q\\\w Stony Brook University

Shreds:

Fine-grained Execution Units with
Private Memory

Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, Long Lu

RiS3 Lab / Computer Science / Stony Brook University

Execution Units

A Process e Traditional Execution Units
Threads
PRt - Processes
£ v - Separate address spaces
- Threads

>~ Sharing one address space

TS NOT |
ENOUGH

Shreds: Fine-grained execution units with private memory 2

In-process Memory Abuses

e Definition:

Malicious or compromised components try to steal data or execute code of other
components running in the same process.

 Two examples
- Stealing secret data
>~ The Heartbleed bug W
- Executing private code
> Private APIs in iOS Apps

Shreds: Fine-grained execution units with private memory 3

Potential Mitigations of in-Process Abuse

Techniques

Why unsuitable

Process-level isolation
(OpenSSH, Chrome)

IPC is expensive
Adoption effort

Software fault isolation-like techniques
(Native Client)

* |neffective on dynamic or external code

Require instrumenting untrusted code

Hardware-assisted technigues
(SGX, Trustzone)

Overly restrictive execution environment
Semantic gap

Shreds: Fine-grained execution units with private memory

Introducing Shred

A process
* Shred
Thriads - Arbitrarily scoped segment of a thread execution
" ¥ N\ e S-pool

- The private memory pool for each shred

e Shred APIs & OS-level supports

!
”7l.----

Threat Model

® Trusted OS
Shreds @ Untrusted component

Shreds: Fine-grained execution units with private memory 5

Example Use Case

- Password authentication on web server(w/o shred)

0
Executable

Plaintext
password

Shreds: Fine-grained execution units with private memory o)

Example Use Case cont.

- Password authentication on web server(w/ shred)

0

Plaintext
password

Shreds: Fine-grained execution units with private memory

‘ Executable

Heap

S-pool

Stack

Shred APIs

» err_t shred_enter(int pool_desc);

» Start a shred execution e current t Shred creation APIs
> Unlock s-pool

* err_t shred_exit();

> Terminate a shred execution
> lock down the s-pool

S-pool allocation

APls

- void " spool_alloc(size_t size);
> Allocate memory inside S-pool

+ err_t spool_free(void *ptr);
> Free memory inside S-pool

Shreds: Fine-grained execution units with private memory 8

= 3

Code Example—Lighttpd

1nt http request parse (server *srv, connection *con) {

char *cur; /* to receive password */

+ 1f (strncmp (cur, auth str, auth str len)==0) {
(shred enter (AUTH PASSWD POOL) ;)

/* receive and save password */

data string *ds =(s_ds_init() ;)

1nt pw len = get passwd length(cur);

cur += auth str len + 1;

buffer copy string len(ds->key, auth str, auth str len);
buffer copy string len(ds->value, cur, pw len);
cur += pw len;

(bhred_exit();)

J

+ 4+ + + + + + + + +

Listing 1: lighttpd/src/request.c

Shreds: Fine-grained execution units with private memory 9

Code Example cont.

/* called inside a shred */

data string *s ds init(void) {
data string *ds;

+(:ds = spooL_alloc(sizeof(*ds))D

return ds;

J

/* called inside a shred */

vold s _ds free(data string *ds) {
N

+ (spool_free (ds->key) ;)

|

return;

} N

S-pool allocation APls wrapper

.

/* inside HTTP auth module */
(+ shred enter (AUTH PASSWD POOL)
/* ds points passwd obj in spool */

http authorization = ds->value->ptr;
/*hash passwd and compare with local copy*/
+ s ds free(ds);
gr shred exit(); 3

Listing 2: lighttpd/src/data_string.c

Shreds: Fine-grained execution units with private memory

System overview

- Two major components

4 B

_ J

Shreds: Fine-grained execution units with private memory 11

System Component: S-driver

Process

K Thread1 Thread?2 N

@Entry/exit of shreds . shred_enter
(P1),
| shred_exit();

shred enter
(P1),

®S-pool (de)allocations
shred_enter

E (P2);
@Controls the access to S-pools : shred_exit(): j
: CS-pooI Manager)
S elele] 5
sharing E — (Security Monitor)
: "1 S-pool: P2
: Mem Space - S-driver J
: ey g puyeupyupeupyepeuppeppp |
Runtime

—1
N

Shreds: Fine-grained execution units with private memory

How S-pool is Built

The building block

¥ Intel: Memory protection keys
Page Table Descriptor

—>
Page Directory. Descriptor
PDE# O
PDE# 1
—»

PDE#1023 \ D14 /

—1
Q

Shreds: Fine-grained execution units with private memory

Challenges & Solutions

|) 3 o] - |
|

Domain Access Control Register Domain Access Control Register |

« ARM Memory Dom

|
. I

1)The granularity of the ¢

v Create the notion of
and use S-driver to }

Core #1

(

2) Limited Domains: On
S

v Statically bind an aq —_

v Reuse a domain for

\
|

Virtual Address Space }

Shreds: Fine-grained execution units with private memory 14

S-pool Managements

S-driver will,

* | ock s-pool when, e Unlock s-pool when,

- Shred exits - Shred enters
- Context-switch Out - Context-switch in

- Asynchronous events: signal handling, etc - Resuming from asynchronous events

Shreds: Fine-grained execution units with private memory 15

Moving the Domain Adjustments Off the Critical Path

e Changing PDE is relatively cumbersome

- Page table walking
- TLB invalidation

e TWO knobs to control the accessibility of S-pool

- Domain of the corresponding page table entry
- Value of corresponding DACR entry

e Changing DACR value is much faster, only one instruction

- MCR pl15, 0, <Rd>, ¢c3, c0, 0 ; Write DACR
- Develop the domain fault handler to handle domain fault lazily

> Detecting attacks
>~ Recover from legitimate domain faults

Shreds: Fine-grained execution units with private memory 10

Runtime Protections

@ Secure stacks

- Each shred has a secure stack allocated from its s-pool

@ System interface protection

- ptrace()

- /dev/imem

- Directly read secret from file
- elc

Shreds: Fine-grained execution units with private memory 17

System Component: S-compiler

® Shred usage verification

@ Associate each shred with its s-pool
@ Control flow hardening for in-shred code

@ Data flow checking to prevent direct-propagation

Src.c .
S-compiler

in.t enc(x) {

Analyses

Ghred_enter(p 1),)

Shred- o
hardening

//encryption logic

o Shred_exit();
W A~

1 T i —

)

*

R P P L E P EEEEEEEEEY

'% Development and build

Evaluation

@ Hardware spec: Raspberry Pi 2 Model B (Quad-core Cortex-A7 Processor with 1GB RAM)

Easy adoption

® Avg. 21 SLOC change

@ Curl
@ Minizip ® Avg. 32 min adoption time
@ OpenSSH
@ OpenSSL
® Avg. 4.67% slowdown
@ Lighttpd
® Avg. 7.26% RSS(resident set size) overhead
Shreds: Fine-grained execution units with private memory 19 E a

Evaluation cont.

2.10E3

2.06E3

1000

3800

600

400

200

getpid

Shreds: Fine-grained execution units with private memory

M user time (us)

clo

M sys time (us)

20

mmap

alloc*

Conclusion

@® Goal— To help developers protect sensitive code/data from in-process abuse
@ To achieve the goal we propose shreds with private memory
- Fine-grained: Flexibly scoped segments of thread executions

- Efficient and compatible : MMU based domain check
> No multiple page tables
> No nested paging
> No heavy instrumentations
> No hardware modifications

- Robust:

> Prevent out-shred attacks + intra-shred vulnerabilities

Shreds: Fine-grained execution units with private memory 21

