
Cryptographic Function Detection in Obfuscated
Binaries via Bit-precise Symbolic Loop Mapping

Dongpeng Xu
The Pennsylvania State University

University Park, USA
Email: dux103@ist.psu.edu

Jiang Ming
The University of Texas at Arlington

Arlington, USA
Email: jiang.ming@uta.edu

Dinghao Wu
The Pennsylvania State University

University Park, USA
Email: dwu@ist.psu.edu

Abstract—Cryptographic functions have been commonly
abused by malware developers to hide malicious behaviors,
disguise destructive payloads, and bypass network-based fire-
walls. Now-infamous crypto-ransomware even encrypts victim’s
computer documents until a ransom is paid. Therefore, de-
tecting cryptographic functions in binary code is an appealing
approach to complement existing malware defense and forensics.
However, pervasive control and data obfuscation schemes make
cryptographic function identification a challenging work. Existing
detection methods are either brittle to work on obfuscated
binaries or ad hoc in that they can only identify specific cryp-
tographic functions. In this paper, we propose a novel technique
called bit-precise symbolic loop mapping to identify cryptographic
functions in obfuscated binary code. Our trace-based approach
captures the semantics of possible cryptographic algorithms
with bit-precise symbolic execution in a loop. Then we perform
guided fuzzing to efficiently match boolean formulas with known
reference implementations. We have developed a prototype called
CryptoHunt and evaluated it with a set of obfuscated synthetic
examples, well-known cryptographic libraries, and malware.
Compared with the existing tools, CryptoHunt is a general
approach to detecting commonly used cryptographic functions
such as TEA, AES, RC4, MD5, and RSA under different control
and data obfuscation scheme combinations.

Keywords-Cryptographic Function Detection; Obfuscated Bi-
naries; Symbolic Execution.

I. INTRODUCTION

The benefits of cryptographic functions have led to their
broad adoption by malicious software (malware) developers.
For example, malware developers actively encrypt protocols
to bypass network-based firewalls or filters [1], [2], [3]; ma-
licious payloads are often encrypted to impede anti-malware
scanning [4], [5]. Recently, crypto-ransomware (e.g., Cryp-
toLocker and CryptoWall) have become an emerging threat
that they encrypt infected users’ personal files, and victims
are forced to pay a ransom to recover their data [6], [7].
Easily accessed cryptographic libraries such as OpenSSL and
Microsoft Cryptography API also make reusing cryptographic
functions a trivial task [8], [9], [10].

On the other side, to investigate malicious intents and
design corresponding defensive solutions, security analysts try
to figure out the particular cryptographic functions used in
malware binary code [11], [12], [13], [14], [15]. In general,
cryptographic function detection facilitates malware analysis
and forensics [16] in three ways. First, cryptographic function

provides a starting point for analysis. By analyzing or moni-
toring the execution of the cryptographic functions, security
analysts can get access to the plain text and discover the
real malicious payloads [17]. Second, cryptographic function
identification can save time for analysts to perform binary
analysis. If one code section is detected as an implementation
of some specific cryptographic algorithm, analysts can skip
that section and focus on other parts [18]. Finally, the using
of similar cryptographic functions provides valuable clues
about malware lineage inference [19], [20]. For example,
the same buggy TEA implementation found in both Storm
Worm and Silent Banker malware reveals that they are very
likely originated from the same authors [11]. However, skilled
malware developers can easily apply various code obfuscation
techniques to camouflage the telltale signs of cryptographic
algorithm implementations [21]. As a result, detecting cryp-
tographic functions in obfuscated binaries has become an
important but also challenging work.

A notable difference of cryptographic algorithms from other
applications is that they involve a large number of arith-
metic computations, which in turn reveals many data related
specifications, such as “magic” constant values, excessive use
of bitwise operations, stable data flow graphs, and unique
input-output relationship. Existing methods for cryptographic
function identification in binaries have fully utilized these
specific features as detection heuristics. One category is to
search and identify static signatures (e.g., instruction chains
and mnemonic-const values) inside the binary program [1],
[14], [22], [23], [24]. More recent work identifies symmet-
ric cryptographic algorithms by measuring data flow graph
isomorphism [15]. Due to the fundamental limitations of
static analysis [25], [26], [27], the effects of static detection
are severely restricted when analyzing obfuscated binaries.
In contrast, dynamic detection captures runtime characteris-
tics [11], [12], [13], [18], [28], [29], which are more resilient
to many obfuscation methods. Especially, some advanced
detection signatures are only visible at run time, such as
the avalanche effect of input-output dependencies [13], [18]
and unique input-output relations [11], [12], [29]. However,
current dynamic approaches have two major limitations: 1)
they are not general enough to detect all commonly used
cryptographic functions (e.g., stream or asymmetric ciphers);
2) since many solutions need to recover input and output

parameters from memory, they still suffer from simple data
obfuscation schemes (e.g., data encoding [30], [31]).

In this paper, we continue dynamic cryptographic function
detection study and present a novel approach, CryptoHunt,
to address the limitations of existing work. Our key idea is
to capture the fine-grained semantics of the principal cryp-
tographic transformation iterations along an execution trace.
The execution trace is further split into segments according
to an enhanced loop abstraction. We then perform bit-precise
symbolic execution inside a loop body, and the generated
boolean formulas are later used as signatures to efficiently
match cryptographic algorithms in obfuscated binaries. Our
core technique, bit-precise symbolic loop mapping, is effective
to revert various data and control obfuscation effects, and also
with a much broader detection scope.

In particular, CryptoHunt’s detection includes the follow-
ing main steps. First, we automatically represent the core
transformations of a reference cryptographic algorithm (i.e.,
golden implementation) using boolean formulas. Then, we
run the target obfuscated program and record an execution
trace. Our enhanced loop abstraction can accurately identify
loop structures inside the trace. After that, we run bit-precise
symbolic execution to translate the loop bodies into boolean
formulas, which are later compared with the reference im-
plementations. However, bit-wise symbolic formula equivalent
matching using theorem prover is computationally expensive
and impractical. To ameliorate this performance bottleneck,
we propose a guided fuzzing method to filter out most of the
impossible symbolic variable mappings, leaving only about
5% for further verification.

We have evaluated CryptoHunt on a set of synthetic ex-
amples collected from GitHub, well-known cryptographic li-
braries, and malware. We compared CryptoHunt with other six
representative tools, and the experiment results are encourag-
ing. In all cases, only CryptoHunt is able to detect commonly
used cryptographic functions (e.g., TEA, AES, RC4, MD5,
and RSA) under different control and data obfuscation scheme
combinations. In addition to obfuscation, skilled malware
developers would customize cryptographic algorithms to evade
detection [32]. We indeed identified such a non-standard
XTEA implementation that reveals a different key schedule
constant [33]. Our evaluation shows CryptoHunt is a general
and obfuscation-resilient approach, and can be applied to real-
word malware analysis and forensics. In summary, we make
the following contributions:
• We have proposed a novel approach, CryptoHunt, to

detect cryptographic functions in obfuscated binaries.
Our key solution is to match the principal cryptographic
transformation iterations with bit-precise symbolic loop
mapping. CryptoHunt exhibits stronger resilience to code
obfuscation techniques and a wider detection range.

• We have designed a guided fuzzing method to solve the
scalability issue of bit-wise symbolic formula equivalence
checking. Our approach greatly reduces the number of
possible matches, and can be applied to speed up other
semantics-based binary difference analysis methods.

• We have implemented a prototype of CryptoHunt. The
source code is publicly available at https://github.com/
s3team/CryptoHunt.

The rest of the paper is organized as follows. Section II
introduces background and related work. Section III presents
an overview of CryptoHunt. Section IV to IX discuss the
details of each step in our method. Section X describes
our implementation details. We present our evaluation results
in Section XI. Discussions and limitations are presented in
Section XII. We conclude the paper in Section XIII.

II. RELATED WORK

In this section, we first introduce different code obfusca-
tion techniques that can be used to obfuscate cryptographic
function in binaries. These obfuscation schemes are exactly
what our study attempts to solve. We then present existing
cryptographic function detection work, which can be divided
into two categories, static and dynamic methods. The draw-
backs of previous work inspire our proposed solution. Next,
we introduce literature on symbolic execution and binary
difference analysis, which are the most related research work
to CryptoHunt.

A. Code Obfuscation

Code obfuscation techniques, which are first designed to
protect software intellectual property [34], deliberately trans-
form code to make it more difficult to understand. Nowadays
malware authors also heavily rely on code obfuscation to evade
detection [21]. One frequently used obfuscation technique in
malware is binary packing [5], which first compresses or
encrypts an executable binary into data and then recover the
original code when the packed program starts running. Since
a packing tool typically transforms whole binary code, it may
not be suited to obfuscate code snippet such as cryptographic
function. In this paper, we focus on defeating another two
pervasive obfuscation methods: control obfuscation and data
obfuscation. Control obfuscation, such as control flow flatten-
ing [35] and opaque predicate [36], greatly changes control
flow information to impede reverse engineering. Therefore,
cryptographic functions’ intra-procedural control flow graphs
can be heavily cluttered. Data obfuscation is intended to
conceal data value and usage. For example, data encoding
schemes [30], [31] convert a variable representation to an
obscure one, while data aggregation [37] changes how a
variable or array is aggregated. Recovering high-level data
abstractions and types from binary code is already pretty
hard [38], [39], and data obfuscation will make it more
challenging. Since cryptographic algorithms exhibit many
specific integer constants and arithmetic computations, data
obfuscation becomes particularly fit to hide those attributes of
cryptographic function.

B. Static Cryptographic Function Detection

Static crypto detection methods detect cryptographic func-
tions in binaries prior to execution. They perform static
analysis to recognize code/data features. Lutz’s work [14]

0xFF

Input

0x12345678

Input

F

0x6403900C

0xFF

Key

0x12345678

Plaintext

TEA

0x6403900C

Output Ciphertext

Figure 1: Since F has the same input-output mapping with
TEA algorithm, we can recognize F as TEA with an over-
whelming probability.

recognizes cryptographic code via three heuristics, such as
the presence of loops, entropy, and a high ratio of bitwise
operations. Wang et al. [1] utilize a similar method to identify
the message decryption phase so as to locate the encrypted
data. Matenaar et al. [24] apply multiple detection heuristics
such as entropy, constant value, and crypto API. Lestringant
et al. [15] utilize data flow graph as the signature to identify
symmetric cryptographic algorithms. Static detection has no
runtime overhead and is sufficient for unobfuscated programs.
However, static visible signatures can be easily camouflaged
by code obfuscation techniques [26]. Calvet et al. [11] have
demonstrated a very lightweight data obfuscation scheme
(splitting a const value into two smaller numbers) can fail
static detection.

