
Back In Black:
Towards Formal, Black Box Analysis Of Sanitizers and Filters

George Argyros*, Ioannis Stais**, Angelos Keromytis* and Aggelos Kiayias***

* ** ***

Motivation
• Sanitizers and filters are important components of securing applications.

- Think code injection attacks.

• Black-Box analysis is often a necessity.

- Penetration testing, hardware testing.

• Filters need to be fast.

- Possibility of representing with automata models.

• This talk: focus on regular expression filters.

- Check the paper for results on sanitizers.

Regular Expression Filters
• Pass untrusted input through Regular Expressions.

- Reject if match found.

• Widely employed for protecting against code injection attacks.

- Not very robust.

• Significant components of large scale software.

- Web Application Firewalls, IDS, DPI and others.

• Represented by Deterministic Finite State Automata (DFA).

Can we efficiently infer
Regular Expression Filters?

Exact Learning From Queries

Learning
Algorithm

Target M

Form of Active Learning.

Two types of Queries.

Exact Learning From Queries

Learning
Algorithm

Target M

Membership Query

string s

Is s accepted by M?

Exact Learning From Queries

Learning
Algorithm

Target M

Equivalence Query

Model H

Is M = H ? Yes, or provide counterexample.

Learning Deterministic Finite Automata
[Angluin ’87], [Rivest-Schapire ’93]

• When valid DFA is formed test for
Equivalence.

• Start with an initial state.
• Test all transitions from that state.

Testing all transitions is inefficient
for large Alphabets!

• Counterexamples provide access
to previously undiscovered states.

q0q0

q1

q2

q0

q1

q2 q3

q0

q1

q2 q3

q4

q0

q1

q2

Symbolic Finite Automata (SFA)
Classical Automata Symbolic Automata

guards

Learning SFA: Challenges

• Alphabet may be infinite!

• How to distinguish causes for counterexamples in the models?

- Counterexamples due to undiscovered states in the target.

- Counterexamples due to inaccurate transition guards.

Learning Symbolic Finite Automata

• Use sample transitions as training set
to generate guards.

• Start with an initial state.
• Test sample transitions from that state.

• Novel counterexample processing
method to handle incorrect guards.

q0q0

q1

q2

a

b

guardgen()(q0,a,q1), (q0,b,q2), …
q0

q1

q2

�0,0(x)

�0,1(x)

�1,0(x)

�2,0(x)

q0

q1

q2 q3

q4

�0,0(x)

�0,1(x)

�1,0(x)

�2,0(x)

�2,1(x)

�1,1(x)

Convergence under natural
assumptions on guardgen()

Is Exact Learning From
Queries a realistic model?

Is Exact Learning from Queries
a realistic model?

• Membership Queries? Test whether input is rejected by the filter.

• Equivalence Queries?

Grammar Oriented Filter Auditing
or

How to Implement an Equivalence Oracle

Grammar Oriented Filter Auditing
(GOFA)

Grammar Oriented Filter Auditing
(GOFA)

…
select_exp: SELECT name
any_all_some: ANY | ALL

column_ref: name
parameter: name

Context Free
Grammar G

Grammar Oriented Filter Auditing
(GOFA)

…
select_exp: SELECT name
any_all_some: ANY | ALL

column_ref: name
parameter: name

Context Free
Grammar G

Grammar Oriented Filter Auditing
(GOFA)

(alter{s}*{w}+.*character{s}
+set{s}+{w}+)|(\";{s}

*waitfor{s}+time{s}+\")

Normal output or REJECT

/index.php?id=1’ or ‘1’=‘1

…
select_exp: SELECT name
any_all_some: ANY | ALL

column_ref: name
parameter: name

Context Free
Grammar G Regular Filter F

Grammar Oriented Filter Auditing
(GOFA)

(alter{s}*{w}+.*character{s}
+set{s}+{w}+)|(\";{s}

*waitfor{s}+time{s}+\")

Normal output or REJECT

/index.php?id=1’ or ‘1’=‘1

…
select_exp: SELECT name
any_all_some: ANY | ALL

column_ref: name
parameter: name

Context Free
Grammar G Regular Filter F

Find string s such that May Require Exponential
Number of Queries!

Solving GOFA
• In an ideal (White-Box) world both G and F are available:

1. Compute , the set of strings not rejected by F.

2. Check for emptiness.

• In practice F is unavailable.

- Learn a model for F!

Solving GOFA

Context Free
Grammar G Regular Filter F

Solving GOFA

Context Free
Grammar G Regular Filter F

Solving GOFA

Membership Query

string s

True if REJECT is returned
False otherwise

Context Free
Grammar G Regular Filter F

Solving GOFA
Equivalence Query

H If no such s
exists then
terminate

If REJECT:
s is a counterexample for H.

Otherwise:
s is a bypass for the filter F.

One Membership Query per Equivalence Query!
Context Free
Grammar G Regular Filter F

Evaluation

Experimental Setup

• 15 Regular Expression Filters from popular Web
Application Firewalls(WAFs).
‣ 7 - 179 states.
‣ 13 - 658 transitions.

• Alphabet size of 92 symbols.
‣ Includes most printable ASCII characters.

DFA vs SFA Learning

✓On average 15x less queries.
✓Increase in Equivalence queries.
✓Speedup is not a simple function of
the automaton size.

DFA vs SFA Learning

GOFA Algorithm Evaluation
• Assume that the grammar G does not contain a string that

bypasses the filter.

- How good is the approximation of the filter obtained?

- How efficient is SFA Learning in the GOFA context?

• What is an appropriate grammar to perform this experiment?

- Use the filter itself as the input grammar!

- Intuitively, a maximal set that does not include a bypass.

DFA vs SFA Learning in GOFA

✓SFA utilizes x35 less queries.

✓States recovered:
‣DFA: 91.95%
‣SFA: 89.87%

GOFA: Evading WAF
• Handcrafted grammar with valid suffixes of SQL statements.

- SELECT * from table WHERE id=S

- Simulates an SQL Injection attack.

• Test GOFA algorithm against live installations of ModSecurity and
PHPIDS.

- Both systems include non regular anomaly detection components.

GOFA: Evading WAF
Evasions found for both web application firewalls.

✓Authentication Bypass: 1 or isAdmin like 1

✓Data Retrieval: 1 right join users on author.id = users.id

Evasion attacks aknowledged by
ModSecurity team.

Conclusions
• SFAs provide an efficient way to infer regular expressions.

• SFA learning can provide insights for non regular systems.

• Similar techniques derived for sanitizers, more in the paper!

• Large space for improvements over presented learning algorithm.

- Smarter guard generation algorithms.

• We envision assisted Black-Box testing of sanitizers and filters.

- Auditor will correct inaccuracies of models.

- Derive concrete attacks from abstract language constructs.

Back In Black:
Towards Formal, Black Box Analysis Of Sanitizers and Filters

George Argyros*, Ioannis Stais**, Angelos Keromytis* and Aggelos Kiayias***

* ** ***

