
Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, Long Lu

RiS3 Lab / Computer Science / Stony Brook University

S
H

R
E

D
S

Shreds:
Fine-grained Execution Units with

Private Memory

1

Shreds: Fine-grained execution units with private memory

Execution Units

A Process

Threads

•Traditional Execution Units

2

- Processes

- Threads

‣ Separate address spaces

‣ Sharing one address space

Shreds: Fine-grained execution units with private memory

- Stealing secret data
‣ The Heartbleed bug

- Executing private code
‣ Private APIs in iOS Apps

In-process Memory Abuses

• Definition:
Malicious or compromised components try to steal data or execute code of other
components running in the same process.

3

•Two examples

Shreds: Fine-grained execution units with private memory

Potential Mitigations of in-Process Abuse

Techniques Why unsuitable

 Process-level isolation
 (OpenSSH, Chrome)

• IPC is expensive
• Adoption effort

 Software fault isolation-like techniques
 (Native Client)

• Require instrumenting untrusted code
• Ineffective on dynamic or external code

 Hardware-assisted techniques
 (SGX, Trustzone)

• Overly restrictive execution environment
• Semantic gap

4

Shreds: Fine-grained execution units with private memory

Introducing Shred

Threads

Shreds

A process
• Shred

- Arbitrarily scoped segment of a thread execution

• S-pool
- The private memory pool for each shred

• Shred APIs & OS-level supports

5

๏ Trusted OS
๏ Untrusted component

Threat Model

Shreds: Fine-grained execution units with private memory

0
Executable

Heap

• Password authentication on web server(w/o shred)

Plaintext
password

Local Hash

Example Use Case

6

Stack

Kernel

Libs

Shreds: Fine-grained execution units with private memory

Example Use Case cont.

0

Kernel

Plaintext
password

S-pool

Local Hash

• Password authentication on web server(w/ shred)

7

Executable

Heap

Stack

Libs

Shreds: Fine-grained execution units with private memory

Shred APIs

• err_t shred_enter(int pool_desc);
‣ Start a shred execution on the current thread
‣ Unlock s-pool

• err_t shred_exit();
‣ Terminate a shred execution
‣ lock down the s-pool

• void * spool_alloc(size_t size);
‣ Allocate memory inside S-pool

• err_t spool_free(void *ptr);
‣ Free memory inside S-pool

Shred creation APIs

S-pool allocation
APIs

8

Shreds: Fine-grained execution units with private memory

 Code Example—Lighttpd

Listing 1: lighttpd/src/request.c

✖

9

int http_request_parse(server *srv, connection *con) {
 ...
 char *cur; /* to receive password */
+ if (strncmp(cur, auth_str, auth_str_len)==0){
+ shred_enter(AUTH_PASSWD_POOL);
+ /* receive and save password */
+ data_string *ds = s_ds_init();
+ int pw_len = get_passwd_length(cur);
+ cur += auth_str_len + 1;
+ buffer_copy_string_len(ds->key, auth_str, auth_str_len);
+ buffer_copy_string_len(ds->value, cur, pw_len);
+ cur += pw_len;
+ shred_exit();
+ }
 ...
}

Shreds: Fine-grained execution units with private memory

Code Example cont.

Listing 2: lighttpd/src/data_string.c Listing 3: lighttpd/src/mod_auth.c

S-pool allocation APIs wrapper

10

/* called inside a shred */
data_string *s_ds_init(void) {
 data_string *ds;
+ ds = spool_alloc(sizeof(*ds));
 ...
 return ds;
}

/* called inside a shred */
void s_ds_free(data_string *ds) {
+ ...
+ spool_free(ds->key);
+ ...
 return;
}

...
/* inside HTTP auth module */
+ shred_enter(AUTH_PASSWD_POOL);
/* ds points passwd obj in spool */
 http_authorization = ds->value->ptr;
/*hash passwd and compare with local copy*/
+ s_ds_free(ds);
+ shred_exit();
...

