

Northeastern University

Inferring User Routes and Locations using Zero-Permission Mobile Sensors

Sashank Narain, Triet D. Vo-Huu, Kenneth Block and Guevara Noubir College of Computer and Information Science Northeastern University, Boston, MA

Motivation

- Leakage of location information a major privacy concern
 - Can be used to track users, find their identity or home / work locations
- Mobile OSs have some protections to prevent location access
 - Permissions for accessing location information
 - Increasing awareness among users regarding location privacy
 - But many still careless (E.g. 4.7 stars for Brightest flashlight app)
- Protecting location leakage from side-channels a harder problem
 - No permissions for accessing sensors or restrictions on rate
 - No notifications to users about access

Brightest Flashlight Free ® coldestitues Technologies, LLC Free

Version 2.4.2 car	1 access:			
Location	Location			
	 approximate location (retwork-based) precise location (GPS and network-based) 			
Phone				
 read phone status and identity 				
E Photos/Media/Files				
1 7	+ s UPBIT			
4.7	* 4 196,009			
*****	* 2 21.509			
# 1296491 total	* 1 0,000			
FTC Approves Final Order Settling				

FTC Approves Final Order Settling Charges Against Flashlight App Creator

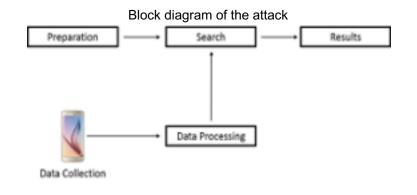
Goal: Demonstrate feasibility of using smartphone sensors to infer user routes with high probability

Outline

- Graph Theoretic Approach
- Map Data Graph Construction
- Sensors for Inference
- Sensor Data Route Construction
- The Search Algorithm
- Evaluation Results (simulation and real)

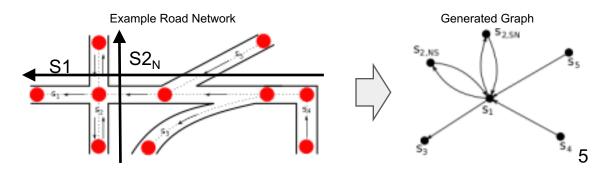
Graph Theoretic Approach

- Preparation (One-time)
 - Download road network for areas
 - Convert information to graph G = (V, E)
- Data Collection
 - Detect and record sensor data of user driving
- Data Processing
 - o Perform noise correction and alignment
 - Convert aligned data to subgraph
- Search
 - o Search maximum likelihood route on graph



Map Data Graph Construction

- Extract map data
 - Road information from OpenStreetMaps & Speed limits from Nokia HERE platform
- Construct directed graph
 - Decompose each road into one-way atomic sections
 - Sections road between two intersections / end-points
 - Does not contain turns or sharp curves
 - Contains curve, heading and minimum time (from speed limit + overspeed)
 - o Reconstruct atomic sections to form segments
 - Segments Many sections connected to form straight or curved road

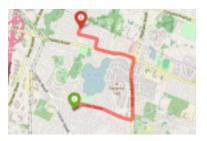


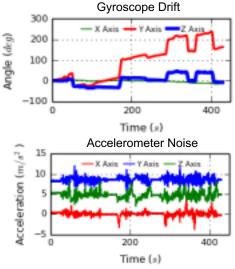
Sensor Data

- Gyroscope
 - o Extract turn angles and curvature
 - Most stable and useful for inference
- Accelerometer
 - o Calculate idle time
- Magnetometer
 - o Calculate heading direction

Sensor Limitations

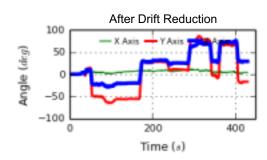
- Gyroscopes drift
 - Values drift away from axis (axis misalignment)
- Accelerometers not suited for speed estimation
 - o Extremely sensitive to motion and very noisy
 - Vibrations, potholes, road slopes induce large accelerations
 - Difficult to remove bias (user calibration required)
- Magnetometers add difficulty in heading estimation
 - Extremely sensitive to car electromagnets (fans, speakers)

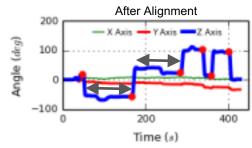




Sensor Data Route Construction

- Reduce drift from Gyroscope data
- Align to horizontal reference frame
 - Puts turn information in z axis
- Detect turns (edges) and extract segment (vertices)
 - Segment Trace between two turns (includes curvature)
- Condition information to segments
 - Remove idle time (acceleration \cong gravity for continuous time)
 - \circ Add compass heading (field strength \cong region's magnetic field)
 - 30-50 µT for North-East USA





Search Algorithm

- Goals and theorems
 - \circ Find sequence of turns (θ) in graph (G) that maximize probability of matching observed turns (α)
 - If turn errors approximate to a zero-mean Gaussian distribution (mean = 0 and std dev = σ)
 - Maximizing the probability of optimal route is equivalent to minimizing the L2 norm of the error ($||\alpha \theta||$)
 - The optimal route tracking solution becomes $max(||\alpha \theta||)$ for all $\theta \in G$
- Based on 'Trellis Code Decoding' technique
 - More complex as start segment not known
 - Improved results by filtering unlikely connections
- Individual and Cluster Rank metrics
 - Identify individual routes traversed
 - Cluster similar routes to increase confidence in an area

Search Algorithm (contd.)

