
Security	Analysis	of	Emerging	
Smart	Home	Applications

Earlence	Fernandes,	Jaeyeon Jung,	Atul Prakash

IEEE	Security	and	Privacy
24	May	2016

2

CO	Sensors Connected	Ovens

Smart	TVs

Smart	Plugs
IP	Cameras

Smart	Door	Locks

Emerging	Smart	Home	
Frameworks

Potential Security	Risks

3

Flooding	[1]
Remotely	determine	
prime	time	for	
Burglary	[1,2]

OR

[1]	Denning	et	al.,	Computer	Security	and	the	Modern	
Home,	CACM’13
[2]	FTC	Internet	of	Things	Report’15

Devices Protocols

Current Vulnerabilities

These	attacks	are	device-specific,	
and	require	proximity to	the	home

4

In	what	ways	are	these	emerging,	programmable
smart	homes	vulnerable	to	attacks,	and	

what	do	those	attacks	entail?

Analysis	of	SmartThings

• Why	SmartThings?
• Relatively	Mature	(2012)
• 521	SmartApps
• 132	device	types
• Shares	design	principles	with	other	existing,	nascent	frameworks

5

Access
Control

Trigger-Action
Programming

• Methodology
• Examine	security	from	5	perspectives	by	constructing	test	apps	to	exercise	
SmartThings	API
• Empirical	analysis	of	499	apps	to	determine	security	issue	prevalence
• Proof	of	concept	attacks	that	compose	security	flaws

Analysis	of	SmartThings	– Results	Overview

6

Security	Analysis	Area Finding
Overprivilege in	Apps Two	Types	of	Automatic	Overprivilege
Event	System	Security Event	Snooping	and	Spoofing

Third-party	Integration Safety Incorrect	OAuth Can	Lead	to	Attacks
External Input	Sanitization Groovy	Command	Injection Attacks

API	Access	Control No	Access	Control	around	SMS/Internet	API

Empirical	Analysis	of	499	Apps >	40%	of	apps	exhibit	overprivilege of	
atleast one	type

Proof	of	Concept	Attacks Pincode Injection	and	Snooping,	Disabling	
Vacation	Mode,	Fake	Fire	Alarms

SmartThings	Primer

7

WiFi

ZWave

SmartThings	
Companion	App

Configure

Control

SmartThings	Cloud	Platform

SmartAppSmartDevice

Groovy-Based
Sandbox

Groovy-Based
Sandbox

Capability
System

[Cmd/Attr]
[Events]

HTTPS	
GET/PUT

Internet	
API
SMS
API

Capability	System

8

Untrusted
SmartApp

ZWave Lock	SmartDevice

capability.lock
capability.lockCodes
capability.battery
…

Send	commands

Read/set	attributes
Receive	events

Capability Commands Attributes

capability.lock lock(),	unlock() lock	(lock status)

capability.battery N/A battery (battery	status)

Usability
Simpler	Coarser	Capabilities

Security
Very	Granular	Capabilities

Ease	of	Development
Expressive	Functionality

SmartApps request	Capabilities

9
Device	Enumeration

definition(name:	“DemoApp”,
namespace:	“com.testing”,	category:	“Utility”)

//query	the	user	for	capabilities
preferences {
section(“Battery-Powered	Devices”)	{	
input “dev”,	“capability.battery”,	title:	“Select	
battery	powered	devices	you	wish	to	authorize”,
multiple:	true

}
}

…

10
ZWave

WiFi

SmartThings	
Companion	App

Configure

Control

SmartThings	Cloud	Platform

SmartAppSmartDevice

Groovy-Based
Sandbox

Groovy-Based
Sandbox

Capability
System

[Cmd/Attr]
[Events]

HTTPS	
GET/PUT

Internet	
API
SMS
API

Overprivilege	in	SmartApps

Overprivilege	in	SmartApps

11

Coarse-Grained	Capabilities Coarse	SmartApp-SmartDevice Binding
SmartApp

input	“dev”,	“capability.battery”

