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Motivation
• Sanitizers and filters are important components of securing applications. 

- Think code injection attacks. 

• Black-Box analysis is often a necessity. 

- Penetration testing, hardware testing. 

• Filters need to be fast. 

- Possibility of representing with automata models. 

• This talk: focus on regular expression filters. 

- Check the paper for results on sanitizers.



Regular Expression Filters
• Pass untrusted input through Regular Expressions. 

- Reject if match found. 

• Widely employed for protecting against code injection attacks. 

- Not very robust. 

• Significant components of large scale software. 

- Web Application Firewalls, IDS, DPI and others. 

• Represented by Deterministic Finite State Automata (DFA).



Can we efficiently infer 
Regular Expression Filters?



Exact Learning From Queries

Learning 
Algorithm

Target M

Form of Active Learning.

Two types of Queries.



Exact Learning From Queries

Learning 
Algorithm

Target M

Membership Query

string s

Is s accepted by M?



Exact Learning From Queries

Learning 
Algorithm

Target M

Equivalence Query

Model H

Is M = H ? Yes, or provide counterexample.



Learning Deterministic Finite Automata 
[Angluin ’87], [Rivest-Schapire ’93]

• When valid DFA is formed test for 
Equivalence.

• Start with an initial state.
• Test all transitions from that state.

Testing all transitions is inefficient 
for large Alphabets!

• Counterexamples provide access 
to previously undiscovered states.
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Symbolic Finite Automata (SFA)
Classical Automata Symbolic Automata

guards



Learning SFA: Challenges

• Alphabet may be infinite!  

•  How to distinguish causes for counterexamples in the models? 

- Counterexamples due to undiscovered states in the target. 

- Counterexamples due to inaccurate transition guards.



Learning Symbolic Finite Automata

• Use sample transitions as training set 
to generate guards.

• Start with an initial state.
• Test sample transitions from that state.

• Novel counterexample processing 
method to handle incorrect guards.
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Is Exact Learning From 
Queries a realistic model?



Is Exact Learning from Queries 
a realistic model?

• Membership Queries? Test whether input is rejected by the filter. 

• Equivalence Queries?



Grammar Oriented Filter Auditing 
or  

How to Implement an Equivalence Oracle



Grammar Oriented Filter Auditing 
(GOFA)



Grammar Oriented Filter Auditing 
(GOFA)

… 
select_exp: SELECT name 
any_all_some: ANY | ALL  

column_ref: name 
parameter: name

Context Free 
Grammar G
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Grammar Oriented Filter Auditing 
(GOFA)

(alter{s}*{w}+.*character{s}
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parameter: name

Context Free 
Grammar G Regular Filter F



Grammar Oriented Filter Auditing 
(GOFA)

(alter{s}*{w}+.*character{s}
+set{s}+{w}+)|(\";{s}

*waitfor{s}+time{s}+\")

Normal output or REJECT

/index.php?id=1’ or ‘1’=‘1

… 
select_exp: SELECT name 
any_all_some: ANY | ALL  

column_ref: name 
parameter: name

Context Free 
Grammar G Regular Filter F

Find string s such that May Require Exponential 
Number of Queries!



Solving GOFA
• In an ideal (White-Box) world both G and F are available: 

1. Compute   , the set of strings not rejected by F.

2. Check                      for emptiness.

• In practice F is unavailable. 

- Learn a model for F!



Solving GOFA

Context Free 
Grammar G Regular Filter F



Solving GOFA

Context Free 
Grammar G Regular Filter F



Solving GOFA

Membership Query

string s

True if REJECT is returned 
False otherwise

Context Free 
Grammar G Regular Filter F



Solving GOFA
Equivalence Query

H If no such s 
exists then 
terminate

If REJECT:  
s is a counterexample for H. 

Otherwise: 
s is a bypass for the filter F.

One Membership Query per Equivalence Query!
Context Free 
Grammar G Regular Filter F



Evaluation



Experimental Setup

• 15 Regular Expression Filters from popular Web 
Application Firewalls(WAFs). 
‣ 7 - 179 states. 
‣ 13 - 658 transitions. 

• Alphabet size of 92 symbols. 
‣ Includes most printable ASCII characters.



DFA vs SFA Learning 

✓On average 15x less queries. 
✓Increase in Equivalence queries. 
✓Speedup is not a simple function of 
the automaton size.



DFA vs SFA Learning 



GOFA Algorithm Evaluation
• Assume that the grammar G does not contain a string that 

bypasses the filter. 

- How good is the approximation of the filter obtained? 

- How efficient is SFA Learning in the GOFA context? 

• What is an appropriate grammar to perform this experiment? 

- Use the filter itself as the input grammar! 

- Intuitively, a maximal set that does not include a bypass.



DFA vs SFA Learning in GOFA

✓SFA utilizes x35 less queries. 

✓States recovered: 
‣DFA: 91.95% 
‣SFA: 89.87%



GOFA: Evading WAF
• Handcrafted grammar with valid suffixes of SQL statements. 

- SELECT * from table WHERE id=S

- Simulates an SQL Injection attack.

• Test GOFA algorithm against live installations of ModSecurity and 
PHPIDS. 

- Both systems include non regular anomaly detection components.



GOFA: Evading WAF
Evasions found for both web application firewalls. 

✓Authentication Bypass: 1 or isAdmin like 1  

✓Data Retrieval: 1 right join users on author.id = users.id

Evasion attacks aknowledged by 
ModSecurity team.



Conclusions
• SFAs provide an efficient way to infer regular expressions. 

• SFA learning can provide insights for non regular systems. 

• Similar techniques derived for sanitizers, more in the paper! 

• Large space for improvements over presented learning algorithm. 

- Smarter guard generation algorithms. 

• We envision assisted Black-Box testing of sanitizers and filters. 

- Auditor will correct inaccuracies of models. 

- Derive concrete attacks from abstract language constructs.
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