
Comparing the Usability of Cryptographic APIs

Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel∗,
Doowon Kim†, Michelle L. Mazurek†, and Christian Stransky

CISPA, Saarland University; ∗National Institute of Standards and Technology; †University of Maryland, College Park

Abstract—Potentially dangerous cryptography errors are well-
documented in many applications. Conventional wisdom suggests
that many of these errors are caused by cryptographic Appli-
cation Programming Interfaces (APIs) that are too complicated,
have insecure defaults, or are poorly documented. To address this
problem, researchers have created several cryptographic libraries
that they claim are more usable; however, none of these libraries
have been empirically evaluated for their ability to promote
more secure development. This paper is the first to examine
both how and why the design and resulting usability of different
cryptographic libraries affects the security of code written with
them, with the goal of understanding how to build effective
future libraries. We conducted a controlled experiment in which
256 Python developers recruited from GitHub attempt common
tasks involving symmetric and asymmetric cryptography using
one of five different APIs. We examine their resulting code for
functional correctness and security, and compare their results
to their self-reported sentiment about their assigned library.
Our results suggest that while APIs designed for simplicity
can provide security benefits—reducing the decision space, as
expected, prevents choice of insecure parameters—simplicity is
not enough. Poor documentation, missing code examples, and a
lack of auxiliary features such as secure key storage, caused
even participants assigned to simplified libraries to struggle
with both basic functional correctness and security. Surprisingly,
the availability of comprehensive documentation and easy-to-
use code examples seems to compensate for more complicated
APIs in terms of functionally correct results and participant
reactions; however, this did not extend to security results. We
find it particularly concerning that for about 20% of functionally
correct tasks, across libraries, participants believed their code
was secure when it was not.

Our results suggest that while new cryptographic libraries
that want to promote effective security should offer a simple,
convenient interface, this is not enough: they should also, and
perhaps more importantly, ensure support for a broad range of
common tasks and provide accessible documentation with secure,
easy-to-use code examples.

I. INTRODUCTION

Today’s connected digital economy and culture run on a
foundation of cryptography, which both authenticates remote
parties to each other and secures private communications.
Cryptographic errors can jeopardize people’s finances, publi-
cize their private information, and even put political activists at
risk [1]. Despite this critical importance, cryptographic errors
have been well documented for decades, in both production
applications and widely used developer libraries [2]–[5].

The identification of a commercial product or trade name does not imply
endorsement or recommendation by the National Institute of Standards and
Technology, nor is it intended to imply that the materials or equipment
identified are necessarily the best available for the purpose.

Many researchers have used static and dynamic analysis
techniques to identify and investigate cryptographic errors in
source code or binaries [2]–[6]. This approach is extremely
valuable for illustrating the pervasiveness of cryptographic
errors, and for identifying the kinds of errors seen most
frequently in practice, but it cannot reveal root causes. Conven-
tional wisdom in the security community suggests these errors
proliferate in large part because cryptography is so difficult for
non-experts to get right. In particular, libraries and Application
Programming Interfaces (APIs) are widely seen as being
complex, with many confusing options and poorly chosen
defaults (e.g. [7]). Recently, cryptographers have created new
libraries with the goal of addressing developer usability by
simplifying the API and establishing secure defaults [8], [9].
To our knowledge, however, none of these libraries have been
empirically evaluated for usability. To this end, we conduct
a controlled experiment with real developers to investigate
root causes and compare different cryptographic APIs. While
it may seem obvious that simpler is better, a more in-depth
evaluation can be used to reveal where these libraries succeed
at their objectives and where they fall short. Further, by
understanding root causes of success and failure, we can
develop a blueprint for future libraries.

This paper presents the first empirical comparison of several
cryptographic libraries. Using Python as common implemen-
tation language, we conducted a 256-person, between-subjects
online study comparing five Python cryptographic libraries
chosen to represent a range of popularity and usability:
cryptography.io, Keyczar, PyNaCl, M2Crypto and PyCrypto.
Open-source Python developers completed a short set of
cryptographic programming tasks, using either symmetric or
asymmetric primitives, and using one of the five libraries.
We evaluate participants’ code for functional correctness and
security, and also collect their self-reported sentiment toward
the usability of the library. Taken together, the resulting
data allows us to compare the libraries for usability, broadly
defined to include ability to create working code, effective
security in practice (when used by primarily non-security-
expert developers), and participant satisfaction. By using a
controlled, random-assignment experiment, we can compare
the libraries directly and identify root causes of errors, without
confounds related to the many reasons particular developers
may choose particular libraries for their real projects.

We find that simplicity of individual mechanisms in an API
does not assure that the API is, in fact, usable. Instead, the
stronger predictors of participants producing working code



were the quality of documentation, and in particular whether
examples of working code were available on the Internet,
within or outside the provided documentation. Surprisingly, we
also found that the participant’s Python experience level, se-
curity background, and experience with their assigned library
did not significantly predict the functionality of the code that
they created. None of the libraries were rated as objectively
highly usable, but PyCrypto, a complex API with relatively
strong documentation, was rated significantly more usable than
Keyczar, a simple API with poor documentation.

On the other hand, with some important caveats, simplified
APIs did seem to promote better security results. As might
be expected, reducing the number of choices developers must
make (for example, key size or encryption mode of operation)
also reduces their opportunity to choose incorrect parameters.
Python experience level was not significantly correlated with
security results, but participants with a security background
were more likely to produce code that was, in fact, secure.
Nevertheless, the overall security results were somewhat dis-
appointing. A notable source of problems was APIs that did
not easily support important auxiliary tasks, such as secure
key storage. Perhaps of most concern, 20% of functional
solutions were rated secure by the participant who developed
them but insecure according to our evaluation; this suggests
an important failure to communicate important security ideas
or warn about insecure decisions.

II. RELATED WORK

We discuss related work in four key areas: measuring
cryptography problems in deployed code; investigating how
developers interact with cryptographic APIs; attempts at de-
veloping more usable cryptographic libraries and related tools;
and approaches to evaluating API usability more generally.

Cryptography problems in real code. Researchers have
identified misuses of cryptography in deployed code. Egele
et al. examined more than 11,000 deployed Android apps
that use cryptography and found that nearly 90% contained
at least one of six common cryptography errors [5]. Fahl
et al. and Onwuzurike et al. also analyzed Android apps,
and found that a large number did not correctly implement
the Trusted Layer Security (TLS) protocol, potentially lead-
ing to security vulnerabilities to Man-In-The-Middle (MITM)
attacks [10]–[15]. Likewise, a study examining Apple’s iOS
apps revealed that many were vulnerable to MITM attacks
because of incorrect certificate validation during TLS con-
nection establishment [16]. Other researchers specifically ex-
amined mobile banking applications and found a plethora
of potentially exploitable cryptographic errors [4]. Lazar et
al. examined cryptography-related vulnerabilities from the
Common Vulnerabilities and Exposures (CVE) database and
found more than 80% resulted from errors at the application
level [17]. In all of these cases, weak ciphers and insufficient
randomness were common problems; in this paper, we test the
hypothesis that these problems are strongly affected by API
design. Georgiev et al. identified many certificate-validation
errors in applications and libraries; the authors attribute many

of these vulnerabilities to poorly designed APIs and libraries
with too many confusing options [3].

Interacting with cryptographic APIs. Others have inves-
tigated how developers interact with cryptographic APIs. Nadi
et al. manually examined the top 100 Java cryptography posts
on Stack Overflow and found that a majority of problems
were related to API complexity rather than a lack of domain
knowledge [18]. Follow-up surveys of some Stack Overflow
users who had asked questions and of Java developers more
generally confirmed that API complexity and poor documen-
tation are common barriers in cryptographic API use. In this
paper, we compare different APIs to measure their relative
difficulty of use. Relatedly, Acar et al. examined how use of
different documentation resources affects developers’ security
decisions, including decisions about certificate validation [19];
we compare different APIs rather than different sources of
help.

Making cryptography more usable. Several cryptographic
APIs have been designed with usability in mind. The designers
of NaCl (Networking and Cryptographic library, pronounced
“salt”) describe how their design decisions are intended to
promote usability, in large part by reducing the number of de-
cisions a developer must make, but do not empirically evaluate
its usability [9]. In this work, we empirically compare NaCl
to more traditional APIs, as well as to non-academic libraries
that also claim usability benefits (e.g., cryptography.io [8]).

Rather than a new API, Arzt et al. present an Eclipse plugin
that produces correct code templates based on high-level
requirements identified by the developer [20]. This approach
can make working with existing APIs easier; however, it is
orthogonal to the question of how APIs do or do not encourage
secure practices. Indela et al. suggest using design patterns
to describe high-level semantic APIs for goals that require
cryptography, such as establishing a secure connection or
storing data securely [21]. This approach is complementary to
improving cryptographic libraries that underlie such patterns.

Evaluating APIs, security and otherwise. Many software
engineering researchers have examined what makes an API
usable. Myers and Stylos provide a broad overview of how
to evaluate API usability, with reference to Nielsen’s general
usability guidelines as well as the Cognitive Dimensions
framework [22]–[24]. Henning and Bloch separately provide
sets of maxims for improving API design [25], [26]. Smith
and Green proposed similar high-level guidelines specific to
security APIs [27]. We adapt guidelines from these various
sources to evaluate the APIs we examine.

Concurrent with our work, Gorski and Iacono [28] use
an extensive literature review to formulate high-level techni-
cal and usability criteria along which security-relevant APIs
should be designed, calling for further work on evaluating
adherence to these principles. Also concurrent to our work,
Wijayarathna et al. develop a set of questions about security
APIs based on the above guidelines, resulting in a ques-
tionnaire similar to the one we developed and used in this
work [29].

Oliveira et al. conducted a lab study to examine the se-

2



curity mindset of developers. They found that security is
not a priority in the standard developer’s mindset, but that
detailed priming for security issues helps [30]. Wurster and
Van Oorschot recommend assuming that developers will not
prioritize security unless incentivized or forced to, and suggest
mandating security tools, rewarding secure coding practices,
and ensuring that secure tools and APIs are more usable and
attractive than less secure ones [31]. Our work focuses on how
choice of library affects developers who have already decided
to interact with a cryptographic API and have been primed for
the importance of security to their task.