C. Dynamic Cryptographic Function Detection

Dynamic detection searches visible cryptographic algorithm
features at run time. Compared with the pre-execution tools,
dynamic approaches are more accurate since it follows the
real execution path and knows the actual dynamic state.
Therefore, dynamic detection is widely applied to analyze
obfuscated malware. CipherXRay [13] detects cryptographic
operations by observing data avalanche effect, which refers
to a property of cryptographic algorithms such that a slight
change in the input would cause significant changes in the
output. However, CipherXRay is still based on some intuitive
observations, which cannot detect the exact cryptographic
algorithm used. Furthermore, stream ciphers neither show such
avalanche effect. Gröbert et al. [12] first propose a reliable
dynamic approach by mapping cryptographic function input-
output (I/O) relations. They first aggregate contiguous memory
accesses to form input and output parameters and then find
whether there is an exactly the same I/O mapping with a
known cryptographic function (see Figure 1). Aligot [11]
extends this idea by automatically identifying and extracting
parameters at a loop boundary. It also performs an inter-
loop data flow analysis so as to better catch the parameter
candidates. Then, Aligot also checks whether there exist a
perfect match between loop I/O mapping and a reference
implementation.

Since all the methods that rely on identifying unique input-
output relations [11], [12], [29] treat a series of cryptographic

operations as a “black box”, they can tolerate code obfuscation
and different implementations that happen within the “black
box”. Their detection effects ultimately depend on three key
assumptions: 1) accurately locate the boundary where they
want to compare I/O mappings with golden implementations
(e.g., identify the scope of F in Figure 1); 2) precisely
recover I/O parameters from memory (e.g., extract the input
and output values); 3) F in Figure 1 must have a perfect
match. However, a skilled attacker can easily break down these
assumptions. For example, the smallest parameter size the
current approaches extract is one byte. Any data obfuscation
scheme that aggregates a non one-byte multiples variable (e.g.,
a 15-bit length variable in Figure 6) can complicate parameter
extraction. Also, Base64 encoding is commonly found in
malware to disguise their malicious payloads [31], which can
convert I/O parameter values to different ones and fail the
I/O mapping eventually. And even worse, malware authors
have already customized non-standard cryptographic algorithm
implementations [32], [33] so that F in Figure 1 produces a
different output. In contrast, our approach inherits dynamic
analysis advantages and take F as a “gray box” by represent-
ing I/O mappings with bit-precise symbolic execution, which
is effective to beat both code obfuscation and non-standard
implementations.

D. Symbolic Execution

Being first proposed by King [40], symbolic execution is
an effective technique in the program analysis field. Briefly
speaking, symbolic execution replaces concrete values in a
program with symbolic values and simulates the execution of
the program so that all variables hold symbolic expressions.
Symbolic execution has emerged as a fundamental approach
for reasoning software security problems [41], [42], [43].
EXE [44] automatically detects bugs in C code. KLEE [45]
is capable of automatically generating test cases that achieve
high path coverage. BAP platform [46], the successor of
BitBlaze [47], provides binary code symbolic execution and
verification functions. We also perform symbolic execution to
model the semantics of a loop body. However, our approach
reveals a distinct design choice: CryptoHunt’s symbolic execu-
tion contains only one atomic data type, boolean. CryptoHunt
substitutes each loop input variable as a set of bit-symbols
and represents loop input-output relations as multiple boolean
formulas. Suppose we want to find whether two 32-bit sym-
bolic variables are equivalent, instead of matching two whole
32-bit vectors, we compare them bit-by-bit. In this way, we
can find the fact that, for example, the low 15-bit of these
two variables are matched. Our solution ensures that we can
accurately capture data obfuscation effects.

E. Binary Difference Analysis

Another related field to our work is automatically finding
semantic differences/similarities in binaries [19], [48], [49],
[50], [51], [52], [20], [53], which has a wide application
in practice, such as malware lineage inference [19], [20],
software plagiarism detection [49], [53] and cross-architecture

011010

100101

010111

000101

Binary Code

mov eax ...

shl ebx ...

jne 0x804...

Loop Body

Trace
Recording

u1=x1|x2|x3...

u2=x4 & x2 ...

u3=~x2|x3 …

u4=x3 & ~x4

…

Boolean Formulas

Bit-SE x3&x4 … = x1|x2|x3...

x2|x1 … = x4 & x2 ...

~x1&x5 … = ~x2|x3 …

Boolean Equations

Boolean

Formulas

Constraint
Solving

Result

Reference

Implementations

Bit-SE

mov eax ...

shl ebx ...

jne 0x804...

add ecx...

Trace

Loop
Detection

Next Loop

New Trace

a = x<<4 + 2;

b = (x+y)^a;

...

v1=y3&y4|y1...

v2=y2|y1 ...

v3=~y1&y5 …

v4=y2 | ~y3

…

Guided Symbolic
Variable Mapping

Figure 2: An overview of CryptoHunt’s workflow. The words in italics represents CryptoHunt’s key components, and “Bit-SE”
stands for bit-precise symbolic execution.

bug search [51], [52]. CryptoHunt differs from this previous
work in a number of ways. First, CryptoHunt is specifically
designed to detect cryptographic function reusing in obfus-
cated binaries, and a cryptographic function typically occupies
a small fraction of binary code. Most of the previous work
more or less relies on static features, such as control flow
graph [48], [49], [51], [52], [53] and identifying function
in stripped binaries [50], which make them not competent
to our task. Second, much previous work also compares
binaries with symbolic execution and constraint solving [19],
[48], [49], [20], [53]. But they suffer from high performance
penalty due to excessive symbolic variable mapping. To relieve
this performance bottleneck, we propose a guided fuzzing
approach to filter out large numbers of impossible matches.

III. OVERVIEW

The shortcomings of existing work inspire us to design
a new general solution to detect cryptographic algorithms
and variations in obfuscated binaries. Instead of searching
syntactical signatures, we attempt to capture the fine-grained
semantics of the principal cryptographic transformations. Fig-
ure 2 illustrates CryptoHunt’s workflow, which contains the
following key steps.

1) Execution trace generation. Since dynamic analysis
has previously been demonstrated to be effective in
control flow de-obfuscation [54], [55] and analyzing
self-modifying code [56], our study continues dynamic
detection direction. We first run the target binary code
and record the execution trace, which contains detailed
runtime information.

2) Loop body identification. Like many dynamic detection
methods [11], [12], we identify loop structures to narrow
down search scope. The reason is cryptographic algo-
rithms consist of a large of repeated transformations,
which are typically implemented as loops.

3) Bit-precise symbolic execution. Attackers can impede
further analysis by transforming (I/O) parameters with

1 void encrypt (uint32_t* v, uint32_t* k) {
2
3 /* v: plain text, k: key */
4 uint32_t v0 = v[0], v1 = v[1], sum = 0, i;
5 uint32_t k0 = k[0], k1 = k[1], k2 = k[2], k3 = k[3];
6
7 /* delta: a key schedule constant */
8 uint32_t delta = 0x9e3779b9;
9

10 for (i = 0; i < 32; i++) { /* main loop */
11 sum += delta;
12 v0 += ((v1<<4) + k0) ^ (v1 + sum) ^ ((v1>>5) + k1);
13 v1 += ((v0<<4) + k2) ^ (v0 + sum) ^ ((v0>>5) + k3);
14 }
15
16 v[0] = v0; v[1] = v1; /* cipher text */
17 }

Figure 3: A reference implementation of TEA.

data obfuscation schemes. To revert data obfuscation ef-
fects, our key idea is to represent loop I/O relations with
bit-precise symbolic execution. In this way, loop input
parameters are expressed as boolean variables, which is
the only atomic data type. The output parameters are
represented as a set of boolean formulas.

4) Variable mapping and comparison. We propose a guided
fuzzing approach to efficiently find whether a symbolic
formula is equivalent to a reference implementation.
Only a small portion of symbolic formulas need to be
further verified by a theorem prover.

We will present the details of each step in the following
sections.

IV. REFERENCE FORMULA GENERATION

We compare boolean formulas from the target execu-
tion trace with those from the reference implementation. In
this section, we describe how to generate boolean formu-
las from the reference implementation. We choose standard
cryptographic algorithm implementations (e.g, widely-used
OpenSSL crypto library) as the reference. Since we have

access to the C source code of the reference implementation,
we first iterate C code structures to identify the principal cryp-
tographic transformation iterations with CIL [57]. The main
loop in Figure 3 shows such a key transformation iterations in
TEA cipher. Section XI-A4 will provide more details about
the key transformation that we capture in commonly used
cryptographic algorithms.

Next, we compile the source code into an executable and
run it to record a trace. Then we perform bit-precise symbolic
execution for the loop body and generate a set of boolean
formulas, which will be used as semantic detection signatures
later. More details about trace recording and bit-precise sym-
bolic execution will be presented in Section V and VII. The
reference formulas usually have two attributes. One is that they
are compact to describe the most representative feature of a
given cryptographic algorithm. It is not necessary to depict
the whole transformation of the algorithm in the reference
formula. The other attribute is abstraction, which means the
formulas are independent of a specific implementation. Se-
curity analysts can generate the reference formulas by just
reading the algorithm description. The feature described by
the formula should be encoded into all implementations of the
algorithms. Taking TEA as an example, the reference formulas
are as follows:

y = ((x1 << 4) + x2)⊕ (x1 + x3)⊕ ((x1 >> 5) + x4) + x5

Here we group a set of bit symbols as x1, ..., x5 for the
easy presentation purpose. Note that the concrete variable
sum in Figure 3 is represented as a symbolic variable x3.
It is because the value of sum derives from a key schedule
constant, delta. Skilled malware authors can customize this
constant value to produce implementation variations, which
will bypass our detection. To make the reference formula
more flexible, we substitute sum as a symbol as well. We
will discuss such a non-standard XTEA implementation we
identify in Section XI-B.

V. EXECUTION TRACE RECORDING

When analyzing a target binary program, we first record its
execution trace. CryptoHunt’s trace record component is built
based on Pin, a dynamic binary instrumentation framework
developed by Intel [58]. All instructions except system call are
recorded during the run time. The trace includes the following
information.

