A2: Analog Malicious Hardware

Kaiyuan Yang, <u>Matthew Hicks</u>, Qing Dong, Todd Austin, and Dennis Sylvester

University of Michigan

Weakened hardware weakens the entire system

Software security success forces attackers to

Software security success forces attackers to

Visual Inspection Side Channels

Dynamic + Static Analysis

catches attacks that are large because they use additional logic to hide from dynamic analysis catches attacks that are small because they are always on

Challenge: construct an attack that is stealthy and small

Challenge: construct an attack that is stealthy and small

Two threats, we focus on the stage that restricts the attacker the most

Back-end house

netlist

```
# Generated by:
                   Cadence Encounter 10.13-s209 1
                   Linux x86 64 (Host ID vlsipool-
# OS:
f01.eecs.umich.edu)
# Generated on:
                   Sun May 31 20:06:29 2015
                   MAL TOP
# Design:
                   saveNetlist -excludeLeafCell -lineLength
# Command:
100000000 -inc...
module arbiter ibus slave0 addr width17 slave1 addr width28 DW01
inc 0 (A, SUM, VDD, VSS);
  input [6:0] A;
  output [6:0] SUM;
  inout VDD;
  inout VSS;
  // Internal wires
  wire FE PHN5383 watchdog timer 0;
  wire [6:2] carry;
  // Module instantiations
  DLY4X0P5MA10TR POSCTS FE PHC5383 watchdog timer 0
(.Y(FE PHN5383 watchdog timer 0
), .A(A[0]), .VDD(VDD), .VSS(VSS));
  ADDHX1MA10TR U1 1 5
(.S(SUM[5]), .CO(carry[6]), .B(carry[5]), .A(A[5]), .VDD(VDD), .V
SS(VSS));
  ADDHX1MA10TR U1 1 2
(.S(SUM[2]), .CO(carry[3]), .B(carry[2]), .A(A[2]), .VDD(VDD), .V
  ADDHX1MA10TR U1 1 4
(.S(SUM[4]), .CO(carry[5]), .B(carry[4]), .A(A[4]), .VDD(VDD), .V
  ADDHX1MA10TR U1 1 3
(.S(SUM[3]), .CO(carry[4]), .B(carry[3]), .A(A[3]), .VDD(VDD), .V
  ADDHX1MA10TR U1 1 1 (.S(SUM[1]), .CO(carry[2]), .B(FE PHN5383
watchdog timer 0 ), .A(A[1]), .VDD(VDD), .VSS(VSS));
  XOR2X0P7MA10TR U2
(.Y(SUM[6]), .B(A[6]), .A(carry[6]), .VDD(VDD), .VSS(VSS));
  INVXOP5BA10TR U3 (.Y(SUM[0]), .A(A[0]), .VDD(VDD), .VSS(VSS));
endmodule
```

Foundry GDSII

We leverage analog behavior to construct an attack that is stealthy and small

```
on_every(RBACE) do
   if(count == 12345) then
      do_attack()
   else
      count = count + 1
done
```

RBACE = rare, but attacker controllable event

We leverage analog behavior to construct an attack that is stealthy and small

```
RBACE = victim wire
on_every(RBACE) do
   if(count == 12345) then
      do attack()
   else
      count = count + 1
done
```

RBACE = rare, but attacker controllable event

Challenge: small capacitors charge quickly, large capacitors induce current spikes

Challenge: small capacitors charge quickly, large capacitors induce current spikes

Challenge: small capacitors charge quickly, large capacitors induce current spikes

Solution: charge sharing

19

Creating a privilege escalation attack

*Our analog trigger is attack agnostic

Implanting A2 into an existing chip layout

Other challenges in the paper

- Analog circuit design process
- Finding a suitable victim wire
- Finding the flip-flop to attack
- Building multi-stage attacks
- Writing trigger activation code
- Covertly testing for attack success

We had to build A2 to know it worked

We activate A2 in real hardware using only user mode code

A2 is hidden from post-fab testing

Trigger Circuit	Toggle Rate (MHz)	Measured (10 chip avg)	Simulated (Typical corner)
w/o IO device	120.00	7.4	7
w/o IO device	34.29	8.4	8
w/o IO device	10.91	11.6	10

More experiments in the paper

- Comparison of different standard cell sizes and out attack
- Distribution of trigger times
- Distribution of retention times
- Effect of voltage on cycles to trigger
- Effect of temperature on cycles to trigger
- Effect of temperature on retention time
- Power of benchmarks and attack programs

Cross-domain attacks are stealthy and controllable

- A2 spans the analog and digital domains
- A2 is controllable
- A2 is stealthy
 - complex and unlikely trigger sequence
 - a single cell
- Currently, only detectable post-fabrication

Research artifacts: github.com/impedimentToProgress/A2

Me: ImpedimentToProgress.com

Fabricator	Popular offshore corp.	
Interface	GDSII	
Turnaround time	3 months	
Added time to project	1 year	
Area	1.5mm x 1.5mm	
Core	330um x 550um	
Memory	1145um x 765um	
Process	65nm	
Number of chips	100	
Cost	\$5k to \$10k per 1mm ²	
Other costs	packaging	