Finifter, Wagner and Prechelt compared the security of
two web applications built to the same specification but with
different frameworks. They found that automatic framework-
level support for mitigating certain vulnerabilities improved
overall security, while manual framework supports were read-
ily forgotten or neglected [32], [33].

Researchers have also conducted empirical studies of API
usability in different domains, including comparing APIs for
configuration [34], considering how assigning methods to
classes affects usability [35], and analyzing the usability of the
factory pattern [36]. Piccioni et al. examined the usability of
a persistence library using a method similar to the one we use
in this work, with exit interview questions structured around
the Cognitive Dimensions framework [37]. They successfully
identify usability failures of the examined API, and their
results emphasize the critical importance of accurate, unam-
biguous and self-contained documentation to API usability.
Burns et al. provide a preliminary survey of work evaluating
APIs empirically [38].

III. STUDY DESIGN

We designed an online, between-subjects study to compare
how effectively developers could quickly write correct, secure
code using different cryptographic libraries. We recruited
developers with demonstrated Python experience (on GitHub)
for an online study.

Participants were assigned to complete a short set of
programming tasks using either symmetric- or asymmetric-
key cryptography, using one of five Python cryptographic
libraries. Assignment to one of the resulting 10 conditions
was initially random, with counterbalancing to ensure roughly
equivalent participant counts starting each condition. As the
study progressed, however, it became clear that dropout rates
varied widely by condition (see Section IV-C for details), so
we weighted the random assignment to favor conditions with
higher dropout rates.

Within each condition, task order was randomized. Sym-
metric participants were either given a key generation, then an
encryption/decryption task, or vice-versa. Asymmetric partic-
ipants were assigned a key generation task, an encryption/de-
cryption task, and a certificate validation task, according to a
latin square ordering.

After finishing the tasks, participants completed a brief
exit survey about the experience. We examined participants’

submitted code for functional correctness and security. The
study was approved by our institutions’ ethics review boards.

A. Language selection

We chose to use Python as the programming language
for our experiment because it is widely used across many
communities and has support for all kinds of security-related
APIs, including cryptography. As a bonus, Python is easy to
read and write and is widely used among both beginners and
experienced programmers. Indeed, Python is the third most
popular language on GitHub, trailing JavaScript and Java [39].
Therefore, we reasoned that there would be many Python
developers to recruit for our study.

B. Cryptographic library identification

Next, we performed a series of Internet searches to identify
possible cryptographic libraries that we could use in our
study. We were agnostic to library implementation language,
performance, and third-party certification: all that mattered
was that the library could be called from Python language
bindings. At this point, we decided to use the Python 2.7
programming language because several Python cryptographic
libraries did not support Python 3.

We selected five Python libraries to empirically compare
based on a combination of their popularity, their suitability
for the range of tasks we were interested in, and our desire
to compare libraries that were and were not designed with
usability in mind. Table I lists details of these features for the
libraries we examined.

We selected three libraries whose documentation claims
they were designed for usability and that each handle (most
of) the tasks we were interested in: cryptography.io, Keyczar,
and PyNaCl. cryptography.io describes itself as “cryptography
for humans” [8], Keyczar is “designed to make it easier and
safer for developers to use cryptography” [40], and PyNaCl
is a Python binding for NaCl, a crypto library designed to
avoid “disaster” in part via simplified APIs [9]. pysodium is a
potential alternative to PyNaCl; although pysodium is very
slightly more popular, it is still beta and has no included
documentation, so we selected PyNaCl.

For comparison, we also selected two libraries that do not
make usability claims: PyCrypto and M2Crypto. PyCrypto is
the most popular general-purpose Python crypto library we
found, and the closest thing to a “default” Python crypto
library that exists. M2Crypto is a Python binding for the
venerable OpenSSL library, which is frequently criticized for
its lack of usability. pyOpenSSL is both more popular than
M2Crypto and the official OpenSSL [41] binding for Python;
however, it lacks support for symmetric and asymmetric en-
cryption, which was a major part of our study, so we opted
for M2Crypto instead. We provide further details about the
features and documentation of the libraries we selected in
Section III-F.

We excluded libraries that include few of the features we
were interested in, or that have negligible popularity. We
excluded PyCryptodome as a less popular replacement for

3



Sym Asym

K
ey

ge
ne

ra
tio

n

E
nc

ry
pt

io
n

K
ey

ge
ne

ra
tio

n

E
nc

ry
pt

io
n

K
D

F

D
ig

ita
l

si
g.

X
.5

09

U
sa

bi
lit

y
cl

ai
m

s

D
ow

nl
oa

ds

PyCrypto [42] 25 149 446
cryptography.io [8] 10 481 277
M2Crypto [43] 2 369 827
Keyczar [44] 595 277
PyNaCl [45] 46 013

pyOpenSSL [46] 10 188 101
tlslite [47] 641 488
bcrypt [48] 536 851
gnupg [49] 189 851
pycryptopp [50] 140 703
scrypt [51] 140 446
simple-crypt [52] 112 254
pysodium [53] 49 275
ed25519 [54] 29 670
pyaes [55] 19 091
PyCryptodome [56] 16 960
PyMe [57] 2 489
pyDes [58] ? †

tls [59] ? †

= applies; = does not apply

TABLE I
Cryptography-related Python libraries and their features, ordered by

popularity. The top section includes the libraries we tested. Download
counts as of May 2016 were taken from the PyPI ranking website

(http://pypi-ranking.info). †No download statistics available.

PyCrypto, gnupg for its limited support for encryption (mainly
in the context of email), pycryptopp as it was deprecated
as of January 2016, and simple-crypt as it does not support
asymmetric cryptography.

In tables and figures throughout the paper, we order the
libraries as follows: PyCrypto first as the most popular, then
M2Crypto as the other library without usability claims, then
the three libraries with usability claims.

C. Recruitment and framing

To maintain ecological validity, we wanted to recruit de-
velopers who actively use Python. To find such developers,
we conducted a systematic analysis of Python contributors
on the popular GitHub collaborative source code management
service.

We extracted all Python projects from the GitHub Archive
database [60] between GitHub’s launch in April 2008 and
February 2016, giving us 749 609 projects in total. We ran-
domly sampled 100 000 of these repositories and cloned them.
Using this random sample, we extracted email addresses of
50 000 randomly chosen Python committers. These committers
served as a source pool for our recruiting.

We emailed these developers in batches, asking them to
participate in a study exploring how developers use Python
libraries. We did not mention cryptography or security in the
recruitment message. We mentioned that we would not be able
to compensate them, but the email offered a link to learn more
about the study and a link to remove the email address from
any further communication about our research. Each contacted
developer was assigned a unique pseudonymous identifier (ID)
to allow us to correlate their study participation to their GitHub
statistics separately from their email address.

Recipients who clicked the link to participate in the study
were directed to a landing page containing a consent form.
After affirming they were over 18, consented to the study, and
were comfortable with participating in the study in English,
they were introduced to the study framing. We asked partici-
pants to imagine they were developing code for an app called
CitizenMeasure, “a new global monitoring system that will
allow citizen-scientists to travel to remote locations and make
measurements about such issues as water pollution, deforesta-
tion, child labor, and human trafficking. Please keep in mind
that our citizen-scientists may be operating in locations that
are potentially dangerous, collecting information that powerful
interests want kept secret. Our citizen scientists may have
their devices confiscated and hacked.” We hoped that this
framing would pique participants’ interest and motivate them
to make a strong effort to write secure code. We also provided
brief instructions for using the study infrastructure, which we
describe next.

D. Experimental infrastructure

After reading the study introduction and framing, partici-
pants were redirected to the tasks themselves. Our aim was
to conduct an online developer study in which real developers
would write and test real cryptographic code in our environ-
ment. We wanted to capture the code that they typed and their
program runs. We wanted to control the study environment
(Python version, available libraries) and collect data about
their progress in real time. To achieve this, we used Jupyter
Notebook [61], which allowed participants to write and run
Python code in their browser, using the Python installation
from our server. We instrumented the notebook to frequently
snapshot the participant’s code, as well as to detect and store
copy&paste events. All this information was stored on the
server.

We configured Notebook (version 4.2.1) with Python 2.7.11
and all five tested cryptographic libraries. To prevent inter-
ference between participants, each participant was assigned
to a Notebook running on a separate Amazon Web Service
(AWS) instance. We maintained a pool of prepared instances
so that each new participant could begin without waiting for
an instance to boot. Instances were shut down when each
participant finished, to avoid between-subjects contamination.

Tasks were shown one at a time, with a progress indicator
showing that the participant had completed, e.g., 1 of 3 tasks.
For each task, participants were given buttons to “Run and
test” their code, and to move on using “Solved, next task”

4



or “Not solved, but next task.” After each button press, we
stored the participant’s current code, along with metadata like
timing, in a remote database. An example Notebook is shown
in Figure 1.

Allowing participants to write and execute Python code
presents serious security concerns. To mitigate this, we re-
moved all unnecessary packages from the AWS image. We
used the AWS firewall to restrict incoming traffic to port 80
and prevent outgoing traffic other than to our study database,
which was password protected and restricted to sanitized insert
commands. All instances were shut down within 4 hours of
the last observed participant activity.

E. Task design

We designed tasks that were short enough so that the
uncompensated participants would be likely to complete them
before losing interest, but still complex enough to be inter-
esting and allow for some mistakes. Most importantly, we
designed tasks to model real world problems that Python
developers could reasonably be expected to encounter in their
professional career. We chose two symmetric-encryption tasks:
generating an encryption key and storing it securely in a
password-protected file, and using the key to encrypt and
decrypt text. We chose three asymmetric tasks: generating a
key pair and storing the private key securely, using the public
key to encrypt and the private key to decrypt, and validating
an X.509 certificate.

Most of the libraries we chose support most of these tasks
(Table II). Unfortunately, task coverage by the libraries was
not uniform: Keyczar and PyNaCl do not support secure key
storage. The Keyczar documentation encourages generating
keys at the command line; this can be worked around in the
API, but it is not straightforward to do so. Keyczar and PyNaCl
do not support certificate validation directly, but it is possible
to extract the public key and manually verify the signature.
Finally, PyCrypto does not support certificate validation at all.