1) The memory address of each instruction
2) The machine instruction name (opcode) which describes

its operation, such as load or mov
3) The source and destination operands of the instruction,

which could be an immediate value, a register name, or
a memory address

Malware authors commonly apply various binary packing
tools to hide the real code and then recover the real malicious
code during execution. Recording binary unpacking routine
will bring many useless instructions. Our purpose is to detect
the cryptographic algorithm inside obfuscated binaries. To this
end, we utilize generic runtime unpacking techniques [59],

[56] to renew trace recording when the execution flow returns
to the original entry point.

VI. LOOP BODY IDENTIFICATION

From the previous step, we obtain an execution trace of
the target program. As mentioned before, CryptoHunt detects
cryptographic code inside loop structures. In this section, we
present how to identify loop bodies inside a trace. Our method
extends Calvet’s loop detection algorithm [11] so as to detect
more categories of loops.

First, we clarify the loop definition in this paper. A loop
is a sequence of instructions that meets one of the following
requirements.

1) The opcode of the sequence of instructions repeat at
least one time.

2) The instruction sequence ends with a conditional or
unconditional jump instruction jumping to the beginning
of the instruction sequence.

Figure 4 shows two trace examples according to the loop
definition. In Figure 4(a), the instruction sequence [1,2,3,4]
repeat at least two times, which meets the first loop definition.
This loop form is usually corresponding to an unrolled loop by
compiler optimization. In Figure 4(b), the trace contains a con-
ditional jump instruction jne 8048100, which jumps to an
instruction that has been executed. So it meets the second rule
in our loop definition. Notice that although the control flow
jumps back to a previously executed instruction, the following
instruction sequence is not as same as the previous one. This
is because there might be conditional branches inside a loop
body, which leads to execution of different instructions in each
loop iteration. In practice, many loops in an execution trace
fall into the second category. One example in cryptographic
algorithm is the modular exponentiation implementation in
RSA. It is typically implemented as a loop containing two
branches. One branch is a multiplication and the other one is a
squaring and a multiplication. In every iteration, the execution
flow takes one branch based on the bit of the exponent being
referenced so the iterations of the same loop could be different.
Calvet’s loop detection algorithm [11] only detects the case in
Figure 4(a). Our loop identification method covers both cases
in Figure 4.

We provide a brief description of the loop identification
algorithm. First, when scanning the first category of loops in
a trace, we reuse the loop detection algorithm in Calvet’s work
[11]. One extension in our loop identification algorithm is
matching function call/return instructions pairs. Function calls
could break the loop definition in Figure 4(a). For example,
calling the same function with different parameters could result
in different control flow in the function. Therefore, we need to
eliminate the function calls’ interference inside the execution
trace. We try to match the function call and return instruction
during the loop identification. The matching procedure is one
scanning pass on the execution trace. We maintain a stack
to simulate nested function calls inside the trace. During
the matching process, when a call instruction is seen in the
scanning procedure, we push it to the stack and record the

1

2

3

4

1

2

3

4

...

1

2

3

4

jne 8048100

1

5

6

...

8048100

8048100

(a) (b)

8048100

8048120

Figure 4: Loop identification in an execution trace.

entrance address. When a return instruction is seen, we pop the
call instruction from the stack and replace the whole function
body with the call instruction and its entrance address. In this
way, during the loop identification, function calls with the
same entrance address are recognized as the same instructions,
which prevent the function calls’ interference in the loop
identification algorithm.

In order to identify the second category of loops, we seek
for the jump instructions whose destination instruction has
been executed in the trace. When such a jump instruction
is identified, we mark the address range between the jump
instruction and its destination. If the instruction following the
jump is the destination instruction, we identify the range as
a loop. The process is repeated until the next instruction of
the jump is not its destination. Note that we could identify
different iterations of the same loop in this category. For
example, in Figure 4(b), [1,2,3,4] and [1,5,6] are two
iterations of the same loop. By computing the hash value
of each loop iteration, we can distinguish and only record
the different iterations for future analysis. For the sake of
efficiency, the identification of the second loop category is
processed together with the first category.

Moreover, we also identify nested loops by folding all
detected loop body iterations. Figure 5 shows the folding
procedure. In Figure 5(a), we identify the repeated instruction
sequence [2,3] as the innermost loop L1. Then we fold all
iterations of L1 and replace them with a pseudo instruction
named L1 and continue the loop identification as shown in
Figure 5(b). In the folded trace, we identify the repeated in-
struction sequence [1,L1,4] as the outer loop L2. Similarly,
all iterations of L2 are folded and replaced by the pseudo
instruction L2. The final folded trace is shown in Figure 5(c).

After all, the output of loop identification is a set of different
loop iterations. Since the number of candidates could be
very large, we apply some crypto algorithm specific heuris-
tic methods to filter out non-related loop iterations. Since
cryptographic algorithms usually contain intensive bitwise
operations, one heuristic method is counting the number of
bitwise instructions inside a loop [2]. Another heuristic method
is using the absolute entropy of the memory regions accessed
in the loop body. It is because that encrypted data is considered

1

2

3

2

3

4

1

2

3

2

3

2

3

4

5

...

1

L1

4

1

L1

4

5

...

L2

5

...

L1

L1

L2

(a) (b) (c)

Figure 5: Nested loops identification.

to have a high information entropy [14]. The loop iterations
after filtering are passed to the following phases for future
analysis.

VII. BIT-PRECISE SYMBOLIC EXECUTION IN LOOP

After identifying loops in the execution trace, we extract
each loop body and perform bit-precise symbolic execution
to transform them into boolean formulas. In our method, we
analyze the loop body, which is only one iteration of the loop.
We first identify the free output variables in the loop body and
then perform backward slicing from each output variable. In
each slice, we can backtrack to the input variables of the loop
body. We claim the input variables which meet the following
conditions as free input variables and mark them as symbols.

1) The variable is loaded from memory.
2) The variable is not a loop invariant. Since the execution

trace includes all run-time information, we can check
whether a variable is a loop invariant by comparing
different loop iterations.

After that, we symbolically run each slice so as to transform
them into a boolean formula, which is composed of a series
of boolean functions. Each function is a transformation which
takes multiple input variables and generates one output. Partic-
ularly, we transform each free variable into boolean variables.
For example, if a free variable is in a 32-bit register, it is trans-
formed to 32 boolean individual variables. Therefore, with
bit-precise symbolic execution, we transform the operations
associated with the output variables into a boolean formula,
which accurately describes the semantics of the instructions
inside a loop body.

One benefit of bit-precise symbolic execution is it reveals
the fine-grained semantic meaning of the operations inside a
loop body so as to resist obfuscation techniques. This feature
makes our method outperforms lots of previous work. For
example, the current research work Aligot [11] utilize the
input/output relation to identify cryptographic functions. One

int a = f();
int b = g();
...
while (...) {
m = a << 4;
n = b * 5;

...
}

(a) Normal program.

struct {
int a : 15;
int b : 17;

} X;

/* aggregate a,b to X */
X.a = f();
X.b = g();
...
while (...) {
m = X.a << 4;
n = X.b * 5;

...
}

(b) Data aggregation.

a = f();
b = g();

/* split a to a1, a2 */
short a1 = a & 000fffff;
short a2 = a >> 20 & 00000fff;
...
while (...) {
int aa = (int) a2 << 20 | a1;
m = aa << 4;
n = b * 5;

...
}

(c) Data split.

Figure 6: An example of data obfuscation.

limitation of this category of research is that the parameters
in the target program must be exactly same as the parameters
in the reference implementation. It is because that they treat
the whole loop body as a “black box” without looking into
the details inside. In practice, simple data obfuscation such as
data aggregation and data split can easily work around Aligot.
We present an example in Figure 6.

Figure 6(a) shows the normal program before the data
obfuscation. Variables a and b are two input variables for the
while loop. If we already know a and b are small integers,
which will not use the higher bits of the 32 bits, we can
aggregate the two variables into 32 bits variable X as shown
in Figure 6(b). Therefore, the while loop only has one input
variable X. Notice that X is not equivalent to either a or
b. As a result, cryptographic detection tools based on input
and output relation such as Aligot cannot identify those two
programs are semantically equivalent. Similarly, we can also
split the variable a into two variables a1 and a2 as shown in
Figure 6(c) and the input and output data of the while loop
is also obfuscated. What’s more, there are plenty of encoding
obfuscation in this category, such as the obfuscation using
homomorphic functions [60] and variable merging [37].

On the other hand, bit-precise symbolic execution provides
a perfect and final solution for this problem. By translating
the operations into boolean formulas, we can compare the
fine-grained semantics of different loop bodies. For instance,
if we translate the while loops in Figure 6(a) and (b) into
boolean formulas, we will find that the two sets of formulas
are essentially doing the same task.

VIII. GUIDED SYMBOLIC VARIABLE MAPPING

The bit-precise symbolic execution in the last section output
a group of boolean formulas. In this section, we compare these
formulas with the reference formulas so as to decide whether
they are equivalent. Since each input and output variable is
transformed into boolean variables, typically there are dozens
of input and output variables. When comparing those formulas,
the key problem is mapping the input variables in target
formulas to those in the reference formulas. In previous related
work, the mapping is mainly done by permutation and then
using a theorem prover to check them one by one.

However, the number of variables in our work is sig-
nificantly larger so simple permutation will cause serious
performance issue. Therefore, we propose a new method to
quickly find the possible variable mappings and filter out the
impossible ones. In another word, the mapping procedure itself
can partially verify the formula’s semantics before applying
the theorem prover.

A. Motivation

Before describing the detail matching algorithm, first we
provide an example to show why we need a mapping algo-
rithm. Suppose we are comparing two loop bodies. One is
from the target program and the other one comes from the
reference program. The operations in both loop bodies have
been translated to two sets of boolean functions as shown in
function set (1) and (2). Here we call a set of boolean functions
as a formula. In this example, we suppose that the target and
reference program both include three input boolean variables
and two output variables. Particularly, formula F is extracted
from loop bodies in the target execution trace and G is from
the reference program. In formula F , x1, x2, and x3 are input
variables, u1 and u2 are output variables, and f1 and f2 are
the boolean functions that compute the output variable value
based on the inputs. Similarly, formula G shows input/output
variables and functions in the reference program. Notice that
here we use x and y to distinguish the input variables in the
target program and the reference program.

