

# High-Speed Inter-Domain Fault Localization

#### Cristina Basescu, Yue-Hsun Lin, Haoming Zhang, Adrian Perrig







#### Fault localization problem statement

- Localize entities that drop, delay, or modify traffic
- Practical for inter-domain settings



Who localizes faults?

Acceptable localization duration?

Acceptable communication overhead?

Storage overhead at nodes?

ODSBR – Awerbuch et al., ACM Trans. on Information and System Security (2008) TrueNet – Zhang et al., ICNP (2011) ShortMAC – Zhang et al., NDSS (2012) Secure sketch protocols – Goldberg et al., IEEE/ACM Trans. on Netw. (2014)

## Previous approaches



Per-packet monitoring: packet fingerprint Per-flow or per-source storage

| Traffic: 10 Gbps | Fast path storage    |
|------------------|----------------------|
| Secure sketch    | ~149 GB + per-source |
| ShortMAC         | ~4.6 GB + per-source |
| Faultprints      | ~46 MB               |
|                  |                      |

### How to bound fast-path storage?



\*Lightweight source authentication and path validation – Kim et al., SIGCOMM 2014

## Fault localization

• Localization performed when **fault is detected** 



packet observed

- packet not observed
- P Incorrect reply
- S computes link corruption scores for correct probe replies



• S computes node misbehavior probabilities for incorrect probe replies (see paper)

## IS FAULTPRINTS SECURE?

#### Storage exhaustion defense

- Epochs
- Worst case scenario: ~46 MB per 10 Gbps traffic

#### • Framing attacks

- Cannot guess packets sampled by target
- Probe reply indistinguishability
- Best strategy is to attack at random  $\Rightarrow$  reduce the attack surface





## No Free Lunch

## Pros & Cons

- Low storage, but a higher communication overhead
- Paths symmetric or significantly overlapping
- Delay localization requires time synchronization between nodes
- Secure against sophisticated attackers

### ACCURACY AND THROUGHPUT

## Localization accuracy

- One malicious node, at random locations on path
- Path length 5 ASes, link natural packet loss 0.1%



## Throughput and Goodput

• Commodity server as Faultprints router receiving traffic at 120 Gbps



- Sampling rate 10%
- Bloom filter false positive rate 0.02
- Path length 5 ASes

## Conclusion

- Faultprints localizes Internet-wide packet drop, delay, and modification
- Low storage requirements: ~46 MB for 10 Gbps traffic rate
- Secure against storage exhaustion attacks and framing attacks
- Real-world traffic forwarded on commodity server at ~117 / 120 Gbps