To account for cases where the library does not fully support
the task, we offered participants the option to skip a task.

For each task, participants were provided with stub code
and some commented instructions. These stubs were designed
to make the task clear and ensure the results could be easily
evaluated, without providing too much scaffolding. We also
provided a main method pre-filled with code to test the
provided stubs. This helped orient participants and saved time,
but it did prevent us from learning how participants might have
designed their own tests.

We also asked participants to please use only the included
documentation for their assigned library, if at all possible,
and to report (in comments) any additional documentation
resources they consulted.

F. Python cryptographic libraries we included

We briefly review the available features and documentation
for each library we selected for our experiment (Table II).

PyCrypto. The Python cryptographic toolkit PyCrypto [42]
is Python’s most popular cryptographic library. Developers

Library C
ur

re
nt

V
er

si
on

D
es

ig
ne

d
fo

r
U

sa
bi

lit
y

Sy
m

m
et

ri
c

K
ey

G
en

er
at

io
n

Sy
m

m
et

ri
c

E
nc

ry
pt

io
n/

D
ec

ry
pt

io
n

Se
cu

re
Sy

m
m

et
ri

c
K

ey
St

or
ag

e

A
sy

m
m

et
ri

c
K

ey
G

en
er

at
io

n

A
sy

m
m

et
ri

c
E

nc
ry

pt
io

n/
D

ec
ry

pt
io

n

Se
cu

re
A

sy
m

m
et

ri
c

K
ey

St
or

ag
e

C
er

tifi
ca

te
V

al
id

at
io

n

PyCrypto 2.6.1
M2Crypto 0.25.1
cryptography.io 1.4
Keyczar 0.716
PyNaCl 1.0.1

= fully applies; = partly applies; = does not apply

TABLE II
Features and popularity for the five cryptography libraries we tested.

Popularity data was updated as of Aug. 11, 2016.

can choose among several encryption and hashing algorithms
and modes of operation, and may provide initialization vectors
(IVs).

PyCrypto comes with primarily auto-generated documenta-
tion that includes minimal code examples. The documentation
recommends the Advanced Encryption Standard (AES) and
provides an example, but also describes the weaker Data
Encryption Standard (DES) as cryptographically secure. The
documentation warns against weak exclusive-or (XOR) en-
cryption. However, the documentation does not warn against
using the default Electronic Code Book (ECB) mode, or the
default empty IV, neither of which is secure.

M2Crypto. M2Crypto [43] is a binding to the well-known
OpenSSL library that is more complete than alternative bind-
ings such as pyOpenSSL. Although development on M2Crypto
has largely ceased, the library is still widely used, and there
is ample documentation and online usage examples, so we
included it. M2Crypto supports all of the tasks we tested,
including X.509 certificate handling. Developers are required
to choose algorithms, modes of operation, and initialization
vectors. M2Crypto comes with automatically generated doc-
umentation that includes no code examples or comments on
the security of cryptographic algorithms and modes.

cryptography.io. cryptography.io has a stated goal of pro-
viding more usable security than other libraries by emphasiz-
ing secure algorithms, high-level methods, safe defaults, and
good documentation [8]. It supports symmetric and asymmet-
ric encryption as well as X.509 certificate handling. The docu-
mentation includes code examples that include secure options,
with context for how they should be used. cryptography.io pro-
vides a high-level interface for some cryptographic tasks (such

5



Fig. 1. An example of the study’s task interface.

as symmetric key generation and encryption); this interface
does not require developers to choose any security-sensitive
parameters. The library also includes a lower-level interface,
necessary for some asymmetric tasks and for encrypted key
storage; this low-level interface does require developers to
specify parameters such as algorithm and salt.

Keyczar. The library aims to make it easier to safely use
cryptography, so that developers do not accidentally expose
key material, use weak key lengths or deprecated algorithms,
or improperly use cryptographic modes [40]. The documen-
tation consists of an 11-page technical report that includes
a few paragraphs regarding the program’s design and a few
abbreviated examples. Keyczar does not easily support X.509
certificate handling, encrypted key files, or password-based
key derivation, but it does support digital signatures. There is
no public API for key generation, but developers can generate
keys by using an internal interface or by calling a provided
command-line tool programmatically. Developers do not have
to specify cryptographic algorithms, key sizes, or modes of
operation.

PyNaCl. PyNaCl is a Python interface to libsodium [62],
a cryptographic library designed with a focus on usability.
The detailed documentation includes code examples with

context for how to use them. PyNaCl supports both secure
symmetric and asymmetric APIs without requiring the devel-
oper to choose cryptographic details, although the developer
must provide a nonce. PyNaCl neither supports encrypted key
storage nor password-based key derivation. X.509 certificate
handling is also not supported directly; however, verifying
digital signatures is supported.

G. Exit survey

Once all tasks had been completed or abandoned, the
participant was directed to a short exit survey. We asked for
their opinions about the tasks they had completed and the
library they used, including the standard System Usability
Scale (SUS) [63] score for the library. We also collected their
demographics and programming experience. The participant’s
code for each task was displayed (imported from our database)
for their reference with each question about that task.

We were specifically interested in the participants’ opinions
about the usability of the API. To this end, we collected the
SUS score, but we wanted to also investigate in more depth.
Prior work on API usability has suggested several concrete
factors that affect an API’s usability. We combined the cog-
nitive dimensions framework [24] with usability suggestions
from Nielsen and from Smith and Green [23], [27], and pulled

6



out the factors that could most easily be evaluated via self-
reporting from developers using the API. We transformed these
factors into an 11-question scale (given in Appendix A) that
focuses on the learnability of the API, the helpfulness of its
documentation, the clarity of observed error messages, and
other features. Our scale can be used to produce an overall
score, as well as to target specific characteristics that impede
the usability of each API. For this work, we treat this scale
as exploratory; we correlate it with SUS and investigate its
internal reliability in Section IV-F.

H. Evaluating participant solutions

We used the code submitted by our participants for each
task, henceforth called a solution, as the basis for our analysis.

We evaluated each participant’s solution to each task for
both functional correctness and security. Every task was inde-
pendently reviewed by two coders, using a codebook prepared
ahead of time based on the capabilities of the libraries we eval-
uated. Differences between the two coders were adjudicated
by a third coder, who updated the codebook accordingly. We
briefly describe the codebook below.

Functionality. For each programming task, we assigned a
participant a functionality score of 1 if the code ran without
errors, passed the tests and completed the assigned task, or 0
if not.

Security. We assigned security scores only to those solu-
tions which were graded as functional. To determine a security
score, we considered several different security parameters.
A participant’s solution was marked secure (1) only if their
solution was acceptable for every parameter; an error in any
parameter resulted in a security score of 0.

Not all security parameters applied to all libraries, as some
libraries do not allow users to make certain potentially insecure
choices. Details of how the different security parameters
applied to each library can be found in Table III. Whenever a
given library requires a developer to make a secure choice for
a given parameter, we assign a full circle; if that parameter
is not applicable in that library, we assign an empty circle.
For example, for symmetric encryption, PyCrypto participants
had to specify an encryption algorithm, mode of operation and
an initialization vector (three full circles). However, PyNaCl
participants did not have to care about these cryptographic
details (three empty circles).

For key generation, we checked key size and proper source
of randomness for the key material. We selected an appro-
priate key size for a particular algorithm (e.g., for RSA we
required at least 2 048-bit keys [64]). For key storage we
checked if encryption keys were actually encrypted and if
a proper encryption key was derived from the password we
provided. Depending on the library and task type, encrypt-
ing cryptographic key material requires the application of a
key derivation function such as PBDKF2 [65]. For libraries
in which developers had to pick parameters for PBKDF2
manually (cf. Table III), we scored use of a static or empty
salt, HMAC-SHA1 or below as the pseudorandom function,
and less than 10 000 iterations as insecure [66]. For some

libraries, participants had to select encryption parameters for
one or more tasks; in these cases, we also scored the security
of the chosen encryption algorithm, mode of operation, and
initialization vector. For symmetric encryption, we scored
ARC2, ARC4, Blowfish, (3)DES, and XOR as insecure, and
AES as secure. We scored the ECB as an insecure mode of
operation and scored Cipher Block Chaining (CBC), Counter
Mode (CTR) and Cipher Feedback (CFB) as secure. Static,
zero or empty initialization vectors were scored insecure. For
asymmetric encryption we scored the use of OAEP/PKCS1
for padding as secure.

I. Limitations

As with any user study, our results should be interpreted
in context. We chose an online study because it is difficult to
recruit “real” developers (rather than students) for an in-person
lab study at a reasonable cost. Choosing to conduct an online
study allowed us less control over the study environment;
however, it allowed us to recruit a geographically diverse
sample. Because we targeted developers, we could not easily
take advantage of services like Amazon’s Mechanical Turk
or survey sampling firms. Managing online study payments
outside such infrastructures is very challenging; as a result, we
did not offer compensation and instead asked participants to
generously donate their time. As might be expected, the com-
bination of unsolicited recruitment emails and no compensa-
tion led to a strong self-selection effect, and we expect that our
results represent developers who are interested and motivated
enough to participate. Comparing the full invited sample to
the valid participants (see Section IV-A) suggests that indeed,
more active GitHub users were more likely to participate. That
said, these limitations apply across conditions, suggesting that
comparisons between conditions are valid. Further, we found
almost no results (Section IV-G) correlated with self-reported
Python experience.

In any online study, some participants may not provide full
effort, or may answer haphazardly. In this case, the lack of
compensation reduces the motivation to answer in a manner
that is not constructive; those who are not motivated will
typically not participate. We attempt to remove any obviously
low-quality data (e.g., responses that are entirely invective)
before analysis, but cannot discriminate perfectly. Again, this
limitation should apply across conditions without affecting
condition comparisons.

Our study examines how developers use different crypto-
graphic libraries. Developers who reach this point already
recognize that they need encryption and have chosen to use
an existing library rather than trying to develop their own
mechanism; these are important obstacles to secure code that
cannot be addressed by better library design. Nonetheless, we
believe that evaluating and improving cryptographic libraries
is a valuable step toward more secure development.