F =

{
u1 = f1(x1, x2, x3) = x1 ∧ x2 ∨ x3

u2 = f2(x1, x2, x3) = ¬x1 ∨ ¬x3 ∧ x2
(1)

G =

{
v1 = g1(y1, y2, y3) = ¬(y1 ∧ y2) ∧ y3
v2 = g2(y1, y2, y3) = y1 ∨ (y2 ∧ y3)

(2)

In order to check whether the two formulas are semantically
equivalent, we need to find out which input variable in formula
F is identical to the input variable in G, and also the output
variables. In another word, we need to find two variable
mappings as shown in Figure 7.

Assuming the mappings in Figure 7 have been found, we
can build a boolean equation set (3) to check whether F and
G are equivalent. Multiple methods such as fuzz testing and
theorem proving can be applied to verify the equation set. If
every equation in the set always holds, it proves that formula F
and G are equivalent, which means the loop body in the target

x1

x2

x3

y1
y2
y3

(a) Input mapping.

u1

u2

v1
v2

(b) Output mapping.

Figure 7: Variable mapping.

program is equivalent to the reference. As a result, the target
program includes a cryptographic function implementation.
We check all loop bodies and report finding a cryptographic
algorithm when one loop body matches.{

x1 ∧ x2 ∨ x3 = ¬(x2 ∧ x3) ∧ x1

¬x1 ∨ ¬x3 ∧ x2 = x2 ∨ (x3 ∧ x1)
(3)

B. Definitions

Starting from this section, we present the formal mapping
algorithm. First, we introduce the formal definitions of the
concepts used in our algorithm.

Definition 1: We define a boolean function
f(x1, x2, . . . , xn) as a mathematical function that takes
n boolean arguments (inputs) and returns one boolean result
(output).

Definition 2: We define a boolean formula Fn,m which has
n inputs and m outputs as a function set that includes m
boolean functions, each of which has n inputs:

Fn,m =

f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

. . .
fm(x1, x2, . . . , xn)

Definition 3: Given a boolean function f(x1, x2, . . . , xn),
we define its Input Identity Matrix as a n× n matrix:

In,n =

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 =

~xT
1

~xT
2
...
~xT
n

where ~xT

i is the ith row vector.
In an input identity matrix, each row vector ~xT

i represents
one combination of setting only one input variable to 1 and
the remainder to 0. An input identity matrix enumerates all
possible input combinations following this rule.

Definition 4: Given a boolean formula Fn,m, we define its
Output Matrix as an n×m matrix:

MO
n,m =

a11 a12 · · · a1m
a21 a22 · · · a2m

...
...

. . .
...

an1 an2 · · · anm

where

aij = fj(~x
T
i), i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

In an output matrix, each row is the outputs by feeding
the corresponding row vector in the input identity matrix
into every boolean function. The insight is that, each row
of the output matrix corresponds to one input variable and
each column corresponds to one output variable. Therefore,
the mapping problem is essentially equivalent to the following
problem:

Can we transform one output matrix to the other by only
swapping rows and columns?

This is the key idea in our mapping algorithm. Notice that
swapping rows and columns still keep the sum of each row or
column unchanged. This feature provides a hint for mapping
the rows and columns, which correspond to the input and
output variables. So we go ahead to define the row sum vector
and column sum vector in an output matrix.

Definition 5: The row sum vector ~rv and column sum
vector ~cv of an output matrix MO

n,m are defined as follows.

~rv =

m∑
j=1

a1j

m∑
j=1

a2j

...
m∑
j=1

anj

, ~cv =

n∑
i=1

ai1

n∑
i=1

ai2

...
n∑

i=1

aim

Each element of the row sum vector is the sum of each

row in MO
n,m. Essentially it describes the fact that how many

outputs is evaluated to 1 when setting a specific input to 1
and leave the remainder to 0. Similarly, a column sum vector
describes how many times each output variable is set to 1 in
MO

n,m. ~rv and ~cv are used to compute the mapping in a given
output matrix.

For example, given an output matrix MO
2,3, its ~rv and ~cv

are shown as follows.

MO
2,3 =

(
1 0 1
0 0 1

)
, ~rv =

(
2
1

)
, ~cv =

1
0
2

So far we have defined all concepts related to the formulas

in this paper. Since our objective is to find the mapping
between two formulas’ inputs and outputs, we need to clarify
the concept of mapping in this paper. There are two kinds
of mapping, full mapping and partial mapping. As shown in
Figure 8(a), a full mapping means every element in one set has
been mapped to a unique element in the other set. A partial
mapping means we only find mappings for partial elements
in one set. Taking Figure 8(b) as an example, we have found
mappings for the elements a1, a3 and a4 in S′. However, the
mapping for a2 and a5 is still not decided. Possible mappings
are a2 7→ b3, a5 7→ b5 or a2 7→ b5, a5 7→ b3.

C. Algorithm Description

So far we have introduced the basic concepts that are
needed to formalize the algorithm. As mentioned above, we

a1
a2
a3
a4
a5

b1
b2
b3
b4
b5

S T

(a) A full mapping.

a1
a2, a5
a3
a4

b1
b2

b3, b5
b4

S′ T ′

(b) A partial mapping.

Figure 8: Mapping examples.

transform the variable mapping problem to the output matrix
mapping problem; that is, given an input identity matrix, a
variable mapping exists if and only if one output matrix can be
transformed to the other by only swapping rows and columns.

Based on this idea, we propose the variable mapping al-
gorithm which is described in Algorithm 1. Briefly speaking,
our mapping algorithm is seeking for all possible mappings
given a series of specific inputs, which are generated based
on already mapped inputs. The method is complete, which
means if a mapping exists, it must appear in the result. It
is probable that the mapping algorithm generates some false
positive mappings and they will be checked by the following
verification steps.

Given two boolean formulas F1 and F2, the high-level
panorama of the mapping algorithm can be viewed as follows.
We provide an example to show the mapping algorithm step
by step in the following section.

1) Feed the Input Identity Matrix I into F1 and F2 respec-
tively and generate two output matrix MO

1 and MO
2 .

2) Create the row and column sum vectors for MO
1 and

MO
2 and check them using heuristic constraints.

3) Create mappings based on the row and column map-
pings. Check whether the mappings are consistency.

4) If one variable is mapped, add it to the mapped list.
Otherwise permute building mappings for the elements.

5) Randomly create new inputs based on the mapped
variables.

6) Recursively call VarMapping to map the remaining
inputs and outputs.

D. Example

In the last section, we have described the formal definition
of the mapping algorithm. Now we provide an example to
show the whole procedure. We still use F and G as shown in
formula (1) and (2). We initiate the partial mapping list L set
as follows. Min and Mout are initiated as empty.

{x1, x2, x3} 7→ {y1, y2, y3}
{u1, u2} 7→ {v1, v2}

First, since Min is empty, there is no mapped variable. We
generate the input identity matrix for all input variables. After
that we create the output matrix accordingly. For the ease of

Algorithm 1 Mapping I/O Variables
1: Parameters:
2: ~uT = F1(~x

T), ~vT = F2(~y
T): Boolean formulas

3: L: Current partial mapping list.
4: Min: Full mapping of input.
5: Mout: Full mapping of output.
6: function VARMAPPING(F1, F2, L, Min, Mout)
7: if L is empty then
8: return (Min,Mout)
9: end if

10: I ← CreateIdentityMatrix(L)
11: R ← RandomInput(Min)
12: M I

1 ← CreateInputMatrix(I,R, F1)
13: M I

2 ← CreateInputMatrix(I,R, F2)
14: MO

1 ← CreateOM(F1,M
I
1)

15: MO
2 ← CreateOM(F2,M

I
2)

16: ~rv1 ← CreateRowVector(MO
1)

17: ~cv1 ← CreateColumnVector(MO
1)

18: ~rv2 ← CreateRowVector(MO
2)

19: ~cv2 ← CreateColumnVector(MO
2)

20: if Sort(~rv1) 6= Sort(~rv2) || Sort(~cv1) 6= Sort(~cv2) then
21: return False
22: end if
23: UpdateMapping(L, ~rv1, ~rv2)
24: UpdateMapping(L, ~cv1, ~cv2)
25: Reduce(L)
26: if L is not a partial mapping then
27: return False
28: end if
29: if ∃s 7→ t ∈ L then
30: Remove s 7→ t from L
31: Add s 7→ t to Min or Mout

32: VarMapping(F1, F2, L,Min,Mout)
33: else
34: for Permute the set connection s′ 7→ t′ ∈ L do
35: Remove s′ 7→ t′ from L
36: Add the permutation to Min or Mout

37: VarMapping(F1, F2, L,Min,Mout)
38: end for
39: end if
40: end function

understanding, we show the procedure in equation (4) and the
matrix in (5).

 {x1 = 1, x2 = 0, x3 = 0} ⇒ {u1 = 0, u2 = 0}
{x1 = 0, x2 = 1, x3 = 0} ⇒ {u1 = 0, u2 = 1}
{x1 = 0, x2 = 0, x3 = 1} ⇒ {u1 = 1, u2 = 0}

(4)

M I
1 =

1 0 0
0 1 0
0 0 1

 ,MO
1 =

0 0
0 1
1 0

 (5)

Following the same method, we feed the inputs into G and
the result is shown in (6) and (7).

 {y1 = 1, y2 = 0, y3 = 0} ⇒ {v1 = 1, v2 = 0}
{y1 = 0, y2 = 1, y3 = 0} ⇒ {v1 = 0, v2 = 0}
{y1 = 0, y2 = 0, y3 = 1} ⇒ {v1 = 0, v2 = 1}

(6)

M I
2 =

1 0 0
0 1 0
0 0 1

 ,MO
2 =

1 0
0 0
0 1

 (7)

Based on MO
1 and MO

2 , we create the row and column sum
vectors as follows.

~rv1 =

0
1
1

 , ~cv1 =

(
1
1

)
, ~rv2 =

1
0
1

 , ~cv2 =

(
1
1

)
The sorting result of ~rv1 and ~rv2 shows they are equivalent

and so do ~cv1 and ~cv2. Therefore, we move on to the next step
to connect the rows that have the same number in row sum
vectors. So x1 7→ y2 and {x2, x3} 7→ {y1, y3} is created and
added to L. Similarly, we create connections between columns.
As a result, L is updated as follows.