Shreds: Fine-grained execution units with private memory

System overview

• Two major components

11

S-driver S-compiler

Shreds: Fine-grained execution units with private memory

System Component: S-driver

S-pool
sharing

12

 S-driver

๏Entry/exit of shreds

๏S-pool (de)allocations

๏Controls the access to S-pools

shred_enter
(P1);

shred_exit();

shred_enter
(P1);
shred_exit();

shred_enter
(P2);
shred_exit();

Thread1 Thread2

Process

Security Monitor

S-pool Manager
…

S-pool: P2

S-pool: P1

S-driverMem Space

Runtime

Shreds: Fine-grained execution units with private memory

How S-pool is Built
• ARM Memory Domains—The building block

…
D0D1D14D15

Domain Access Control Register
D1

D14

D1

…

Page Directory Descriptor …

…

…

Page Table Descriptor

PDE# 0
PDE# 1

PDE#1023: Accessible

: Not accessible

13

Intel: Memory protection keys

Shreds: Fine-grained execution units with private memory

1)The granularity of the accessing subject can only be checked at CPU level

• ARM Memory Domain was not designed to serve our goal

2) Limited Domains: Only 16 Domains are available

✓Create the notion of shred so the accessing subject can be recognized
and use S-driver to manage them

✓Statically bind an accessible domain to each CPU

✓Reuse a domain for multiple S-pools if they are accessed from the same CPU

Challenges & Solutions

… …
Domain Access Control Register Domain Access Control Register

Core #1 Core #2

s-pool
#1

s-pool
#2

Virtual Address Space

14

Shreds: Fine-grained execution units with private memory

S-pool Managements

• Unlock s-pool when,• Lock s-pool when,

- Shred exits
- Context-switch Out
- Asynchronous events: signal handling, etc

- Shred enters
- Context-switch in
- Resuming from asynchronous events

S-driver will,

15

Shreds: Fine-grained execution units with private memory

Moving the Domain Adjustments Off the Critical Path

•Changing PDE is relatively cumbersome
- Page table walking
- TLB invalidation

•TWO knobs to control the accessibility of S-pool
- Domain of the corresponding page table entry
- Value of corresponding DACR entry

•Changing DACR value is much faster, only one instruction

- MCR p15, 0, <Rd>, c3, c0, 0 ; Write DACR

- Develop the domain fault handler to handle domain fault lazily
‣ Detecting attacks
‣ Recover from legitimate domain faults

16

Shreds: Fine-grained execution units with private memory

Runtime Protections

๏ Secure stacks
- Each shred has a secure stack allocated from its s-pool

๏ System interface protection
- ptrace()

- Directly read secret from file
- etc

- /dev/mem

17

Shreds: Fine-grained execution units with private memory

System Component: S-compiler

Shred-
hardening

Analyses

src.c
S-compiler

Development and build

…
int enc(x) {
…

shred_enter(p1);

//encryption logic

shred_exit();
…

18

 S-compiler

๏ Shred usage verification

๏ Associate each shred with its s-pool

๏ Control flow hardening for in-shred code

๏ Data flow checking to prevent direct-propagation

Shreds: Fine-grained Execution Units with Private Memory

Yaohui Chen
Sebassujeen Reymondjohnson

Zhichuang Sun
Long Lu

Department of Computer Science

Stony Brook University

{yaohchen, sreymondjohn, zhisun, long}@cs.sto
nybrook.edu

Abstract—Once attackers have injected code into a victim

program’s address space, or found a memory disclosure vulner-

ability, all sensitiv
e data and code inside that address space are

subject to thefts or manipulation. Unfortunately, this broad type

of attack is hard to prevent, even if software developers wish to

cooperate, mostly
because the conventional memory protection

only works at process level and previously proposed in-process

memory isolation methods are not practical for wide adoption.

We propose shreds, a set of OS-backed programming primi-

tives that addresses developers’ currently unmet needs for fine-

grained, convenient, and efficient protection of sensitiv
e memory

content against in-process adversaries. A shred can be viewed as

a flexibly defined segment of a thread execution (hence the name).

Each shred is associated with a protected memory pool, which

is accessible only to code running in the shred. Unlike previous

works, shreds offer in-process private memory without relying on

separate page tables, nested paging, or even modified hardware.

Plus, shreds provide the essential data flow and control flow

guarantees for running sensitiv
e code. We have built the compiler

toolchain and the OS module that together enable shreds on

Linux. We demonstrated the usage of shreds and evaluated their

performance using 5 non-trivial open source software, including

OpenSSH and Lighttpd. The results show that shreds are fairly

easy to use and incur low runtime overhead (4.67%).