Finally, we are comparing libraries overall: this includes
their API design and implementation as well as their docu-
mentation. The quality of both varies significantly across the
libraries. Our results provide insight into the contributions

7



Symmetric
Key Generation Key Storage Key Derivation Encryption

Plain/
Size Encrypted Algorithm Mode IV Salt PRF Iterations Algorithm Mode IV

PyCrypto
M2Crypto
cryptography.io
Keyczar * * *
PyNaCl * * *

Asymmetric
Key Generation Key Storage Encryption Certificate Validation

Plain/ Signature Hostname CA Date
Type Size Encrypted Algorithm Mode IV Padding Nonce Verification Check Check Check

PyCrypto
M2Crypto
cryptography.io
Keyczar * * *
PyNaCl * * *

TABLE III
Security choices required by various libraries, as defined in our codebook. indicates the developer is required to make a secure choice, indicates no such
choice is required. Libraries that do not include a key derivation function, requiring the developer to fall back to Python’s hashlib API, are indicated with *.

made by documentation and by API design to a library’s
overall success or failure, but future work is needed to further
explore how the two operate independently.

IV. STUDY RESULTS

Study participants experienced very different rates of task
completion, functional success, and security success as a
function of which library they were assigned and whether they
were assigned the symmetric or asymmetric tasks. Overall, we
find that completion rate, functional success, and self-reported
usability satisfaction showed similar results: cryptography.io,
PyCrypto and (to some extent) PyNaCl performed best on
these metrics. The security results, however, were somewhat
different. PyCrypto and M2Crypto were worst, while Keyczar
performed best. PyNaCl also had strong security results;
cryptography.io exhibited strong security for the symmetric
tasks but poor security for asymmetric tasks. These results
suggest that the relationship between “usable” design, devel-
oper satisfaction, and security outcomes is a complex one.

A. Participants

In total, we sent 52 448 email invitations. Of these, 5 918
(11.3%) bounced, and another 698 (1.3%) requested to be
removed from our list, a request we honored.

A total of 1 571 people agreed to our consent form; 660
(42.0%) dropped out without taking any action, most likely
because the initial task seemed too difficult or time-consuming.
The other 911 proceeded through at least one task; of these,
337 proceeded to the exit survey, and 282 completed it with
valid responses.1 Of these, 26 were excluded for failing to
use their assigned library. Unless otherwise noted, we report
results for the remaining 256 participants, who proceeded
through all tasks, used their assigned library, and completed
the exit survey with valid responses.

1We define invalid responses as providing straight-line answers to all
questions or writing off-topic or abusive comments in free-text responses.

An additional 61 participants attempted to reach the study
but encountered technical errors in our infrastructure, mainly
due to occasional AWS pool exhaustion during times of high
demand.

Our 256 participants reported ages between 18 and 63 (mean
29.4, sd 7.9), and the vast majority of them reported being
male (238, 93.0%).

We successfully reached the professional developer de-
mographic we targeted. Almost all (247, 96.5%) had been
programming in general for more than two years, and 81.2%
(208) had been programming in Python for more than two
years. Most participants (196, 76.6%) reported programming
as (part of) their primary job; of those, 147 (75.0%) used
Python in their primary job. Most participants (195, 76.2%)
said they had no IT-security background.

While the developers we invited represent a random sample
from GitHub, our valid participants are a small, self-selected
subset. Table IV and Figure 2 detail available GitHub demo-
graphics for both groups. Our participants appear to be slightly
more active on GitHub than average: owning more public
repositories, having more followers, having older accounts,
and being more likely to provide optional profile information.
This may correspond to their self-reported high levels of
programming experience and professional status.

B. Regression models

In the following subsections, we apply regression models to
analyze our results in detail. To analyze binary outcomes (e.g.,
secure vs. insecure), we use logistic regression; to analyze
numeric outcomes (e.g., SUS score), we use linear regression.
When we consider results on a per-task rather than a per-
participant basis (for security and functionality results, as well
as perceived security), we use a mixed model that adds a
random intercept to account for multiple tasks from the same
participant.

8



Invited Valid
Hireable 19.5% 37.9%
Company listed 28.0% 42.2%
URL to Blog 34.7% 55.6%
Biography added 8.1% 16.3%
Location provided 49.9% 75.8%

Public gists (median) 0 1
Public repositories (median) 12 20
Following (users, median) 1 2
Followers (users, median) 3 7
GitHub profile creation (days ago, median) 1 415 1 589
GitHub profile last update (days ago, median) 50 38

TABLE IV
GitHub demographics for the 50 000 invited users and for our 256 valid

participants.

Fig. 2. Boxplots comparing our invited participants (a random sample from
GitHub) with those who provided valid participation. The center line indicates
the median; the boxes indicate the first and third quartiles. The whiskers extend
to ±1.5 times the interquartile range. Outliers greater than 150 were truncated
for space.

For each regression analysis, we consider a set of candi-
date models and select the model with the lowest Akaike
Information Criterion (AIC) [67]. The included factors are
described in Table V. We consider candidate models consisting
of the required factors library and encryption mode, as well
as (where applicable) the participant random intercept, plus
every possible combination of the optional variables.

We report the outcome of our regressions in tables. Each
row measures change in the analyzed outcome related to
changing from the baseline value for a given factor to a
different value for that factor (e.g., changing from asymmet-
ric to symmetric encryption). Logistic regressions produce
an odds ratio (O.R.) that measures change in likelihood of
the targeted outcome; baseline factors by construction have
O.R.=1. For example, Table VII indicates that M2Crypto
participants were 0.55× as likely to complete all tasks as
participants in the baseline PyCrypto condition. In constrast,
linear regressions measure change in the absolute value of the
outcome; baseline factors by construction have coef=0. In each
row, we also provide a 95% confidence interval (C.I.) and a
p-value indicating statistical significance.

For each regression, we set the library PyCrypto as the
baseline, as it has the most download counts of all libraries we
included in our study, and can therefore be considered as the
most common “default” crypto library for Python. In addition,

we used the set of symmetric tasks as the baseline, as these
correspond to the simpler and more basic form of encryption.
All baseline values are given in Table V.

C. Dropouts

We first examine how library and encryption mode affected
participants’ dropout rates, as we believe that dropping out of
the survey is a first (if crude and oversimplified) measure of
how much effort was required to solve the assigned tasks with
the assigned library. Table VI details how many participants
in each condition reached each stage of the study.

We test whether library and encryption mode affect dropout
rate using a logistic regression model (see Section IV-B)
examining whether each participant who consented proceeded
through all tasks and started the exit survey. (We use the
start of the survey here because dropping out at the survey
stage seems orthogonal to library type.) For this model, we
include only the library-encryption mode interactions as an
optional factor, because we do not have experience or security
background data for the participants who dropped out.

The final model (see Table VII) indicates that asymmetric-
encryption participants were only about half as likely to
proceed through all tasks as participants assigned to symmetric
encryption, which was statistically significant. Compared to
the “default” choice of PyCrypto, participants assigned to
M2Crypto and Keyczar were about half as likely to proceed
through all tasks, which was also statistically significant.
PyNaCl exhibits a higher dropout rate than PyCrypto; how-
ever, this trend was not significant. cryptography.io matches
PyCrypto’s dropout rate. Although the two-way interactions
are included in the final model, none exhibits a significant
result.

Overall, these results suggest that PyCrypto (approximate
default) and cryptography.io (designed for usability, with rela-
tively complete documentation) were least likely to drive par-
ticipants away. Keyczar, also designed for usability, performed
worst on this metric.

D. Functionality results

We next discuss the extent to which participants were able to
produce functional solutions—that is, solutions that produced
a key or encrypted and decrypted some content without
generating an exception.2 We observed a wide variance in
functional results across libraries and encryption types, ranging
from asymmetric Keyczar (13.7% functional) to symmetric
cryptography.io and symmetric PyNaCl (89.5% and 87.9%
functional respectively). Figure 3 illustrates these results.

To examine these results more precisely, we applied a
logistic regression, as described in Section IV-B, to model
the factors that affect whether or not each individual task
was marked as functional. The final model (see Table VIII)
shows that M2Crypto and Keyczar are significantly worse
for functionality than the baseline PyCrypto; cryptography.io
and PyNaCl appear slightly better, but the difference is not

2Participants who skipped a task are counted as functionally incorrect for
that task.

9



Factor Description Baseline

Required factors
Library The cryptographic library used. PyCrypto
Encryption mode Asymmetric or Symmetric Symmetric

Optional factors
Experienced True if a programming in Python is part of participant’s job, and/or if participant has been

programming in Python for more than five years; otherwise false. Self-reported.
False

Security background True or false, self-reported. False
Library experience Whether the participant has used the library before, seen code that used it but not used it

themselves; or neither. Self-reported.
No experience

Copy-paste Whether the participant pasted code during this task. Measured, per-task regressions only. False
Library × Mode Interaction between the library and encryption mode factors described above. cryptography.io

:asymmetric

TABLE V
Factors used in regression models. Categorical factors are individually compared to the baseline. Final models were selected by minimum AIC; candidates

were defined using all possible combinations of optional factors, with both required factors included in every candidate.

Started Total
Library Mode Consented Survey Valid

PyCrypto sym 136 48 41
asym 175 37 24

M2Crypto sym 157 36 20
asym 174 35 27

cryptography.io sym 136 48 39
asym 174 22 19

Keyczar sym 136 26 20
asym 173 24 17

PyNaCl sym 136 34 29
asym 174 27 20

Total 1 571 337 256

TABLE VI
The number of participants who progressed through each phase of the study,

by condition. Each column is a subset of the previous columns.