{x1, x2, x3} 7→ {y1, y2, y3}
x1 7→ y2

{x2, x3} 7→ {y1, y3}
{u1, u2} 7→ {v1, v2}

We reduce the connections in L by intersection operations.
L can be normalized to the following form.

x1 7→ y2
{x2, x3} 7→ {y1, y3}
{u1, u2} 7→ {v1, v2}

After that, in Line 27 of the mapping algorithm, we find
a mapping x1 7→ y2. So we remove it form L and add it to
Min since it is a connection of the input variables. Then we
recursively call VarMapping again using the updated L and
Min.

In the second call of VarMapping, we generate random input
for variables in Min. Notice that the connected variables must
have the same value. For example, we generate x1 = 1, y2 =
1. We still generate input identity matrix for the remaining
input variables in L. Therefore, the input and output matrix
are as follows.

M I
1 =

(
1 1 0
1 0 1

)
,MO

1 =

(
1 0
1 1

)

M I
2 =

(
1 1 0
0 1 1

)
,MO

2 =

(
1 1
0 1

)
Similarly, we create the row and column sum vectors for

MO
1 and MO

2 .

~rv1 =

(
1
2

)
, ~cv1 =

(
2
1

)
, ~rv2 =

(
2
1

)
, ~cv2 =

(
1
2

)

The vectors pass the sorting check as before. By updating
and reducing L, the result is as follows.

x2 7→ y3
x3 7→ y1
u1 7→ v2
u2 7→ v1

After moving the mapping in L to Min and Mout, L is
empty. So the final result will be returned in Min and Mout

when calling VarMapping next time. The final mapping result
is shown in Figure 9.

x1

x2

x3

y1
y2
y3

(a) Input mapping.

u1

u2

v1
v2

(b) Output mapping.

Figure 9: Final result of variable mapping.

Based on the variable mapping information, we can produce
the equation set for the following verification procedure.{

x1 ∧ x2 ∨ x3 = x3 ∨ (x1 ∧ x2)
¬x1 ∨ ¬x3 ∧ x2 = ¬(x3 ∧ x1) ∧ x2

(8)

In this example, our mapping algorithm generates one
candidate variable mapping. Being compared with the permu-
tation, which will generate 3! × 2! = 12 inputs and outputs
combinations, our method reduces the number of candidates.
Notice that in our example we only show three input variables
and two output variables. Since permutation is a factorial
function, when the number of variables increases, the number
of permutation will grow very fast. Our mapping algorithm
can filter out unmapped formulas and significantly reduce the
number of candidates.

IX. VERIFICATION

In this section, we present the method to verify the boolean
equations generated by the previous step. Basically, we use
two methods, fuzz testing and theorem proving. Fuzz testing
is quick but the result is not sound; that is, passing fuzz testing
does not mean the equations always hold. Theorem proving is
slow but the result is sound. Therefore, we use fuzz testing as
the first round to filter out some candidates and apply theorem
proving to the remains.

We randomly generate some inputs and feed them into the
boolean equation set to test whether they hold. In our practical
experience, this is an easy and quick way to get rid of many
wrong mappings and give a partial equivalence checking. For
example, if all mapping candidates do not pass fuzz testing,
we can safely decide the two sets of formulas are semantically
different.

After the equation sets pass fuzz testing, we utilize a
theorem prover to prove the formulas. If the formulas hold,
we claim that the target program and the reference program
are semantically equivalent; otherwise they are different.

Table I: Cryptographic algorithm categories.

Category Algorithm
Block cipher TEA and AES
Stream cipher RC4

Hashing algorithm MD5
Asymmetric cipher RSA

X. IMPLEMENTATION

We build a tool named CryptoHunt as an implementation
of the idea in this paper. The trace logging component is built
based on Intel’s Pin DBI framework [58] (version 2.12) with
945 lines of code in C/C++. The loop identification component
is implemented with 374 lines of Perl code. CryptoHunt’s bit-
precise symbolic execution is built based on BAP [46] (version
0.8), which is used to lift x86 instructions to the BAP IL and
further into boolean formulas in CVC format. We also built
a framework to implement the formula mapping algorithm,
fuzz testing, and other formula analysis, which includes 1700
lines of C/C++ code. Moreover, we adopt STP [61] as the
theorem prover. For the convenience of future research, we
have released CryptoHunt source code at https://github.com/
s3team/CryptoHunt.

XI. EVALUATION

In this section, we evaluate CryptoHunt from two main as-
pects: effectiveness and performance. Particularly, we conduct
our experiments to answer the following research questions
(RQs).

1) RQ1: Is CryptoHunt effective to detect widely used
cryptographic algorithms in obfuscated binaries? (effec-
tiveness)

2) RQ2: How many false positives can CryptoHunt pro-
duce? (effectiveness)

3) RQ3: How much overhead can CryptoHunt’s dynamic
detection approach introduce? (performance)

As the answer to RQ1, we compare CryptoHunt with other
peer tools using crypto projects collected from GitHub with
different obfuscation techniques. We also evaluate them on
malware samples. In RQ2, we use normal programs such as
core utilities, compression tools, and server programs to test
the false positives. In response to RQ3, we report CryptoHunt’s
performance data such as running time, number of identi-
fied loops, and number of STP queries. We also report the
performance improvement introduced by our guided fuzzing
approach.

A. Answer to RQ1: Crypto Libraries

1) Dataset: We first test CryptoHunt with commonly used
cryptographic algorithms from four categories (see Table I).
We choose TEA and AES as block cipher examples. Tiny
Encryption Algorithm (TEA) [62] is a simple block cipher,
which is frequently adopted by malware authors to hide
malicious intent; while the Advanced Encryption Standard
(AES) [63] is a more complicated block cipher, which has been
used by crypto-ransomware to encrypt victim’s documents.

RC4 is chosen as the stream cipher candidate. It is used
by standards such as IEEE 802.11 within WEP (Wireless
Encryption Protocol) using 40 and 128-bit keys. We choose
MD5 [64] as the hashing algorithm since it is widely used
on the Internet for software integrity checking. At last, we
use RSA [65] as the asymmetric cipher candidate. RSA is
one of the first practical asymmetric ciphers in the world
and is widely used for secure data transmissions. In practice,
programmers usually take advantage of existing cryptographic
libraries when they need encryption/decryption function. This
is due to two reasons. First, cryptographic algorithms are
highly standardized. Many cryptographic libraries such as
OpenSSL and Libgcrypt already have correct implementations,
so there is no need for normal programmers to re-implement
them. The other reason is that cryptographic algorithms are
complicated and difficult to implement. It is common that user-
implemented cryptographic algorithms are buggy. Therefore,
as one common scenario of using cryptographic algorithms, we
evaluate CryptoHunt on popular cryptographic libraries. In our
evaluation, we test two open source libraries: OpenSSL1 and
Libgcrypt2. OpenSSL and Libgcrypt are both widely used in
real world software systems such as web server, email client
and web browser. Our purpose is to detect commonly used
cryptographic algorithms provided by standard libraries. To
this end, we collect 25 open source projects from GitHub3.
For each crypto algorithm in Table I, we collect 5 projects.
All the 25 projects reuse cryptographic functions from either
OpenSSL or Libgcrypt. The configuration of our testbed
machine is shown as follows.
• CPU: Intel Core i7-3770 processor (Quad Core with

3.40GHz)
• Memory: 8GB
• OS: Ubuntu Linux 14.04 LTS
• Compiler: GCC 4.8.4
• Crypto Libraries: OpenSSL 1.1.0-pre3, Libgcrypt 1.6.4
2) Peer Tools: We compare CryptoHunt with six cryp-

tographic code detection tools: CryptoSearcher, Findcrypto2,
Signsrch, DFGIsom, Kerchkhoffs, and Aligot. These six tools
represent both static and dynamic detection directions. Cryp-
toSearcher [66] is an assembly tool that identifies crypto-
graphic programs by static signatures. Similarly, both Find-
crypto2 [67] and Signsrch [23] are IDA [68] plug-in tools and
search static signatures for cryptographic function detection.
DFGIsom [15] statically identify symmetric cryptographic
algorithms and their parameters inside binary code based on
Data Flow Graph (DFG) isomorphism4. Kerchkhoffs [12] is
a trace analysis tool, which provides methods to reconstruct
high-level information from a trace, for example control flow
graphs or loops, to detect cryptographic algorithms and their

1https://www.openssl.org/
2https://www.gnu.org/software/libgcrypt/
3https://github.com
4Since this tool is not publicly available, we simulate the approach by BAP’s

built-in feature to generate DFGs. We implement DFGIsom’s normalization
rules to simplify DFGs, which are then matched by Ullman’s subgraph
isomorphism algorithm [69].

parameters. The advanced detection tool, Aligot [11], relies
on identifying unique input-output relations at loop boundary.

3) Obfuscation Options: To obfuscate cryptographic algo-
rithm implementations, we rely on a state-of-the-art compile-
time obfuscation tool, Obfuscator-LLVM [70], which supports
popular obfuscation transformations [34], [71]. We have ex-
tended Obfuscator-LLVM to include three obfuscation options,
N, O1, and O2, which specify different obfuscation levels. The
details of the obfuscations included in each option are listed
as follows.

1) N: The obfuscator does not perform any obfuscation.
2) O1: The obfuscator performs simple instruction-level

obfuscation and control flow obfuscation, including dead
code insertion, instruction substitution, opaque predi-
cate, control flow flattening, loop unrolling and subrou-
tine reordering.

3) O2: In addition to O1, the obfuscator performs data
obfuscations including variables encoding, data split
and data aggregation. O2 contains both control and
data obfuscations. Therefore, O2 has a much stronger
obfuscation effect that O1.

We use the source code in OpenSSL as the reference im-
plementation. Since OpenSSL does not include the TEA
algorithm, we use the code shown in Wheeler’s paper [62] as
TEA’s reference implementation. First we compile the crypto
libraries with different obfuscation options. Then we compile
and statically link the 25 collected cryptographic projects to
the crypto libraries. At last, we run CryptoHunt and other
crypto detection tools to detect them. We evaluate CryptoHunt
in two scenarios. First, the testing library is same as the
reference library. In this case, we use OpenSSL as both the
reference and testing library. The other scenario is that the
testing library is different from the reference library. In this
case, we use OpenSSL as the reference library and Libgcrypt
as the testing library. One exception is that TEA is not included
in Libgcrypt, we select another implementation TEA∗ [72].