SmartDevice1
[ZWave Lock]

capability.battery
capability.lock

capability.refresh

SmartDevice2
[Smoke	Sensor]

capability.battery
capability.smoke
capability.refresh

Physical	Lock Physical	Smoke	Sensor

• “Auto-lock”	app	from	app	store

• Only	needs	“lock”	command,	but	
can	also	issue	“unlock”

Overprivilege	Increases	
Attack	Surface	of	the	Home

12
ZWave

WiFi

SmartThings	
Companion	App

Configure

Control

SmartThings	Cloud	Platform

SmartAppSmartDevice

Capability
System

[Cmd/Attr]
[Events]

HTTPS	
GET/PUT

Internet	
API
SMS
API

Insufficient	Event	Data	Protection

Groovy-Based
Sandbox

Groovy-Based
Sandbox

Insufficient	Event	Data	Protection

13

SmartApp ZWave Door	Lock
71c9344e-6bea-4ae8-993a-28a7817a7d9e

subscribe	dev,	“door.unlock”,	handler

handler(EventData:	{unlocked,	time:	9AM})

• Once	a	SmartApp gains	any capability	for	a	device,	it	can	subscribe	to	
any	event that	device	generates

• If	a	SmartApp acquires	the	128-bit	ID,	then	it	can	monitor	all	events	of	
that	device	without gaining	any	of	the	capabilities	the	device	supports

• Using	the	128-bit	ID,	a	SmartApp can	spoof	physical	device	events

Insufficient	Event	Data	Protection

14

SmartApp ZWave Door	Lock
71c9344e-6bea-4ae8-993a-28a7817a7d9e

subscribe	dev,	“door.unlock”,	handler

handler(EventData:	{unlocked,	time:	9AM})

• Can	lead	to	leakage of	confidential	information

• Spoofed	Events can	lead	to	Apps/Devices	taking	incorrect actions

15

SmartThings	Cloud	Platform

SmartAppSmartDevice

Capability
System

[Cmd/Attr]
[Events]

HTTPS	
GET/PUT

Internet	
API
SMS
API

Other	Potential	Security	Issues	- OAuth

[1]	Chen	et	al.,	OAuth	Demystified	for	Mobile	Application	Developers,	CCS’14

• Insecurity	of	Third-Party	Integration:	SmartApps expose	
HTTP	endpoints	protected	by	OAuth;	Incorrect	
implementation can	lead	to	remote	attacks	[1]

Groovy-Based
Sandbox

Groovy-Based
Sandbox

16

SmartThings	Cloud	Platform

SmartAppSmartDevice

Capability
System

[Cmd/Attr]
[Events]

HTTPS	
GET/PUT

Internet	
API
SMS
API

Other	Potential	Security	Issues	- OAuth

• Unsafe	use	of	Groovy	Dynamic	
Method	Invocation:	Apps	can	be	
tricked into	performing	unintended	
actions

def foo()	{	…	}
def str =	“foo”
“$str”()

Groovy-Based
Sandbox

Groovy-Based
Sandbox

17

SmartThings	Cloud	Platform

SmartAppSmartDevice

Capability
System

[Cmd/Attr]
[Events]

HTTPS	
GET/PUT

Internet	
API
SMS
API

Other	Potential	Security	Issues	– Unrestricted	
External	Communication	APIs

• Unrestricted	Communication	Abilities:	SMS	and	Internet;	
Can	be	used	to	leak	data	arbitrarily

Groovy-Based
Sandbox

Groovy-Based
Sandbox

Requested	
Cmds/Attrs

Computing	Overprivilege

18

Coarse-Grained	Capabilities Coarse	SmartApp-SmartDevice Binding

Used
Cmds/Attrs

Granted	
Capabilities

Used
Capabilities

Measuring	Overprivilege	in	SmartApps

19

• Incomplete	capability	details	
(commands/attributes)

• SmartThings	is	closed	source;	
can’t	do	instrumentation

• Groovy	is	extremely	dynamic;	
Bytecode	uses	reflection	
(Groovy	Meta	Object	Protocol)