Factor O.R. C.I. p-value

M2Crypto 0.55 [0.33, 0.91] 0.02*
cryptography.io 1.00 [0.61, 1.64] 1
Keyczar 0.43 [0.25, 0.75] 0.003*
PyNaCl 0.61 [0.36, 1.03] 0.065

asymmetric 0.49 [0.3, 0.81] 0.006*

M2Crypto:asymmetric 1.72 [0.83, 3.57] 0.144
cryptography.io:asymmetric 0.54 [0.25, 1.16] 0.112
Keyczar:asymmetric 1.39 [0.63, 3.05] 0.418
PyNaCl:asymmetric 1.12 [0.53, 2.39] 0.768

TABLE VII
Results of the final logistic regression model examining whether participants

who consented proceeded through all tasks and continued to the survey.
Odds ratios (O.R.) indicate relative likelihood of continuing. Statistically
significant factors indicated with *. See Section IV-B for further details.

significant. Most notably, Keyczar is estimated as only 10%
as likely to produce a functional result. By comparing con-
fidence intervals, we see that Keyczar is also significantly
worse than PyNaCl and cryptography.io. The results also show

Fig. 3. Percentage of tasks for which participants generated functional
solutions, by condition.

that symmetric tasks were about 6× (0.16-1) as likely as
asymmetric tasks to have functional solutions, and that using
code generated via copy-and-paste improves a task’s odds of
functionality about 3× (both significant). The participant’s
Python experience level, security background, and experience
with their assigned library do not appear in the final model,
suggesting they are not significant factors in the functionality
results.

In general, the set of asymmetric cryptography tasks was
harder to solve in a functionally correct way than the set
of symmetric cryptography tasks. This seem to be largely
because we included X.509 certificate handling in the set of
asymmetric cryptography tasks. Two of the libraries specifi-
cally designed to be easy to use (Keyczar and PyNaCl) do
not support X.509 certificate handling out of the box, so
these tasks had to be done via workarounds or could not
be solved at all. On the other hand, the low-level X.509
certificate APIs of M2Crypto and PyCrypto require developers
to deal with many cryptographic details (e.g., root certificate
stores and certificate details such as the Common Name or
Subject Alternative Name), which might have an impact on

10



Fig. 4. Percentage of tasks with secure solutions, considering only tasks with
functional solutions, by condition.

functionality in addition to security.
The only significant interaction in the final model is between

M2Crypto and asymmetric tasks: these tasks were about 8×
more likely than expected to be marked functional. Indeed,
M2Crypto is the only library (see Figure 3) for which sym-
metric tasks were (slightly) less functional than asymmetric
tasks. We hypothesize that this is caused by the requirement
that developers have to choose many cryptographic details for
both symmetric and asymmetric encryption in M2Crypto.

Factor O.R. C.I. p-value

M2Crypto 0.26 [0.09, 0.69] 0.007*
cryptography.io 1.68 [0.61, 4.61] 0.311
Keyczar 0.10 [0.04, 0.26] < 0.001*
PyNaCl 1.58 [0.55, 4.56] 0.394

asymmetric 0.16 [0.07, 0.38] < 0.001*

copy-paste 3.29 [1.97, 5.49] < 0.001*

M2Crypto:asymmetric 8.14 [2.29, 28.95] 0.001*
cryptography.io:asymmetric 1.53 [0.4, 5.75] 0.532
Keyczar:asymmetric 1.50 [0.36, 6.22] 0.578
PyNaCl:asymmetric 0.49 [0.13, 1.86] 0.293

TABLE VIII
Results of the final logistic regression mixed model examining which factors
correlate with task functionality. Odds ratios indicate relative likelihood of a
task being functionally correct. Statistically significant values indicated with

*. See Section IV-B for further details.

E. Security results

Next, we consider whether participants whose code was
functional also produced secure solutions. As with function-
ality, we observed a broad range of results (see Figure 4).
Overall, Keyczar was notably secure (for a small sample)
and PyCrypto and to a lesser extent M2Crypto were notably
insecure.

We again apply logistic regression (Section IV-B) to in-
vestigate the factors that influence security; we include only
functional task solutions in this analysis. The results are shown
in Table IX. The final model shows that compared to the
baseline PyCrypto, every library appears to produce better

Factor O.R. C.I. p-value

M2Crypto 2.20 [0.68, 7.11] 0.186
cryptography.io 19.34 [7.78, 48.03] <0.001*
Keyczar 24.54 [6.31, 95.43] <0.001*
PyNaCl 11.29 [4.46, 28.61] <0.001*

asymmetric 3.58 [1.28, 10.03] 0.015*

sec. bkgrd. 1.57 [0.94, 2.61] 0.083

M2Crypto:asymmetric 1.09 [0.25, 4.73] 0.909
cryptography.io:asymmetric 0.08 [0.02, 0.31] <0.001*
Keyczar:asymmetric 0.54 [0.04, 7.37] 0.642
PyNaCl:asymmetric 0.29 [0.07, 1.2] 0.088

TABLE IX
Results of the final logistic regression mixed model examining which factors

correlate with task security, among only tasks that were functional. Odds
ratios indicate relative likelihood of a solution being secure. Statistically
significant values indicated with *. See Section IV-B for further details.

security; all of these except M2Crypto are significant. At
the extreme, Keyczar is estimated almost 25× as likely to
produce a secure solution. This is particularly notable because
Keyczar was so difficult: only 16 and seven participant tasks,
respectively, exhibited functional symmetric and asymmetric
solutions, but 12 and six of these respectively were secure,
the highest per-capita of any library. The regression results
also show that at baseline, asymmetric tasks were about 3×
more likely to exhibit secure code than symmetric tasks. The
final model also indicates that tasks from participants with
a security background were about 1.5× more likely to be
secure; Python experience level and experience directly with
the assigned library do not seem to affect security noticeably,
as they do not appear in the final model. The only significant
interaction term is between cryptography.io and asymmetric:
cryptography.io is the only library for which asymmetric
performed less securely. We hypothesize that this is because
the symmetric tasks could be completed using the library’s
high-level “recipes” layer, while the asymmetric tasks required
the participant to work with the low-level “hazmat” layer.

Security perception. In the exit survey, we showed par-
ticipants the code they had written to solve each task and
asked them (on a five-point Likert scale from Strongly Agree
to Strongly Disagree) whether they thought their solution
was secure. We did not define security, as we wanted to
know whether our participants were satisfied with the security
properties of their code in general, rather than meeting a
specific threat model. Across all libraries, the majority of our
participants were convinced that their solution was secure.
The median (excluding 10% of tasks for which participants
answered “I don’t know”) was no lower than “neutral” across
all combinations of libraries and encryption modes; security
confidence was highest for cryptography.io and PyNaCl (both
encryption modes), as well as PyCrypto and Keyczar (asym-
metric), all of which had median value “agree.”

In considering these answers, we are most interested in tasks
for which we rated the solution insecure, but the participant
agreed or strongly agreed that their solution for that task

11



Factor O.R. C.I. p-value

M2Crypto 0.59 [0.25, 1.38] 0.221
cryptography.io 0.58 [0.27, 1.27] 0.176
Keyczar 0.25 [0.05, 1.3] 0.099
PyNaCl 0.62 [0.27, 1.46] 0.277

asymmetric 1.32 [0.72, 2.42] 0.373

sec. bkgrd. 1.65 [0.86, 3.14] 0.13

TABLE X
Results of the final logistic regression mixed model examining factors

correlating with erroneous belief that a task is secure. Odds ratios indicate
relative likelihood of this belief. Some trends are observable, but no results

are statistically significant. See Section IV-B for further details.

was secure. These situations are potentially dangerous, as the
developer mistakenly believes they have achieved security.
Overall, 78 of 396 tasks (19.7%) fell into this category, a
disappointingly high number. To examine factors that correlate
with this situation, we applied a mixed-model logistic regres-
sion, as described in Section IV-B, with outcome dangerous
error or not per task. The results are shown in Table X.
Although some trends are observable, the final model finds
no significant results; this suggests that at least at this sample
size, no particular factors were significantly associated with a
higher likelihood of erroneous belief.

F. Participant opinions

Our self-reported usability metrics reveal large differences
between the libraries. Table XI lists the average SUS scores
by condition. Overall, PyNaCl and cryptography.io performed
best, while M2Crypto and Keyczar performed worst. Overall,
these SUS scores are quite low; a score of 68 is considered
average for end-user products and systems [63], and even our
best-performing condition does not reach this standard. This
suggests that even the most usable libraries we tested have
considerable room for improvement.

Using a linear regression model (see Section IV-B), we
analyzed the impact of library and encryption mode, shown
in Table XII. We find that M2Crypto and Keyczar are
significantly less usable than the baseline PyCrypto; Py-
NaCl is significantly more usable. Unsurprisingly, symmetric-
condition participants reported significantly more usability
than asymmetric-condition participants. The final model in-
dicates that security background and having seen the assigned
library before were both associated with a significant increase
in usability. Having used the library before was associated
with an increase relative to no familiarity, but this trend was
not significant, probably because of the very small sample size:
only 18 participants reported having used their assigned library
before. Python experience was included in the final model but
was not a signficiant covariate; the final model did not include
any interactions between library and encryption mode.

We compiled our additional usability questions, drawn from
prior work as described in Section III-G, into a score out of
100 points. The results were similar to the SUS, and in fact,
the two scores were significantly correlated (Kendall’s τ=0.65,

Mean Mean
Library Mode SUS API Scale

PyCrypto sym 63.9 64.2
asym 47.8 52.5

M2Crypto sym 33.9 32.5
asym 36.4 35.6

cryptography.io sym 67.2 67.7
asym 52.3 61.6

Keyczar sym 40.8 40.9
asym 32.5 26.9

PyNaCl sym 67.2 66.8
asym 59.5 57.1

TABLE XI
Mean SUS scores and scores on our new API usability scale, by condition.

Factor Coef. C.I. p-value

M2Crypto -20.57 [-27.62, -13.52] <0.001*
cryptography.io 5.04 [-1.52, 11.61] 0.131
Keyczar -18.07 [-25.85, -10.3] <0.001*
PyNaCl 7.56 [0.48, 14.64] 0.036*

asymmetric -9.60 [-14.13, -5.08] <0.001*

experienced 3.79 [-1.33, 8.91] 0.146

sec. bkgrd. 6.22 [0.98, 11.46] 0.02*

seen lib 6.62 [0.39, 12.85] 0.037*
used lib 3.33 [-5.95, 12.6] 0.481

TABLE XII
Linear regression model examining SUS scores. The coefficient indicates the

average difference in score between the listed factor and the base case.
Significant values indicated with *. R2 = 0.376. See Section IV-B for

further details.

p < 0.001). Using Cronbach’s alpha, we determined that the
scale’s internal reliability was high (α = 0.98).