4) Evaluation Result: The evaluation result is shown in Ta-
ble II5. Basically, only CryptoHunt is able to detect commonly
used cryptographic functions in all cases, while other tools are
severely restricted under different obfuscation combinations
and algorithm implementations. For example, the advanced
dynamic detection tool, Aligot, fails in all of the tasks with the
O2 obfuscation option. Next, we provide more details behind
the results.

a) TEA: TEA is a 64-bit cipher which uses 128-bit key.
It is usually implemented as 64 rounds of Feistel structure
[62]. In CryptoHunt, we use the transformations inside one
Feistel structure loop as the reference implementation (see
Figure 3). As shown in Table II, all tools except Findcrypto2
successfully identify the TEA algorithm in the unobfuscated
code in both OpenSSL and Libgcrypt. The reason is Find-
crypto2 does not contain TEA’s static signature. In the O1

5We find that the crypto detection tools either detect all the five projects in
one algorithm category, or detect none of them. Therefore, for simplicity we
use the check mark X to indicate that the tool detects all five samples and
blank showing it detect none of them.

Table II: Evaluation result on crypto libraries.

Crypto Lib Algo Obf Fi
nd

cr
yp

to
2

Si
gn

sr
ch

C
ry

pt
oS

ea
rc

he
r

D
FG

Is
om

K
er

ch
kh

of
fs

A
lig

ot

C
ry

pt
oH

un
t

TEA
N X X X X X X

O1 X X X X X
O2 X

OpenSSL

AES
N X X X X X X

O1 X X X X X
O2 X

RC4
N X X

O1 X X
O2 X

MD5
N X X X X

O1 X X X
O2 X

RSA
N X

O1 X
O2 X

TEA∗
N X X X X X X

O1 X X X X X
O2 X

Libgcrypt

AES
N X X X X

O1 X X X
O2 X

RC4
N X X

O1 X X
O2 X

MD5
N X X X X

O1 X X X
O2 X

RSA
N X

O1 X
O2 X

version, DFGIsom fails to detect TEA because data flow
graph is obfuscated. Signsrch and CryptoSearcher rely on the
magic number 0x9e3779b9 as the static signature. This num-
ber cannot be obfuscated by control obfuscation techniques,
so Signsrch and CryptoSearcher still work in O1 version.
Aligot and Kerchkhoffs are resilient to the control obfuscation
techniques. With data obfuscation added in the O2 version,
only CryptoHunt is able to detect the highly obfuscated TEA
algorithm. In another implementation TEA∗, the result is the
same.

b) AES: The AES design is based on substitution-
permutation network [63], which is stronger than the Feistel
structure in TEA. We use the core transformation in the
innermost loop in OpenSSL’s implementation as the refer-
ence. Most tools successfully identify AES algorithm in the
OpenSSL experiment without obfuscation. We attribute this
to AES’s distinct feature such as the lookup table. With O1
obfuscation, DFGIsom fails due to the same reason as in TEA.
Particularly, we notice that Aligot fails to detect unobfuscated
AES algorithm in Ligcrypt when using OpenSSL as the
reference. We looked into the source code and binary code
and find it is because of the different implementations between
OpenSSL and Libgcrypt. The input and out variables in the
innermost loop of OpenSSL’s implementation is different from
those in Libgcrypt. Since Aligot views the loop body as a black

box without checking the details inside, it cannot perform
more fine-grained detection as CryptoHunt.

c) RC4: RC4, a classical steam cipher, generates a
random stream of bits as a key stream. The key stream is
used to encrypt or decrypt by performing an XOR operation
on the input. Typically, the encryption procedure in RC4 is
a simple XOR operation. It cannot be used as the reference
to recognize RC4 algorithm because it will cause lots of
false positives. Instead, we use the transformation in the key
generation algorithm as the reference implementation. Table II
shows only Aligot and CryptoHunt successfully detect the
RC4 algorithm in the unobfuscated program and O1 version.
The reason is, unlike TEA and AES, RC4 lacks obvious
features that can be used as detection signatures. However,
Aligot fails in the O2 version again.

d) MD5: MD5 algorithm [64] is a widely used cryp-
tographic hash function to generate message digest. It pro-
duces a 128-bit hash value for any input message. The input
message is split into chunks of 512-bit and then processed
in a main loop. We use the transformations in the main loop
as the reference implementation. CryptoSearcher, Aligot, and
CryptoHunt successfully detect the clean version of MD5.
Typically, there is an initial value for the digest variable in
a MD5 implementation, such as 0x67452301 in OpenSSL.
Therefore, CryptoSearcher detects MD5 by searching for this
constant value in binaries. Since control obfuscation does not
change these constants and the input/output variables in a loop
body, CryptoSearcher and Aligot is still able to detect MD5
in O1 option. However, after adding data obfuscation with O2
option, only CryptHunt detects MD5 algorithm.

e) RSA: The RSA cryptographic algorithm [65] is one of
the most widely used public-key cryptosystems. RSA achieves
this asymmetric goal based on the computation difficulty of
factoring the product of two large prime numbers. Therefore,
typically a RSA implementation includes a specific method
to represent large integer numbers. Due to the difference
between varieties of implementations, this representation can
be viewed as an encoding of inputs and outputs. So this “built-
in” data encoding makes detection of RSA more difficult than
of other cryptographic algorithms. Table II shows that all of
the peer tools fail to identify the RSA algorithm. We find
out three reasons contributing to the poor detection result.
First, RSA reveals no evident static features and therefore the
tools such as CryptoSearcher and Findcrypto2 are not able
to detect it. Second, for Aligot, the big number encoding
in OpenSSL causes the extracted loop I/O parameters from
binary code cannot be directly matched to the reference
implementation. In contrast, CryptoHunt takes advantage of bit
precise formulas so as to accurately identify the semantically
equivalent operations. At last, RSA’s modular exponentiation
implementation usually contains a main loop which matches
the model in Figure 4(b). Each iteration of the loop could goes
into two branches, either one multiplication or one squaring
and a multiplication. Aligot’s incomplete loop model causes
it to miss the main loop and to fail to detect RSA.

1 void decipher(uint32_t v[2], uint32_t const key[4],
2 unsigned int num_rounds) {
3 unsigned int i;
4
5 uint32_t v0=v[0], v1=v[1];
6 uint32_t delta=0x9E3779B9, sum=delta*num_rounds;
7
8 for (i=0; i < num_rounds; i++) {
9 v1 -= (((v0<<4)^(v0>>5))+v0) ^ (sum+key[(sum>>11) & 3]);

10 sum -= delta;
11 v0 -= (((v1<<4)^(v1>>5))+v1) ^ (sum+key[sum & 3]);
12 }
13 v[0] = v0; v[1] = v1;
14 }

Figure 10: A reference implementation of XTEA’s decryption.

1 unsigned int num_rounds = 11, i;
2
3 uint32_t v0, v1;
4 uint32_t delta = 0x61C88647, sum = 0xCC623AF3;
5
6 for (i=0; i < num_rounds; i++) {
7 v1 -= (((v0<<4)^(v0>>5))+v0) ^ (sum+key[(sum>>11) & 3]);
8 sum -= delta;
9 v0 -= (((v1<<4)^(v1>>5))+v1) ^ (sum+key[sum & 3]);

10 }

Figure 11: The decryption function in an Apache Module
injection malware.

B. Answer to RQ1: Individual Implementations

In addition to the standard implementation, some crypto-
graphic algorithms allow users to customize some key values
to generate a new version. XTEA is such an example. XTEA
is the extended version of TEA. One important enhancement is
that the number of rounds is not fixed in XTEA, but 64 rounds
is suggested. Figure 10 shows a reference implementation
of the decryption procedure in XTEA. However, malware
authors have already abused such flexibility to produce new
variations to evade detection. A recent study [33] reports that a
variant of XTEA is used in an Apache module injection attack.
We reverse engineer the Apache module’s binary code and
manually recover the new XTEA version. Figure 11 presents
the core part of the new XTEA in C code.

In Figure 11, we can observe that the malware author
modified XTEA algorithm by replacing the original magic
number 0x9E3779B9 with 0x61C88647. He also used 11
rounds of transformation rather than the suggested 64 rounds.
In order to show whether CryptoHunt can detect this modified
version of XTEA, we implement the function in Figure 11 as
a C program. The source code shown in Figure 10 is used
as the reference implementation. Similar to the evaluation on
crypto libraries, we compile the testing program with different
obfuscation options N, O1, and O2. We also run other detection
tools to compare with CryptoHunt. The result is shown in
Table III.

From the result, we can see that only CryptoHunt detected
the modified XTEA in all three versions. Because the malware
author changes the magic number and rounds, all static tools
based on these signatures fail to detect it. Particularly, due

Table III: Evaluation result on an XTEA variant from malware.

Algo Obf Fi
nd

cr
yp

to
2

Si
gn

sr
ch

C
ry

pt
oS

ea
rc

he
r

D
FG

Is
om

K
er

ch
kh

of
fs

A
lig

ot

C
ry

pt
oH

un
t

Modified XTEA
N X X

O1 X
O2 X

to the new magic number, the computation in the loop body
changes. Therefore, input and output values in the modified
version do not match the reference implementation, which
causes Aligot to deliver a poor detection result. DFGIsom
correctly extracts and match the DFG so it can identify
the modified XTEA in the unobfuscated version. This case
study shows that CryptoHunt is able to catch the crucial
transformations related to cryptographic functions and ignore
the differences introduced by obfuscation and modification to
the original algorithm.

C. Answer to RQ1: Malware Samples

Table IV shows the evaluation results on malware samples
we collect from the Internet, including now-infamous crypto-
ransomware. RansomCrypt is a ransomware sample. When
first run on a system, it iterates all files and encrypts them
using TEA. Another ransomware sample, Locky, utilizes AES
to encrypt files in victim’s computer. Sality malware code
has two sections; the first section decrypts the second section
using RC4 and redirects the execution to the beginning of
the second section. Waledac malware sample runs MD5 to
generate a unique ID for every bot. The notorious CryptoWall
ransomware encrypts a wide variety of files in the compro-
mised computer using RSA.

From Table IV, we can see that many detection tools are
able to identify TEA in RansomCrypt. It’s because Ran-
somCrypt uses the standard TEA algorithm with only slight
obfuscation. However, in other crypto algorithms, most of
the detection tools fail. One reason is that usually malware
authors call Windows Crypto API in the malware and apply
obfuscation methods to hide the API call address. The malware
itself does not include the crypto algorithm implementation.
Therefore, signature-based tools fail to detect the crypto al-
gorithms. Aligot fails to detect AES in Locky due to the
implementation difference between OpenSSL and Windows
crypto API. It also fails to detect RSA for the similar reasons
we discussed in Section XI-A4: 1) big-integer encoding; 2)
incomplete loop identification.

