official security advisory [38] to give the users
time to update the installed base before the publication date.

We also disclosed the vulnerability in the industrial router to
eWON, who fixed the issue in the latest firmware revision
(11.2s2).

Table IV
SURVEY RESPONSES: GENERAL QUESTIONS

Context of experience with Industrial Robots
Academia 11

Industry 6
Both 2

User’s role
Researcher 8
Developer 5
Professor 4

Student 1
Other 1

Type of industrial robots used or deployed in a factory:
(multiple choice)

Articulated 18
Dual-arm 6
SCARA 4

Cartesian 3
Cylindrical 2

Other 2
Delta 1

Robots application: (multiple choice)
Material Handling 13

Assembly 13
Palletizing 5

Other 4
Welding 2
Painting 1

Industrial robot vendors employed: (multiple choice)
Kuka 11
ABB 9

Other(s) 9
Fanuc 6

Comau 3
Motoman 3

Denso 1
Adept 1

Kawasaki 1

of robots employed for development and testing
1 to 5 12

5 to 10 4
10 or more 2

of robots employed in production (where applicable):
10 or more 5

1 to 5 2
5 to 10 1

Table V
SURVEY RESPONSES: SAFETY

Typical safety setup:
Collaborative robot 11

Caged robot 10
Other 3

Default safety measures are too limiting for specific use case:
Yes 5
No 12

Safety measures are customized:
Yes 11
No 7

Table VI
SURVEY RESPONSES: ROBOT PROGRAMMING

A development cycle is employed for robot programs and
automation scripts:

Yes 7
No 4

Access control policy is enforced on the robot:
Yes 13
No 5

Employees are accountable for changes to the robot’s program
code:

Yes 9
No 9

Table VII
SURVEY RESPONSES: PERCEPTION OF THE RISK

Robots are connected to an internal network:
Yes 14
No 4

Robot controllers are accessible via Internet:
Yes 5
No 13

Robot controllers are accessible via a wireless network:
Yes 8
No 10

Robot controllers are connected to the ICT infrastructure via:
EtherCAT 1

Intranet over Ethernet 3
WiFi 1

Bluetooth for discovery of non-wifi components 1
Disconnected 3

Internal factory VPN

The ICT infrastructure has been ever audited:
Yes 4
No 13

The network that controls robots operations has been ever
audited:

Yes 2
No 15

User considers cyber attacks against robots a realistic threat
Yes 8
No 9

If a realistic threat, the consequences could be:
Impact on physical safety 7

Production losses 4
Small defects introduced in the final product 1

Other 3

Worst case scenario in case of insider threat:
Potential safety hazards, harm to human operators 6

Mechanical damage 6
Stop productivity 2

IP violation/leak sensitive know-how 1

Financial impact of an attack against robots:
Quantifiable 3

Hardly quantifiable 1
Not quantifiable 6

If not robots, the most valuable asset at risk could be:
Intellectual property 5

Humans 2
Material goods and equipment 2

Production data 1
Other sensitive data (i.e., patient data for medical robots) 1

APPENDIX C
PROGRAM TASK SOURCE CODE EXAMPLE

MODULE myStopRoutine
CONST jointtarget p0 := [[-179, 90, -90, 0, 0, 0], [0, 9E9, 9E9, 9E9, 9E9, 9E9]];
CONST jointtarget p1 := [[179, 90, -90, 0, 0, 0], [0, 9E9, 9E9, 9E9, 9E9, 9E9]];
VAR jointtarget jInitial;
VAR jointtarget jFinal;
VAR intnum pers1int;
VAR intnum monit1int;
PERS bool trapped;
PERS bool done;

PROC main()
TPErase;
trapped := FALSE;
done := FALSE;
MoveAbsJ p0, v2000, fine, tool0; ! move robot to initial position
WaitRob \ZeroSpeed; ! wait for robot to finish movement
CONNECT pers1int WITH stopping; ! add interrupt handler
IPers trapped, pers1int; ! set interrupt to trigger via watchdog on persisten variable
CONNECT monit1int WITH monitor; ! another interrupt
ITimer 0.1, monit1int; ! set interrupt to trigger after 1ms
WaitTime 1.0;
MoveAbsJ p1, vmax, fine, tool0; ! move from p0 to p1 at max speed

ENDPROC

TRAP stopping
VAR num delta;
ISleep pers1int;
jInitial := CJointT(); ! read joints coordinates
StopMove \Quick; ! stop robot
WaitRob \ZeroSpeed;
jFinal := CJointT(); ! read joints coordinates
delta := jFinal.robax.rax_1-jInitial.robax.rax_1;
TPWrite "Delta = " \Num:=delta;
TPWrite "Max acc = " \Num:=200*200/delta/2;
IWatch pers1int;

ENDTRAP

TRAP monitor
ISleep monit1int;
jInitial := CJointT();
IF done = false AND jInitial.robax.rax_1 > 0 THEN ! set interrupt to trigger when the first joint reaches

or goes over halfway
trapped := TRUE;
done := TRUE;
TPWrite "Checking... " \Num:=jInitial.robax.rax_1;

ENDIF
IWatch monit1int;

ENDTRAP
ENDMODULE