Table XIII shows the results of a linear regression exam-
ining score on our scale. As before, M2Crypto and Keyczar
are significantly worse than PyCrypto. Using this measure,
cryptography.io is significantly better than PyCrypto, while
PyNaCl is better than PyCrypto but not significantly so. Also
as before, significantly higher scores were correlated with
symmetric tasks and with having seen the assigned library
before. Having used the library before was again correlated
with higher scores, but not significantly so, probably due to
sample size. Security background was included in the final
model but not significant; Python experience and interactions
between library and encryption mode were not included in the
final model.

The answers to questions about the API documentation indi-
cate that Keyczar and M2Crypto have a sizable problem with
their documentation: Our participants consistently answered
that they found neither helpful explanations nor helpful code
examples in the documentation, and that they had to spend a lot
of time reading the documentation before they could solve the
tasks. Altogether, they found the documentation for Keyczar
and M2Crypto not helpful. This corresponded to responses
saying that the tasks were not straightforward to implement

12



Factor Coef. C.I. p-value

M2Crypto -22.44 [-28.54, -16.35] <0.001*
cryptography.io 7.21 [1.45, 12.97] 0.014*
Keyczar -21.59 [-28.41, -14.77] <0.001*
PyNaCl 5.66 [-0.5, 11.82] 0.072

asymmetric -8.00 [-11.99, -4.02] <0.001*

sec. bkgrd. 3.94 [-0.66, 8.54] 0.093

seen lib 6.60 [1.12, 12.09] 0.019*
used lib 6.74 [-1.41, 14.88] 0.104

TABLE XIII
Linear regression model examining scores on our cognitive-dimension-based
scale. The coefficient indicates the average difference in score between the

listed factor and the base case (PyCrypto and symmetric, respectively).
Significant values indicated with *. R2 = 0.466. See Section IV-B for

further details.

for these two libraries. Interestingly, for cryptography.io, the
perceived effort that had to be invested into understanding the
library in order to be able to work on the tasks was the lowest.
For cryptography.io, PyNaCl, and PyCrypto, the developers
felt that after having used the library to solve the tasks, they
had a pretty good understanding of how the library worked.

For color, we include a few exemplar quotes from our
participants who chose to comment on the documentation.
One participant said the Keyczar documentation was “awful
and doesn’t seem to document its Python API at all.” A second
said, “I don’t understand why you have an API with no search
feature and functional descriptions. This is insane,“ and a third
commented that “The linked document is so unkind that I must
read the code.” A third Keyczar participant left an ASCII-art
comment spelling out “Your documentation is bad and you
should feel bad.”

One participant assigned to M2Crypto called the docu-
mentation “solidly awful,” “just terrible,” and “completely
unusable.” The same participant inquired whether our request
to use this library was “a joke” or “part of the study.”
Other M2Crypto participants said “the linked documentation
is wildly insufficient” and M2Crypto’s “interface is arcane
and documentation hard to understand.” Several participants
assigned to this library commented that they had to revert to
Stack Overflow posts or blog entries found via search engines
to be able to work on the tasks at all.

In contrast, one participant working with cryptography.io
called a tutorial contained in the documentation “amazing!”
while stating that “The comparable OpenSSL docs make one
want to jump off a cliff.” Another said the documentation “was
confusing at first, but later I got the hang of it.”

G. Examining individual tasks

Success in solving the tasks varied not only across libraries,
but also across individual tasks, as illustrated in Figure 5.
We analyze these results for trends, rather than statistical
significance, to avoid diluting our statistical power by testing
the same results in multiple ways.

Encryption proved easiest. Symmetric participants achieved
85.2% functional success, with 70.1% of those rated secure;
72.0% of asymmetric encryption tasks were functional, with
78.8% of those rated secure. In contrast, the hardest task
to solve overall dealt with certificate validation. Only 22.4%
of asymmetric participants were able to provide a functional
solution, and not a single one was secure. Key generation tasks
fell in the middle.

Investigating security errors. We also examined trends in
the types of security errors made by our participants. (For a
full accounting, see Table XIV in Appendix B.)

We first consider symmetric cryptography, and in particular
situations where participants were allowed to make security
choices. Only M2Crypto and PyCrypto allow developers to
choose an encryption algorithm; interestingly, all 11 PyCrypto
participants selected DES (insecure), but no M2Crypto partic-
ipants chose an insecure algorithm. While M2Crypto’s official
API documentation does not provide code examples, the first
results on Google when searching “m2crypto encryption” pro-
vide code snippets that use AES. The PyCrypto documentation
does provide code examples for symmetric encryption and
discourages the use of DES as a weak encryption algorithm.
However, the first Google results when searching “pycrypto
encryption” provide code examples that use DES. Nine of the
11 participants who used DES mentioned specific blog posts
and Stack Overflow posts that we later determined to have
insecure code snippets.

Similarly, allowing developers to pick modes of operation
resulted in relatively many vulnerabilities. PyCrypto partici-
pants chose the insecure ECB as mode of operation explicitly
or did not provide a mode of operation parameter at all (ECB
is the default). As with selecting an encryption algorithm,
affected participants reported using blog posts and Stack Over-
flow posts containing insecure snippets as information sources.
PyCrypto participants chose static IVs more frequently than
those using other libraries; interestingly, this corresponds to
not mentioning the importance of a truly random IV in the
documentation. Relatedly, requiring developers to pick key
sizes manually frequently resulted in too-small keys, across
libraries.

Interestingly, PyCrypto participants were most likely to
fail to use any key derivation function, possibly because
the documentation uses a plain string for an encryption key.
PyNaCl and PyCrypto participants used an insecure custom
key derivation function more frequently than participants in
other conditions: they frequently used a simple hash function
for key stretching. cryptography.io participants, in contrast,
performed exceedingly well on this task, likely because the
included PBKDF2 function is well documented and close
to the symmetric encryption example. On the negative side,
cryptography.io users picked static salts for PBKDF2 more
frequently than others, even though the code example in the
API documentation uses a random salt; however, no expla-
nation on the importance of using a random value is given.
Storing encryption keys in plaintext rather than encrypted was
also common across all libraries.

13



Fig. 5. Percentage of tasks with functionally correct solutions (left), and percentage of functional solutions that were rated secure (right), organized by library
and task type.

Generating and storing asymmetric keys was significantly
less vulnerable to weak cryptographic choices. Only PyCrypto
and M2Crypto participants failed to pick sufficiently secure
RSA key sizes, potentially due again to insecure code exam-
ples (mentioning 1024-bit keys) among the top Google search
results. Since all libraries but Keyczar and PyNaCl provide a
private-key export function that offers encryption, asymmetric
private-key storage had comparably few insecurities. However,
PyNaCl users had to manually encrypt their private key and
ran into similar security problems as the symmetric-encryption
users mentioned above. Asymmetric encryption produced rel-
atively few security errors.

Certificate validation was the most challenging task. Across
all libraries, participants had trouble properly implementing
signature validation, hostname verification, CA checks, and
validity checks. This may be caused by task complexity and
insufficient API support.

V. DISCUSSION AND CONCLUSION

Our results suggest that usability and security are deeply
interconnected in sometimes surprising ways. We distill some
high-level findings derived from our individual results and sug-
gest future directions for library design and further research.

Simplicity does promote security (to a point). In general,
the simplified libraries we tested produced more secure results
than the comprehensive libraries, validating the belief that
simplicity is better. Further, cryptography.io proved secure
for the symmetric tasks (primarily doable via the simplified
“recipes” layer) but not for the asymmetric tasks (primarily
requiring use of the complex “hazmat” layer). This reinforces
both the idea that simplicity promotes security and the need
for simplified libraries to offer a broader range of features.

However, even simplified libraries did not entirely solve the
security problem; in all but one condition, the rate of security
success was below 80%. These security errors were frequently

caused by missing features (discussed next). Worse, for 20% of
functional solutions, the participant rated their code as secure
when it was not; this indicates a dangerous gap in recognition
of potential security problems.

Features and documentation matter for security. Several
of the libraries we selected did not (or not well) support tasks
auxiliary to encryption and decryption, such as secure key
storage and password-based key generation. These missing
features caused many of the insecure results in the otherwise-
successful simplified libraries. We argue that to be usably
secure, a cryptographic API must support such auxiliary tasks,
rather than relying on the developer to recognize the potential
for danger and identify a secure alternate solution. Further, we
suggest that cryptographic APIs should be designed to support
a reasonably broad range of use cases; requiring developers to
learn and use new APIs for closely related tasks seems likely
to drive them back to comprehensive libraries like PyCrypto
or M2Crypto, which pose security risks.

Documentation is also critical. PyCrypto, for example,
contains symmetric encryption examples that use AES in
ECB mode, which is prima facie insecure. Participants who
left the PyCrypto documentation to search for help on Stack
Overflow and blogs often ended up with insecure solutions;
this suggests the importance of creating official documentation
that is useful enough to keep developers from searching out
unvetted, potentially insecure alternatives. Many participants
copied these examples in their solutions. In contrast, the
excellent code examples for PyNaCl and in the cryptography.io
“recipes” layer appear to have contributed to high rates of
security success.

What do we mean by usable? Despite claims of usability
and a simplified API, Keyczar proved the most difficult to
use of our chosen libraries. This was caused primarily by two
issues: poor documentation (as measured by our API usability
scale) and the lack of documented support for key generation

14



in code, rather than requiring interaction at the command line.
Those few participants who successfully achieved functional
code had very high rates of security, but in practice developers
who give up on a library because they cannot make it work for
the desired task will not be able to take advantage of potential
security benefits. For example, developers who have difficulty
with Keyczar might turn to PyCrypto, which participants
preferred but which showed poor security results.

A blueprint for future libraries. Taken together, our
results suggest several important considerations for designers
of future cryptographic libraries. First, the recent emphasis on
simplifying APIs (and choosing secure defaults) has provided
improvement; we endorse continuing in this direction. We
suggest, however, that library designers go further, by treating
documentation quality as a first-class requirement, with partic-
ular emphasis on secure code examples. We also recommend
that library designers consider a broad range of potential tasks
users might need to accomplish cryptographic goals, and build
support for each of them into a more comprehensive whole.