D. Answer to RQ2: Normal Programs

Too many false positives limit cryptographic function de-
tection’s application in practice. In this section, we test
CryptoHunt with a set of normal programs to evaluate its
false positives. As shown in Table V, our dataset includes
GNU core utilities, compression tools, and lightweight server
programs. We choose compression tools because they also

Table IV: Evaluation result on malware samples.

Malware Algo Fi
nd

cr
yp

to
2

Si
gn

sr
ch

C
ry

pt
oS

ea
rc

he
r

D
FG

Is
om

K
er

ch
kh

of
fs

A
lig

ot

C
ry

pt
oH

un
t

RansomCrypt TEA X X X X X
Locky AES X
Sality RC4 X X

Waledac MD5 X X
CryptoWall RSA X

Table V: False positive evaluation dataset.

Category Programs
Core Utilities ls, cp, mv, cat, head

Compression tools Gzip, bzip2, 7-zip
Server thttpd, lighttpd

Table VI: CryptoHunt’s offline analysis performance on
OpenSSL.

Time (min) TEA AES RC4 MD5 RSA
Loop identification 12.7 23.1 21.5 24.8 33.2
Variable mapping 0.7 2.6 1.9 2.1 3.4
Verification 2.3 4.1 4.5 5.2 6.7
Total 15.7 30.8 27.9 32.1 43.3

contain intensive bitwise operations, and server programs
contain a large number of loops. Our test dataset includes two
groups. The first is the original programs without any change.
In the other group, we inject magic numbers which could
be used by crypto detection tools such as 0x9E3779B9. The
second group mimics possible malware attacks. They are likely
to insert known signatures into benign programs to mislead
detection tools. However, our result shows that CryptoHunt
reports no cryptographic function detected in all cases. That
means CryptoHunt has no false positive in our test dataset.

E. Answer to RQ3: Overall Performance

In this section, we provide the answer to RQ3 about Cryp-
toHunt’s performance. There are two phases when analyzing
using CryptoHunt, trace logging and offline analysis. We take
advantage of Pin [58] to record the execution trace. The online
trace logging overhead is typically 5-6X slowdown. Table VI
presents the offline analysis performance of CryptoHunt. We
record the running time of different components in Crypto-
Hunt. The most time-consuming part is loop identification
since it goes over the whole trace multiple times and tries
to identify nested loops. Based on our observation, the nested
loop level significantly increases the loop identification time.
Another factor that affects the performance is the number of
input and output variables of the loops. More variables will
cause the variable mapping algorithm generate more mapping
candidates, which potentially raise the chance of launching a
theorem prover. Compared with Aligot’s result, which usually
takes more than 6 hours to analyze one execution trace,
CryptoHunt delivers much better performance.

Table VII: Evaluation of the Mapping Algorithm. The second
column shows the number of loops. The third column shows
the number of mapping variable candidates. “NM” stands
for “No mapping”, which means the number of STP queries
without the mapping algorithm. Similarly, the column “M”
shows the number of STP queries with the mapping algorithm.

Algorithms Loops Vars # of STP Queries
NM M Ratio (%)

TEA 7 41 2825 173 6.1
AES 13 96 7138 351 4.9
RC4 9 73 6055 337 5.6
MD5 8 77 8301 429 5.2
RSA 15 89 15521 803 5.2

F. Answer to RQ3: Mapping Algorithm

In this section, we present the experimental data to show the
performance improvement introduced by our guided fuzzing
approach, which aims to reduce the number of symbolic vari-
ables to be verified by a theorem solver. The data is collected
in the OpenSSL evaluation in Table II. We collect the number
of identified loops, number of mapping variables candidates,
and number of STP queries. The result is shown in Table VII.
In order to compare with the mapping algorithm, we also
implement a naive mapping procedure, which generates every
possible combination. However, the naive mapping outputs
too many candidates. Thus we add some simple heuristics to
reduce the candidate number. The reduced number is shown
in the “NM” row. From the data, we can see that our mapping
algorithm reduce about 95% STP queries on average.

XII. DISCUSSION

Since CryptoHunt works with adversaries, we have to
consider how a skilled attacker could circumvent CryptoHunt
once our approach is known. In this section, we discuss Cryp-
toHunt’s limitations, possible attacks, and countermeasures,
which also light up our future work. First, like any binary
dynamic analysis approach, one limitation of CryptoHunt
is its incomplete path coverage. Typically, CryptoHunt can
detect cryptographic functions exhibiting during run time. One
way to increase the path coverage is to leverage automatic
input generation techniques [41], [73]. The static analysis
may consider multiple paths. However, the various obfuscation
methods adopted by malware authors will undoubtedly impede
the accurate static analysis [26]. The best way to reconcile such
tradeoff is still a hot subject of research in security analysis.
We believe CryptoHunt is practical in analyzing obfuscated
malware.

Second, our prototype is not well optimized for perfor-
mance. For example, CryptoHunt’s online logging imposes
5-6X slowdown on average. We can rely on pervasive multi-
core architectures to parallelize dynamic instrumentation [74]
for better runtime performance. Meanwhile, the performance
of CryptoHunt’s offline analysis depends on the trace size. The
loop detection will become performance bottleneck when the
trace size is too large. We leave addressing the performance
issue as our future work.

Another threat to CryptoHunt is environment-sensitive mal-
ware [75], [76], [77]. Since we run malware with Pin, a
malware sample can detect itself running in Pin instead of
the physical machine and then quit immediately. A possible
countermeasure to such sandbox environment check is analyz-
ing malware in a transparent analysis platform via hardware
virtualization (e.g., Ether [78]).

Our symbolic variable mapping depends on the output of
our backward slicing, which already filters out irrelevant in-
structions. However, attackers can defeat it by adding artificial
dependencies between normal data flow and redundant code.
In an extreme case, the sliced segment could contain all the
executed instructions. While such an attack could reduce the
efficacy of CryptoHunt, at the same time it also requires
extensive efforts and high cost for attackers. In summary,
CryptoHunt significantly raises the bar for skilled cybercrim-
inals to defeat our approach.

XIII. CONCLUSION

Nowadays cryptographic functions have been widely
adopted by malware developers to disguise their payloads,
escape from network analysis, and in general, hide their ma-
licious behaviors. Detecting cryptographic functions in binary
code can help security analysts to figure out malicious intents
and design defensive solutions. However, due to the prevalence
of code obfuscation techniques, cryptographic function detec-
tion has become a very challenging work. Existing detection
methods are far from mature. Their effects are restricted when
handling obfuscated binary code. In this paper, we propose a
new technique called bit-precise symbolic loop mapping to first
capture the specific features of cryptographic algorithms with
boolean formulas, which are later used as signatures to effi-
ciently match possible cryptographic algorithms in obfuscated
binary code. We have implemented our approach called Cryp-
toHunt and evaluated it with a set of cryptographic algorithms
under different obfuscation schemes and combinations. Our
comparative experiments show that CryptoHunt outperforms
existing work in terms of better obfuscation resilience and
broader detection scope.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable
feedback. This research was supported in part by the Na-
tional Science Foundation (NSF) grants CNS-1223710 and
CCF-1320605, and the Office of Naval Research (ONR)
grants N00014-13-1-0175, N00014-16-1-2265, and N00014-
16-1-2912. Ming was also supported by the University of
Texas System Rising STARs Program.

REFERENCES

[1] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace, “Reformat:
Automatic reverse engineering of encrypted messages,” in Proceedings
of the 14th European Conference on Research in Computer Security
(ESORICS’09), 2009.

[2] J. Caballero, P. Poosankam, C. Kreibich, and D. Song, “Dispatcher:
Enabling active botnet infiltration using automatic protocol reverse-
engineering,” in Proceedings of the 16th ACM Conference on Computer
and Communications Security (CCS’09), 2009.

[3] J. Calvet, C. R. Davis, and P.-M. Bureau, “Malware authors don’t learn,
and that’s good!” in Proceedings of the 4th International Conference on
Malicious and Unwanted Software (MALWARE’09), 2009.

[4] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, “SoK:
Deep packer inspection: A longitudinal study of the complexity of run-
time packers,” in Proceedings of the 36th IEEE Symposium on Security
& Privacy, 2015.

[5] K. A. Roundy and B. P. Miller, “Binary-code obfuscations in prevalent
packer tools,” ACM Computing Surveys, vol. 46, no. 1, 2013.

[6] A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, and E. Kirda, “Cutting
the Gordian Knot: A Look Under the Hood of Ransomware Attacks,”
in Proceedings of the 12th International Conference on Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA’15), 2015.

[7] Bromium Labs, “Understanding Crypto-Ransomware,” http://www.
bromium.com/sites/default/files/bromium-report-ransomware.pdf.

[8] F. Leder and T. Werner, “Know your enemy: Containing conficker,” The
Honeynet Project, Tech. Rep., 2009.

[9] P. Porras, H. Saidi, and V. Yegneswaran, “Conficker C P2P Protocol and
Implementation, September 2009.”

[10] G. Tenebro, “Waledac–an overview,” https://www.symantec.com/
connect/blogs/waledac-overview, 2009, Symantec Official Blog.

[11] J. Calvet, J. M. Fernandez, and J.-Y. Marion, “Aligot: Cryptographic
function identification in obfuscated binary programs,” in Proceedings of
the 2012 ACM Conference on Computer and Communications Security
(CCS’12), 2012.

[12] F. Gröbert, C. Willems, and T. Holz, “Automated identification of
cryptographic primitives in binary programs,” in Proceedings of the 14th
International Conference on Recent Advances in Intrusion Detection
(RAID’11), 2011.

[13] X. Li, X. Wang, and W. Chang, “CipherXRay: Exposing cryptographic
operations and transient secrets from monitored binary execution,” IEEE
Transactions on Dependable and Secure Computing, vol. 11, no. 2,
March 2014.

[14] N. Lutz, “Towards revealing attacker’s intent by automatically decrypt-
ing network traffic,” Mémoire de maıtrise, ETH Zürich, Switzerland,
2008.

[15] P. Lestringant, F. Guihéry, and P.-A. Fouque, “Automated identification
of cryptographic primitives in binary code with data flow graph isomor-
phism,” in Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security (ASIACCS’15), 2015.

[16] C. H. Malin, E. Casey, and J. M. Aquilina, Malware Forensics: Inves-
tigating and Analyzing Malicious Code. Syngress, 2008.