• Discovered	an	unpublished	REST	
endpoint,	which,	if	given	a	device	ID,	
returns	capability	details

• Study	source	code	of	apps	from	
open-source	app	store	instead

• Static	analysis	on	AST

Challenge Solution

Empirical	Analysis	Results

20

Documented Completed
Commands 65 93
Attributes 60 85

Reason for	Overprivilege Number	of	Apps
Coarse-grained	Capability 276	(55%)

Coarse	SmartApp-SmartDevice
Binding 213	(43%)

Overprivilege	Usage	
Prevalence	(Coarse	Binding) 68	(14%)

Exploiting	Design	Flaws	in	SmartThings

21

OverprivilegeCommand	
Injection

OAuth	
Compromise

Event	
Spoofing

Unrestricted	
SMS	API

Pincode
Injection

Pincode
Snooping

Disabling	
Vacation	
Mode

Fake	CO	
Alarm

Popular	Existing	SmartApp
with	Android	companion	
app;	Unintended	action	of	
setCode()	on	lock

Stealthy	malware	SmartApp;	
ONLY	requests	
capability.battery

Malware	SmartApps with	no	capabilities;	
Misuses	logic	of	existing	SmartApps with	fake	
events

Potential	Defense	Strategies

• Achieving	least-privilege	in	SmartApps
• Risk	asymmetry in	device	operations,	e.g.,	oven.on and	oven.off
• Include	notions	of	risk	from	multiple	stakeholders,	rank	[1],	and	regroup

• Preventing	information	leakage	from	events
• Provide	a	notion	of	strong	identity for	apps	+		access	control	on	events
• Make	apps	request	access	to	certain	types	of	events,	e.g.,	lock	pincode ACKs

22

[1]	Felt	et	al.,	I’ve	got	99	problems,	but	vibration	ain’t one:	A	survey	of	smartphone	users’	concerns,	SPSM’12

Summary
• First	look	at	the	security	design	of	a	programmable	smart	home	platform:	
Samsung	SmartThings;	Challenge:	Blackbox Cloud	System
• Two	security	design	issues:

• Overprivilege:	Coarse	grained	capabilities,	and	Coarse	SmartApp-SmartDevice
Binding

• Insecure	Events:	Apps	do	not	need	special	privileges	to	access	sensitive	info
• Empirical	Analysis:	55% of	apps	do	not	use	all	operations	their	capabilities	
imply;	43% get	capabilities	they	did	not	explicitly	request
• Four	PoC attacks	that	combine	various	security	design	issues

• These	attacks	are	device	independent,	and	long-range
• Security	Improvements:	Notified	SmartThings	in	Dec	2015;	Improvements	
in	vetting	process and	developer	best	practices	for	Groovy	Strings											
(Apr	2016);	Discussion	on	improvements	to	capability	system (May	2016)

23

• First	look	at	the	security	design	of	a	programmable	smart	home	platform:	
Samsung	SmartThings;	Challenge:	Blackbox Cloud	System
• Two	security	design	issues:

• Overprivilege:	Coarse	grained	capabilities,	and	Coarse	SmartApp-SmartDevice
Binding

• Insecure	Events:	Apps	do	not	need	special	privileges	to	access	sensitive	info
• Empirical	Analysis:	55% of	apps	do	not	use	all	operations	their	capabilities	
imply;	43% get	capabilities	they	did	not	explicitly	request
• Four	PoC attacks	that	combine	various	security	design	issues

• These	attacks	are	device	independent,	and	long-range
• Security	Improvements:	Notified	SmartThings	in	Dec	2015;	Improvements	
in	vetting	process and	developer	best	practices	for	Groovy	Strings											
(Apr	2016);	Discussion	on	improvements	to	capability	system (May	2016)

24

Security	Analysis	of	Emerging	
Smart	Home	Applications

https://iotsecurity.eecs.umich.edu Earlence	Fernandes

Conservatively	Statically	Estimating	
SmartApp-SmartDevice Overprivilege

25

SmartApp
input	“dev”,	“capability.battery”