Our results suggest that supporting holistic, application-
level tasks with ready-to-use APIs is the best option. That
said, we acknowledge that it may be difficult or impossible to
predict all tasks API users may want or need. Therefore, where
lower-level features are necessary, they should be intentionally
designed to make combining them into more complex tasks
securely as easy as possible.

Looking forward, further research is needed to design and
evaluate libraries that meet these goals. Some changes can also
be made within existing libraries—for example, improving
documentation, changing insecure defaults to secure defaults,
or even adding compiletime or runtime warnings for insecure
parameters. These changes should be evaluated involving
future users both before they are deployed and longitudinally
to see how they affect outcomes within real-world code. We
also hope to refine and expand the usability scale developed
in this paper to create an evaluation framework for security
APIs generally, providing both feedback and guidance for
improvement.

VI. ACKNOWLEDGMENTS

The authors would like to thank Mary Theofanos, Julie
Haney, Jason Suagee, and the anonymous reviewers for pro-
viding feedback; Marius Steffens and Birk Blechschmidt for
helping to test the infrastructure; Matt Bradley and Andrea
Dragan for help managing multi-institution ethics approvals;
and all of our participants for their contributions. This work
was supported in part by the German Ministry for Educa-
tion and Research (BMBF) through funding for the Center
for IT-Security, Privacy and Accountability (CISPA) (FKZ:
16KIS0344,16KIS0656), and by the U.S. Department of Com-
merce, National Institute for Standards and Technology, under
Cooperative Agreement 70NANB15H330.

REFERENCES

[1] Amnesty International USA, “Encryption - A Matter of Human Rights,”
2016. [Online]. Available: https://www.amnestyusa.org/sites/default/
files/encryption - a matter of human rights - pol 40-3682-2016.pdf

[2] R. J. Anderson, “Why cryptosystems fail,” Communications of the ACM,
vol. 37, 1994.

[3] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: validating SSL
certificates in non-browser software,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security (CCS 2012).
ACM, 2012.

[4] B. Reaves, N. Scaife, A. Bates, P. Traynor, and K. R. Butler, “Mo(bile)
money, mo(bile) problems: analysis of branchless banking applications
in the developing world,” in Proceedings of the 24th USENIX Security
Symposium (USENIX Security 2015). USENIX Association, 2015.

[5] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in Android applications,” in Proceedings
of the 2013 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS 2013). ACM, 2013.

[6] S. Fahl, M. Harbach, T. Muders, M. Smith, and U. Sander, “Helping
Johnny 2.0 to encrypt his Facebook conversations,” in Proceedings of
the Eighth Symposium on Usable Privacy and Security (SOUPS 2012).
ACM, 2012.

[7] J. Viega, M. Messier, and P. Chandra, Network Security with OpenSSL.
O’Reilly Media, 2002.

[8] “Cryptography.io.” [Online]. Available: https://cryptography.io
[9] D. J. Bernstein, T. Lange, and P. Schwabe, “The security impact of

a new cryptographic library,” in Proceedings of the 2nd International
Conference on Cryptology and Information Security in Latin America
(LATINCRYPT 2012). Springer-Verlag, 2012.

[10] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith, “Why Eve and Mallory love Android: an analysis of Android
SSL (in)security,” in Proceedings of the 2012 ACM Conference on
Computer and Communications Security (CCS 2012). ACM, 2012.

[11] L. Onwuzurike and E. De Cristofaro, “Danger is My Middle Name:
Experimenting with SSL Vulnerabilities in Android Apps,” arXiv.org,
2015.

[12] M. Oltrogge, Y. Acar, S. Dechand, M. Smith, and S. Fahl, “To pin or
not to pin—helping app developers bullet proof their tls connections,” in
Proceedings of the 24th USENIX Security Symposium (USENIX Security
2015). USENIX Association, 2015.

[13] H. Perl, S. Fahl, and M. Smith, “You won’t be needing these any more:
On removing unused certificates from trust stores,” in Proceedings of
18th International Conference on Financial Cryptography and Data
Security (FC 2014). Springer Berlin Heidelberg, 2014.

[14] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and M. Smith,
“SoK: Lessons Learned from Android Security Research for Appified
Software Platforms,” in Proceedings of the 37th IEEE Symposium on
Security and Privacy (SP 2016), 2016.

[15] S. Fahl, M. Harbach, M. Oltrogge, T. Muders, and M. Smith, “Hey, you,
get off of my clipboard,” in Proceedings on Financial Cryptography and
Data Security (FC 2013). Springer, 2013.

[16] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith, “Rethinking
SSL development in an appified world,” in Proceedings of the 2013
ACM SIGSAC Conference on Computer and Communications Security
(CCS 2013). ACM, 2013.

[17] D. Lazar, H. Chen, X. Wang, and N. Zeldovich, “Why does crypto-
graphic software fail?” in Proceedings of the 5th Asia-Pacific Workshop
on Systems. ACM, 2014.

[18] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, ““Jumping Through
Hoops”: Why do Java Developers Struggle With Cryptography APIs?”
in Proceedings of the 37th International Conference on Software Engi-
neering (ICSE 2016), 2016.

[19] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You Get Where You’re Looking For: The Impact of Information
Sources on Code Security,” in Proceedings of the 37th IEEE Symposium
on Symposium on Security and Privacy (SP 2016), 2016.

[20] S. Arzt, S. Nadi, K. Ali, E. Bodden, and S. Erdweg, “Towards secure
integration of cryptographic software,” in Proceedings of the 2015 ACM
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Onward! 2015), 2015.

[21] S. Indela, M. Kulkarni, K. Nayak, and T. Dumitra, “Helping Johnny
encrypt: Toward semantic interfaces for cryptographic frameworks,”
in Proceedings of the 2016 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software
(Onward! 2016), 2016.

[22] B. A. Myers and J. Stylos, “Improving API usability,” Communications
of the ACM, vol. 59, no. 6, pp. 62–69, 2016.

15

https://www.amnestyusa.org/sites/default/files/encryption_-_a_matter_of_human_rights_-_pol_40-3682-2016.pdf
https://www.amnestyusa.org/sites/default/files/encryption_-_a_matter_of_human_rights_-_pol_40-3682-2016.pdf
https://cryptography.io


[23] J. Nielsen, Usability engineering. Morgan Kaufmann, 1993.
[24] S. Clarke, “Using the cognitive dimensions framework to de-

sign usable APIs,” https://blogs.msdn.microsoft.com/stevencl/2003/11/
14/using-the-cognitive-dimensions-framework-to-design-usable-apis/.

[25] J. Bloch, “How to design a good API and why it matters,” in Companion
to the 21st ACM SIGPLAN Conference. ACM, 2006.

[26] M. Henning, “API design matters,” Queue, vol. 5, no. 4, pp. 24–36,
2007.

[27] M. Green and M. Smith, “Developers are Not the Enemy!: The Need
for Usable Security APIs,” IEEE Security & Privacy, vol. 14, no. 5, pp.
40–46, 2016.

[28] P. Gorski and L. L. Iacono, “Towards the usability evaluation of security
apis,” in Proceedings of the Tenth International Symposium on Human
Aspects of Information Security & Assurance (HAISA 2016), 2016.

[29] C. Wijayarathna, N. A. G. Arachchilage, and J. Slay, “Generic cognitive
dimensions questionnaire to evaluate the usability of security apis,” in
Proceedings of the 19th International Conference on Human-Computer
Interaction (to appear), 2017.

[30] D. Oliveira, M. Rosenthal, N. Morin, K.-C. Yeh, J. Cappos, and
Y. Zhuang, “It’s the psychology stupid: How heuristics explain software
vulnerabilities and how priming can illuminate developer’s blind spots,”
in Proceedings of the 30th Annual Computer Security Applications
Conference (ACSAC 2014). ACM, 2014.

[31] G. Wurster and P. C. van Oorschot, “The developer is the enemy,” in
Proceedings of the 2008 New Security Paradigms Workshop (NSPW
2008). ACM, 2008.

[32] M. Finifter and D. Wagner, “Exploring the relationship between web
application development tools and security,” in Proceedings of the 2nd
USENIX conference on Web application development (WebApps 2011),
2011.

[33] L. Prechelt, “Plat forms: A web development platform comparison by
an exploratory experiment searching for emergent platform properties,”
IEEE Transactions on Software Engineering, vol. 37, no. 1, pp. 95–108,
2011.

[34] T. Scheller and E. Kühn, “Usability Evaluation of Configuration-Based
API Design Concepts,” in Human Factors in Computing and Informatics.
Springer Berlin Heidelberg, 2013, pp. 54–73.

[35] J. Stylos and B. A. Myers, “The implications of method placement on
API learnability,” in Proceedings of the 16th ACM SIGSOFT Interna-
tional Symposium. ACM, 2008.

[36] B. Ellis, J. Stylos, and B. Myers, “The Factory Pattern in API Design:
A Usability Evaluation,” in Proceedings of the 29th International
Conference on Software Engineering (ICSE 2007). IEEE, 2007.

[37] M. Piccioni, C. A. Furia, and B. Meyer, “An empirical study of api us-
ability,” in Proceedings of the 2013 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. IEEE, 2013.

[38] C. Burns, J. Ferreira, T. D. Hellmann, and F. Maurer, “Usable results
from the field of API usability: A systematic mapping and further
analysis,” in Proceedings of the 2012 IEEE Symposium on Visual
Languages and Human-Centric Computing , 2012.