[17] W. Yan, Z. Zhang, and N. Ansari, “Revealing packed malware,” IEEE
Security & Privacy, vol. 6, no. 5, pp. 65–69, 2008.

[18] J. Caballero, P. Poosankam, S. McCamant, D. Babi ć, and D. Song,
“Input generation via decomposition and re-stitching: Finding bugs in
malware,” in Proceedings of the 17th ACM Conference on Computer
and Communications Security (CCS’10), 2010.

[19] J. Ming, D. Xu, and D. Wu, “Memoized semantics-based binary diffing
with application to malware lineage inference,” in Proceedings of the
30th IFIP SEC 2015 International Information Security and Privacy
Conference (IFIP SEC’15), 2015.

[20] ——, “MalwareHunt: semantics-based malware diffing speedup by
normalized basic block memoization,” Journal of Computer Virology
and Hacking Techniques, 2016.

[21] P. OKane, S. Sezer, and K. McLaughlin, “Obfuscation: The hidden
malware,” IEEE Security and Privacy, vol. 9, no. 5, 2011.

[22] I. Levin, “Draft Crypto Analyzer (DRACA),” http://www.literatecode.
com/draca.

[23] L. Auriemma, “Signsrch tool,” http://aluigi.altervista.org/mytoolz.htm,
tool for searching signatures inside files.

[24] F. Matenaar, A. Wichmann, F. Leder, and E. Gerhards-Padilla, “CIS:
The crypto intelligence system for automatic detection and localization
of cryptographic functions in current malware,” in Proceedings of the
7th International Conference on Malicious and Unwanted Software
(MALWARE’12), 2012.

[25] C. Linn and S. Debray, “Obfuscation of executable code to improve
resistance to static disassembly,” in Proceedings of the 10th ACM
Conference on Computer and Communications Security (CCS’03), 2003.

[26] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for
malware detection,” in Proceedings of the 23rd Annual Computer
Security Applications Conference (ACSAC’07), 2007.

[27] I. V. Popov, S. K. Debray, and G. R. Andrews, “Binary obfuscation
using signals,” in Proceedings of the 16th USENIX Security Symposium
(USENIX Security’07), 2007.

[28] D. D. Hosfelt, “Automated detection and classification of cryptographic
algorithms in binary programs through machine learning,” Master’s
thesis, Johns Hopkins University, March 2015.

[29] R. Zhao, D. Gu, J. Li, and R. Yu, “Detection and analysis of crypto-
graphic data inside software,” in Proceedings of the 14th International
Conference on Information Security (ISC’11), 2011.

[30] C. Collberg and J. Nagra, Surreptitious Software: Obfuscation, Water-
marking, and Tamperproofing for Software Protection. Addison-Wesley
Professional, 2009, ch. 4.4, pp. 258–276.

[31] M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software. No Starch Press, 2012, ch. 13,
pp. 269–296.

[32] P. Schmitt, “A Different Kind of Crypto: Crypto Algorithms Designed
for Payload Obfuscation,” BlackHat 2014.

[33] J. Grunzweig, “Digging into the new apache injection
module,” https://www.trustwave.com/Resources/SpiderLabs-Blog/
Digging-Into-the-New-Apache-Injection-Module/, 2013, SpiderLabs
Blog.

[34] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” The University of Auckland, Tech. Rep., 1997.

[35] C. Wang, J. Davidson, J. Hill, and J. Knight, “Protection of software-
based survivability mechanisms,” in Proceedings of International Con-
ference on Dependable Systems and Networks (DSN’01), 2001.

[36] C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap, re-
silient, and stealthy opaque constructs,” in Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages
(POPL’98), 1998.

[37] A. Viticchié, L. Regano, M. Torchiano, C. Basile, M. Ceccato, P. Tonella,
and R. Tiella, “Assessment of source code obfuscation techniques,” in
Proceedings of the 16th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM’16), 2016.

[38] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data
structures from binary execution,” in Proceedings of the 17th Network
and Distributed System Security Symposium (NDSS’10), 2010.

[39] J. Lee, T. Avgerinos, and D. Brumley, “TIE: Principled reverse engineer-
ing of types in binary programs,” in Proceedings of the 18th Network
and Distributed System Security Symposium (NDSS’11), 2011.

[40] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, Jul. 1976.

[41] P. Godefroid, M. Y. Levin, and D. Molnar., “Automated whitebox fuzz
testing,” in Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS’08), 2008.

[42] J. Vanegue, S. Heelan, and R. Rolles, “SMT solvers for software
security,” in Proceedings of the 6th USENIX Conference on Offensive
Technologies (WOOT’12), 2012.

[43] E. Bounimova, P. Godefroid, and D. Molnar, “Billions and billions of
constraints: Whitebox fuzz testing in production,” in Proceedings of the
International Conference on Software Engineering (ICSE’13), 2013.

[44] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler.,
“EXE:automatically generating inputs of death,” in Proceedings of the
ACM Conference on Computer and Communications Security (CCS’06),
2006.

[45] C. Cadar, D. Dunbar, and D. Engler., “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI’08), 2008.

[46] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A binary
analysis platform,” in Proceedings of the 23rd international conference
on computer aided verification (CAV’11), 2011.

[47] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: A new
approach to computer security via binary analysis,” in 4th International
Conference on Information Systems Security. Keynote invited paper,
2008.

[48] D. Gao, M. Reiter, and D. Song, “BinHunt: Automatically finding
semantic differences in binary programs,” in Proceedings of the 10th
International Conference on Information and Communications Security
(ICICS’08), 2008.

[49] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applications
to software plagiarism detection,” in Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering
(FSE’14), 2014.

[50] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execution:
Dynamic similarity testing for program binaries and components,” in
23rd USENIX Security Symposium (USENIX Security’14), 2014.

[51] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in Proceedings of the
36th IEEE Symposium on Security and Privacy (S&P’15), 2015.

[52] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, and T. H. B. Kuan,
“BinGo: Cross-architecture cross-os binary search,” in Proceedings of
the 2016 ACM SIGSOFT International Symposium on the Foundations
of Software Engineering (FSE’16), 2016.

[53] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applications
to software and algorithm plagiarism detection,” IEEE Transactions on
Software Engineering, 2017.

[54] S. K. Udupa, S. K. Debray, and M. Madou, “Deobfuscation: Reverse
engineering obfuscated code,” in Proceedings of the 12th Working
Conference on Reverse Engineering (WCRE’05), 2005.

[55] J. Ming, D. Xu, L. Wang, and D. Wu, “LOOP: Logic-oriented opaque
predicate detection in obfuscated binary code,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS’15), 2015.

[56] L. Martignoni, M. Christodorescu, and S. Jha, “OmniUnpack: Fast,
generic, and safe unpacking of malware,” in Proceedings of the 23rd
Annual Computer Security Applications Conference(ACSAC’07), 2007.

[57] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “CIL: In-
termediate language and tools for analysis and transformation of C
programs,” in Proceedings of the 11th International Conference on
Compiler Construction (CC’02), 2002.

[58] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in Proceedings of
the 2005 ACM SIGPLAN conference on Programming language design
and implementation (PLDI’05), 2005.

[59] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee, “PolyUnpack:
Automating the hidden-code extraction of unpack-executing malware,”
in Proceedings of the 2006 Annual Computer Security Applications
Conference (ACSAC’06), 2006.

[60] W. Zhu, C. Thomborson, and F.-Y. Wang, “Applications of homomorphic
functions to software obfuscation,” in Proceedings of the 2006 Inter-
national Workshop on Intelligence and Security Informatics (WISI’06),
2006.

[61] V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and
arrays,” in Proceedings of the International Conference on Computer
Aided Verification (CAV’07), 2007.

[62] D. J. Wheeler and R. M. Needham, “Tea, a tiny encryption algorithm,”
in Fast Software Encryption. Springer, 1994, pp. 363–366.

[63] J. Daemen and V. Rijmen, The design of Rijndael: AES–the advanced
encryption standard. Springer Science & Business Media, 2013.

[64] R. Rivest, “The MD5 Message-Digest Algorithm,” http://www.rfc-base.
org/txt/rfc-1321.txt.

[65] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[66] Chun, “x3chun’s cryptosearcher,” http://x3chun.reteam.org/, 2004.
[67] I. Guilfanov, “Ida-pro/plugins/findcrypt2,” https://www.aldeid.com/wiki/

IDA-Pro/plugins/FindCrypt2, 2015, aldeid.
[68] C. Eagle, The IDA pro book: the unofficial guide to the world’s most

popular disassembler. No Starch Press, 2011.
[69] J. R. Ullmann, “An algorithm for subgraph isomorphism,” Journal of

the ACM (JACM), vol. 23, no. 1, pp. 31–42, 1976.
[70] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-LLVM

– software protection for the masses,” in Proceedings of the IEEE/ACM
1st International Workshop on Software Protection, SPRO’15, Firenze,
Italy, May 19th, 2015, 2015.

[71] I. You and K. Yim, “Malware obfuscation techniques: A brief survey,”
in Proceedings of the 2010 International Conference on Broadband,
Wireless Computing, Communication and Applications, 2010.

[72] D. Williams, “The tiny encryption algorithm (tea),” Network Security,
pp. 1–14, 2008.

[73] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths
for malware analysis,” in Proceedings of the 2007 IEEE Symposium of
Security and Privacy, 2007.

[74] Q. Zhao, I. Cutcutache, and W.-F. Wong, “PiPA: Pipelined profiling and
analysis on multicore systems,” ACM Transactions on Architecture and
Code Optimization, vol. 7, no. 3, Dec. 2010.

[75] D. Kirat and G. Vigna, “MalGene: Automatic extraction of malware
analysis evasion signature,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (CCS’15), 2015.

[76] M. Lindorfer, C. Kolbitsch, and P. M. Comparetti, “Detecting
environment-sensitive malware,” in Proceedings of the 14th Interna-
tional Symposium on Recent Advances in Intrusion Detection (RAID
2011), Menlo Park, CA, USA, September 2011.

[77] D. Kirat, G. Vigna, and C. Kruegel, “BareCloud: Bare-metal analysis-
based evasive malware detection,” in Proceedings of the 23rd USENIX
Conference on Security Symposium, 2014.

[78] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware analysis
via hardware virtualization extensions,” in Proceedings of the ACM
Conference on Computer and Communications Security (CCS), 2008.