SmartDevice1
[ZWave Lock]

capability.battery
capability.lock

SmartDevice2
[Smoke	Sensor]

capability.battery
capability.smoke
capability.refresh

Physical	Lock Physical	Smoke	Sensor

• Many	devices	can	implement	
a	given	capability

• Statically,	we	do	not	which	
device	the	user	would	assign	
to	an	app

• Use	our	dataset	of	132	device	
handlers	to	estimate,	
conservatively

Empirical	Analysis	of	SmartThings

26

Total	number	of SmartDevices 132
Number of	SmartDevices raising	events	using	

createEvent and	sendEvent.	Such	events	can	be	
snooped	on	by	SmartApps

111

Total	number	of	SmartApps 499

Number	of	apps	using	potentially	unsafe	Groovy	
dynamic	method	invocation

26

Number	of	OAuth-enabled apps,	whose	security	
depends	on	correct	implementation	of	OAuth

27

Number	of	apps using	unrestricted	SMS	APIs 131

Number	of	apps	using	unrestricted Internet	APIs 36

Exploiting	Design	Flaws	in	SmartThings

27

Attack	Description Attack	Vectors Physical World	Impact

Backdoor	Pincode Injection	Attack
Command	injection	into	existing	
WebService SmartApp;
Overprivilege;	OAuth impl.	flaws

Enabling	physical entry;	Theft

Door	Lock	Pincode Snooping	Attack
Stealthy battery-level	monitoring	
app;	Overprivilege;	leak	data	using	
SMS

Enabling physical	entry;	Theft

Disabling	Vacation Mode	Attack
Attack	app	with	no	capabilities;
Misusing	logic	of	benign	app;	Event	
Spoofing

Theft; Vandalism

Fake	Alarm Attack
Attack	app	with	no	capabilities;
Event	spoofing;	Misusing	logic	of	
benign	app

Misinformation;	Annoyance

Backdoor	Pincode Injection	Attack

28

WebService
SmartApp

HTTP	PUT

HTTP	GET

client_id
client_secret

mappings {
path(“/devices/:id”)	{	action:	
[PUT:	“updateDevice”]

}

def updateDevice()
{
def cmd =	request.JSON.command
def args =	request.JSON.arguments
//	code	truncated
device.”$cmd”(*args)

}

{
command:	setCode,
arguments:	[3,	‘5500’]

}

Example	of	Stealing	an	OAuth	Bearer	Token

• Decompile	APK	bytecode	to	get	the	client_secret

• Send	email	to	user	asking	to	“reauthenticate”	to	SmartThings

29

https://graph.api.smartthings.com/oauth/authorize?response	type=code&client_id=REDACTED&scope=app&
redirect_uri=http%3A%2F%2Fssmartthings.appspot.com

Open	Redirector

30

Door	Lock	Pincode Snooping	Attack

31

Lock	Code	Manager	
App

ZWave Lock	Device	
Handler

SmartThings	Hub

Battery	Monitor	App

subscribe(‘codeReport’)	[Possible	due	to	overprivilege]

setCode(‘5500’)

codeReport event

zwave.userCodeV1.userCodeSet
zwave.userCodeV1.userCodeGet

ZWave commands	and	reports

Responsible	Disclosure

32

Dec	17,	2015
We	contacted	
SmartThings	with	
details	on	attacks.

Jan	12,	2016
SmartThings	
acknowledged	the	
attacks	and	said	
they	are	working	
on	solutions.

Apr	15,	2016
SmartThings	
informed	us	that	
docs	were	
updated	to	
recommend	
filtering	Groovy	
Strings;	Vetting	
processes	were	
updated	to	look	
for	our	attacks.

May	2,	2016
We	had	a	call	with	
SmartThings	team	
to	discuss	
potential	new	
design	for	
capability	system.

Emerging	Smart	Home	Frameworks

33

Current	Vulnerabilities	in	Smart	Homes

34

Devices

Protocols

These	attacks	are	device-specific,	and	require	proximity to	the	home

35

CO	Sensors

IP	Cameras

Smart	Door	Locks Connected	OvensSmart	TVs

Smart	Plugs