[39] “GitHut: A Small Place to discover languages in GitHub,” 2016.
[Online]. Available: http://githut.info

[40] S. Willden, “Keyczar Design Philosophy,” 2015. [Online]. Available:
https://github.com/google/keyczar/wiki/KeyczarPhilosophy

[41] “OpenSSL.” [Online]. Available: https://www.openssl.org/
[42] “PyCrypto.” [Online]. Available: https://www.dlitz.net/software/

pycrypto
[43] “M2Crypto.” [Online]. Available: https://pypi.python.org/pypi/

M2Crypto
[44] “Keyczar.” [Online]. Available: https://github.com/google/keyczar
[45] “PyNaCl.” [Online]. Available: https://pynacl.readthedocs.io/en/latest
[46] “pyOpenSSL.” [Online]. Available: http://www.pyopenssl.org/en/stable
[47] “tlslite.” [Online]. Available: http://trevp.net/tlslite/
[48] “bcrypt.” [Online]. Available: https://github.com/pyca/bcrypt
[49] “gnupg.” [Online]. Available: https://github.com/isislovecruft/

python-gnupg
[50] “pycryptopp.” [Online]. Available: https://tahoe-lafs.org/trac/pycryptopp
[51] “scrypt.” [Online]. Available: http://bitbucket.org/mhallin/py-scrypt
[52] “simple-crypt.” [Online]. Available: https://github.com/andrewcooke/

simple-crypt
[53] “pysodium.” [Online]. Available: https://github.com/stef/pysodium
[54] “ed25519.” [Online]. Available: https://pypi.python.org/pypi/ed25519
[55] “pyaes.” [Online]. Available: https://github.com/ricmoo/pyaes

[56] “PyCryptodome.” [Online]. Available: http://pycryptodome.readthedocs.
io

[57] “PyMe.” [Online]. Available: http://pyme.sourceforge.net
[58] “pyDes.” [Online]. Available: https://github.com/toddw-as/pyDes
[59] “tls.” [Online]. Available: https://github.com/pyca/tls
[60] “GitHub Archive.” [Online]. Available: https://www.githubarchive.org
[61] “Jupyter notebook.” [Online]. Available: http://jupyter.org/
[62] “The Sodium crypto library (libsodium).” [Online]. Available: https:

//libsodium.org
[63] P. W. Jordan, B. Thomas, B. A. Weerdmeester, and A. L. McClelland,

“SUS: A “quick and dirty” usability scale,” in Usability Evaluation in
Industry. Taylor and Francis, 1996, pp. 189–194.

[64] National Institute of Standards and Technology (NIST), “NIST
Special Publication 800-57 Part 1 Revision 4: Recommendation for
Key Management,” 2016. [Online]. Available: http://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf

[65] S. Josefsson, “PKCS #5: Password-Based Key Derivation Function 2
(PBKDF2) Test Vectors,” RFC 6070, 2011.

[66] National Institute of Standards and Technology (NIST), “NIST Special
Publication 800-63B Digital Authentication Guideline,” 2016. [Online].
Available: https://pages.nist.gov/800-63-3/sp800-63b.html

[67] K. P. Burnham, “Multimodel Inference: Understanding AIC and BIC in
Model Selection,” Sociological Methods & Research, vol. 33, no. 2, pp.
261–304, 2004.

APPENDIX

A. Exit survey questions

Task-specific questions: Asked about each task
Please rate your agreement to the following statements:
(Strongly agree; agree; neutral; disagree; strongly disagree; I
don’t know.)

• I think I solved this task correctly.
• I think I solved this task securely.
• The documentation was helpful in solving this task.

General questions
• Are you aware of a specific library or other resource you

would have preferred to solve the tasks? Which? (Yes
with free response; no; I don’t know.)

• Have you used or seen the assigned library before? For
example, maybe you worked on a project that used the
assigned library, but someone else wrote that portion of
the code. (I have used the assigned library before; I have
seen the assigned library used but have not used it myself;
No, neither; I dont know.)

• Have you written or seen code for tasks similar to this
one before? For example, maybe you worked on a project
that included a similar task, but someone else wrote that
portion of the code. (I have written similar code; I have
seen similar code but have not written it myself; No,
neither; I dont know.)

System Usability Scale (SUS)
We asked you to use the assigned library and the following
questions refer to the assigned library and its documentation.
Please rate your agreement or disagreement with the following
statements: (Strongly agree; agree; neutral; disagree; strongly
disagree)

• I think that I would like to use this library frequently.
• I found the library unnecessarily complex.
• I thought the library was easy to use.

16

https://blogs.msdn.microsoft.com/stevencl/2003/11/14/using-the-cognitive-dimensions-framework-to-design-usable-apis/
https://blogs.msdn.microsoft.com/stevencl/2003/11/14/using-the-cognitive-dimensions-framework-to-design-usable-apis/
http://githut.info
https://github.com/google/keyczar/wiki/KeyczarPhilosophy
https://www.openssl.org/
https://www.dlitz.net/software/pycrypto
https://www.dlitz.net/software/pycrypto
https://pypi.python.org/pypi/M2Crypto
https://pypi.python.org/pypi/M2Crypto
https://github.com/google/keyczar
https://pynacl.readthedocs.io/en/latest
http://www.pyopenssl.org/en/stable
http://trevp.net/tlslite/
https://github.com/pyca/bcrypt
https://github.com/isislovecruft/python-gnupg
https://github.com/isislovecruft/python-gnupg
https://tahoe-lafs.org/trac/pycryptopp
http://bitbucket.org/mhallin/py-scrypt
https://github.com/andrewcooke/simple-crypt
https://github.com/andrewcooke/simple-crypt
https://github.com/stef/pysodium
https://pypi.python.org/pypi/ed25519
https://github.com/ricmoo/pyaes
http://pycryptodome.readthedocs.io
http://pycryptodome.readthedocs.io
http://pyme.sourceforge.net
https://github.com/toddw-as/pyDes
https://github.com/pyca/tls
https://www.githubarchive.org
http://jupyter.org/
https://libsodium.org
https://libsodium.org
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://pages.nist.gov/800-63-3/sp800-63b.html


• I think that I would need the support of a technical person
to be able to use this library.

• I found the various functions in this library were well
integrated.

• I thought there was too much inconsistency in this library.
• I would imagine that most people would learn to use this

library very quickly.
• I found the library very cumbersome to use.
• I felt very confident using the library.
• I needed to learn a lot of things before I could get going

with this library.

Our usability scale
Please rate your agreement to the following questions on a
scale from ‘strongly agree’ to ‘strongly disagree.’ (Strongly
agree; agree; neutral; disagree; strongly disagree) Calculate
the 0-100 score as follows: 2.5 * (5-Q1 +

∑
i=2..10(Qi − 1));

for the score, Q11 is omitted.
• I had to understand how most of the assigned library

works in order to complete the tasks.
• It would be easy and require only small changes to change

parameters or configuration later without breaking my
code.

• After doing these tasks, I think I have a good understand-
ing of the assigned library overall.

• I only had to read a little of the documentation for the
assigned library to understand the concepts that I needed
for these tasks.

• The names of classes and methods in the assigned library
corresponded well to the functions they provided.

• It was straightforward and easy to implement the given
tasks using the assigned library.

• When I accessed the assigned library documentation, it
was easy to find useful help.

• In the documentation, I found helpful explanations.
• In the documentation, I found helpful code examples.

Please rate your agreement to the following questions on a
scale from ‘strongly agree’ to ‘strongly disagree.’ (Strongly
agree; agree; neutral; disagree; strongly disagree; does not
apply)

• When I made a mistake, I got a meaningful error mes-
sage/exception.

• Using the information from the error message/exception,
it was easy to fix my mistake.

Demographics
• How long have you been programming in Python? (Less

than 1 year; 1-2 years; 2-5 years; more than five years)
• How long have you been coding in general? (Less than

1 year; 1-2 years; 2-5 years; more than five years)
• How did you learn to code? [all that apply] (self-taught,

online class, college, on-the-job training, coding camp)
• Is programming your primary job? If yes: Is writing

Python code (part of) your primary job?
• Do you have an IT-security background? If yes, please

specify.
• Please tell us your highest degree of education. (drop-

down)
• Please tell us your gender. (female, male, other (please

specify), decline to say)
• How old are you? (free text, check that the answer is a

number)
• What country/countries do you live in / which country/-

countries are you a citizen of? (dropdown)
• What is your occupation? (free text)

B. Security Errors

Table XIV details the different types of security errors made
by our participants, across the libraries we tested and the
tasks we assigned. Our definitions of security are discussed
in Section III-H.

17



Symmetric Keygen Key Size Key in Plain Weak Cipher Weak Mode Static IV No KDF Custom KDF KDF Salt KDF Algo. KDF Iter.

PyCrypto 6 4 11 14 3 15 11 1 1 2
M2Crypto 2 2 0 0 7 4 2 2 1 1
cryptography.io 1 7 0 0 0 1 3 10 0 0
Keyczar 0 3 0 0 0 1 0 0 0 0
PyNaCl 0 2 0 0 0 1 17 1 1 0

Symmetric Encryption No Enc. Weak Algo. Weak Mode Static IV

PyCrypto 0 17 23 29
M2Crypto 0 0 1 9
cryptography.io 0 0 0 0
Keyczar 0 0 0 0
PyNaCl 0 0 0 0

Asymmetric Keygen Key Size Key in Plain Weak Cipher Weak Mode Static IV No KDF Custom KDF KDF Salt KDF Algo. KDF Iter.

PyCrypto 6 0 0 0 0 0 0 0 0 0
M2Crypto 6 0 0 0 0 0 0 0 0 0
cryptography.io 0 0 0 0 0 0 0 0 0 0
Keyczar 0 1 0 0 0 0 0 0 0 0
PyNaCl 0 3 0 0 0 0 7 0 0 0

Asymmetric Encryption Key Size Padding

PyCrypto 9 0
M2Crypto 6 1
cryptography.io 0 0
Keyczar 0 0
PyNaCl 0 0

Certificate Validation Sig. Check CA Flag Check Hostname Check Date Check

PyCrypto 1 1 1 1
M2Crypto 2 13 11 14
cryptography.io 4 7 7 7
Keyczar 0 0 0 0
PyNaCl 1 1 1 1

TABLE XIV
Security errors made by our participants, as categorized by our codebook.

18


	Introduction
	Related Work
	Study Design
	Language selection
	Cryptographic library identification
	Recruitment and framing
	Experimental infrastructure
	Task design
	Python cryptographic libraries we included
	Exit survey
	Evaluating participant solutions
	Limitations

	Study results
	Participants
	Regression models
	Dropouts
	Functionality results
	Security results
	Participant opinions
	Examining individual tasks

	Discussion and conclusion
	Acknowledgments
	References
	Appendix
	Exit survey questions
	Security Errors