I. INTRODUCTION

Many attacks on software aim at accessin
g sensitiv

e content

in victim
programs’ memory, including secret data (e.g.,

crypto keys and user passwords) and critic
al code (e.g., private

APIs and privileged functions). To achieve the goal, such

attacks succeed as soon as they manage to execute code in

target programs’ process context, which is usually achieved via

remote exploitations or malicious libraries. For instance, the

HeartBleed attack on OpenSSL-equipped software reads pri-

vate keys by exploiting a memory disclosure vulnerability
[1];

the malicious libraries found in mobile apps covertly
invoke

private framework APIs to steal user data [2]. Obviously, this

whole class of attacks cannot succeed if target programs are

able to protect its sensitiv
e data and code against hostile

code

running in the same process, such as injected shellcode and

malicious libraries. We generally refer to this class of attacks

as in-process abuse.

Developers are virtually
helpless when it comes to pre-

venting in-process abuse in their programs, due to a lack of

support from underlying operating systems (OS): the memory

isolation mechanisms provided by modern OS operate merely

at the process level and cannot be used to establish
security

boundaries inside a process.
As a result, protecting sensi-

tive memory content against malicious code inside the same

process remains an open issu
e, which has been increasingly

exploited by attackers.

To address this open issu
e, some recent work proposed the

thread-level memory isolation [3], which allows developers

to limit the sharing of a thread’s memory space with other

threads in the same process. However, this line of works faces

three major limitations. First,
thread-level memory isolation is

still
too coarse to stop in-process abuse because exploitable or

malicious code often run in the same thread as the legitim
ate

code that needs to access sensitiv
e memory content. Sec-

ond, adopting these solutions requires significant efforts from

developers. Separating application components into different

threads (i.e., scheduling units)
demands major design changes,

as opposed to regional code patches, to deal with the added

concurrency. Third, threads with
private memory tend to

incur much higher overhead than normal threads due to the

additional page table switches, TLB flushes, or nested page

table management upon context switches. We aim to tackle

these challenges by proposing a practical and effective system

to realize in-process private memory.

In this paper, we present a new execution unit for user-

space code, namely shred, which represents an arbitrarily

sized segment of a thread (hence the name) and is granted

exclusive access to a protected memory pool, namely shred-

private pool (or s-pool). Figure 1 depicts shreds in relation

to the conventional execution units.
Upon its

creation, a

shred is associated an s-pool, which can be shared among

multiple shreds. Shreds address developers’ currently unmet

needs for fine-grained, convenient, and efficient protection of

sensitiv
e memory content against in-process adversaries. To

prevent sensitiv
e content in memory from in-process abuse,

a developer includes into a shred the code that needs access

to the sensitiv
e content and stores the content in the shred’s

s-pool. For instance, an encryption function can run in a shred

with the secret keys stored in the s-pool; a routine allowed to

call a private API can run in a shred whose s-pool contains

the API code.

We design shreds under a realistic
ally

adversarial threat

model. We assume attackers may have successfu
lly

com-

promised a victim
program, via either remote exploitation

or malicious local libraries. Attackers’ goal is to access the

sensitiv
e content, including both data and code, in the victim

program’s virtual memory space. Further, we expect unknown

vulnerabilitie
s to exist inside shreds (e.g., control flow hijacks

and data leaks are possib
le). On the other hand, we assume a

clean OS, which serves as the TCB for shreds. The assumption

Shreds: Fine-grained execution units with private memory

Evaluation

๏ Hardware spec: Raspberry Pi 2 Model B (Quad-core Cortex-A7 Processor with 1GB RAM)

Softwares

Low overhead

๏ Curl

๏ Minizip

๏ OpenSSH

๏ OpenSSL

๏ Lighttpd
๏ Avg. 4.67% slowdown

๏ Avg. 7.26% RSS(resident set size) overhead

Easy adoption

๏ Avg. 21 SLOC change

๏ Avg. 32 min adoption time

19

Shreds: Fine-grained execution units with private memory

Evaluation cont.

20

Shreds: Fine-grained execution units with private memory

Conclusion

๏ Goal— To help developers protect sensitive code/data from in-process abuse

๏ To achieve the goal we propose shreds with private memory

- Fine-grained: Flexibly scoped segments of thread executions

- Efficient and compatible : MMU based domain check
‣ No multiple page tables
‣ No nested paging
‣ No heavy instrumentations
‣ No hardware modifications

- Robust:

‣ Prevent out-shred attacks + intra-shred vulnerabilities

21