- The algorithm
 - Assume each segment as a potential starting point
 - Iterate through each potential path (for every intersection)
 - Filter out all unlikely connections
 - Score remaining connections (add previous score)
 - Pick top scoring paths (trade-off between speed and accuracy)
- Filtering out unlikely connections
 - Reported turn angle Connection turn angle < Turn threshold
 - Reported segment heading Connection heading < Heading threshold (*if stable*)
 - Reported travel time < Minimum time between intersections

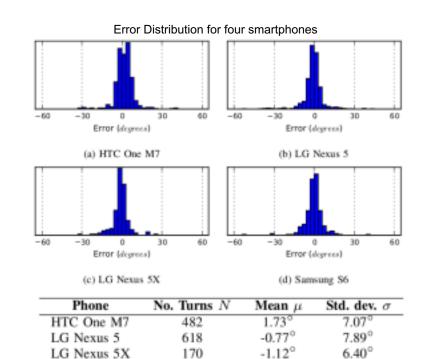
Scoring

- Based on weighted turn angles, curvature and travel time
 - Turn Score = Turn weight * abs(Reported turn angle Connection turn angle)
 - Time Score = Time weight * abs(Reported travel time Minimum time between intersections)
- Curvature Scoring
 - Split graph segment curvature into equal parts as Gyroscope segment curvature
 - Assume constant velocity
 - Calculate normalized distance between segment and Gyroscope curve for each part
 - Curve Score = (1 / Segment time) * sum(abs(Reported curve Segment curve) for all parts)
- L2 norm theoretically optimal for Gaussian distributions, however
 - L1 norm preferred over L2 norm (Gyroscope errors not truly Gaussian)
 - L2 squaring amplifies sparse large errors

Final score = Sum of (Turn + Time + Curve) score for all intersections

Evaluation Metric - Gyroscope Accuracy

- Error distribution used to check accuracy
 - o From real driving experiments
 - Error = (Reported turn angle OSM turn angle)
- Key Results:
 - o Distributions resemble Gaussian distribution
 - ~ 95% of errors less than 10°



238

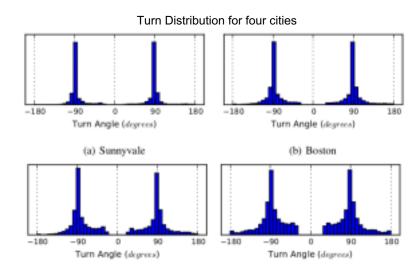
Samsung S6

-0.57°

7.51°

Cities for Simulation

- 11 cities for simulation
 - Based on size, density and road structure
- Large number of Vertices V and Edges E
 - Signifies big cities with low inference potential
- Disparate turn distribution
 - o Signifies unique turns with high inference potential
- Many similar turn radii
 - o Signifies grid-like with low inference potential



(c) Rome

(d) Concord

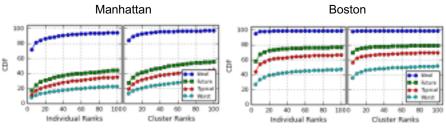
City		E	Mean µ _{tum}	Std Dev σ_{turn}
Atlanta, GA, USA	10529	25557	88.73°	17.58°
Berlin, Germany	4708	19752	88.21°	19.87°
Boston, MA, USA	8010	22149	89.69°	20.52°
Concord, MA, USA	3049	6467	88.13°	29.58°
London, UK	9468	21968	87.83°	20.38°
Madrid, Spain	10012	30144	86.41°	25.13°
Manhattan, NY, USA	1033	3699	89.23°	17.81°
Paris, France	6744	11204	86.35°	26.26°
Rome, Italy	9408	20577	85.98°	26.15°
Sunnyvale, CA, USA	5592	12302	88.59°	16.00°
Waltham, MA, USA	3366	9437	88.93°	20.53°

Creating Simulation Routes

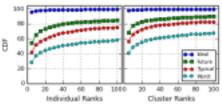
- Creating simulation routes
 - Connect segments starting at a random start segment
 - Inject variable noise (turn, curve & time) to simulate real driving routes
- Noise scenarios
 - Ideal (noise free scenario)
 - <u>Typical</u> (moderate traffic and current sensors)
 - Using values from real driving experiments
 - High Noise (heavy traffic and less accurate sensors)
 - <u>Future</u> (moderate traffic and more accurate sensors)

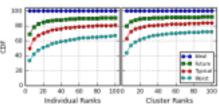
Evaluation Metric - Simulation Routes

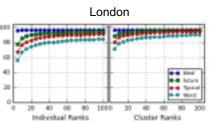
- 8000 routes for each city
 - 2000 routes * 4 noise scenarios
- Key results
 - Good inference for 8 cities (Individual / Cluster)
 - Typical scenario: 50 / 60% in top 10
 - <u>High noise scenario:</u> 35 / 40% in top 10
 - o Low inference for grid-like cities
 - E.g. Manhattan
 - o Turn & curvature combined have largest impact
 - E.g. London and Rome
 - Boston, Madrid and Paris have straight roads
 - o Size of city doesn't impact inference



Madrid

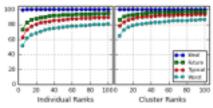






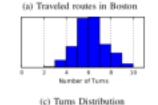
ħ

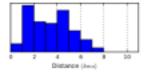
Rome



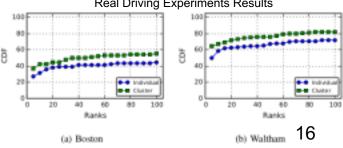
Evaluation Metric - Real Driving Routes

- 70 routes each in Boston & Waltham (~ 980 km)
 - Restrictions Fixed Position and no reversal \cap
- Key results
 - Boston \bigcirc
 - ~ 30 / 35% in top 5 (13% ranked 1)
 - Leans toward high noise scenario of simulation
 - Waltham \bigcirc
 - ~ 50 / 60% in top 5 (38% ranked 1)
 - Leans toward typical noise scenario of simulation





(d) Distance Distribution



Real Driving Experiments Results

Summary

- Demonstrated that apps with no permissions can infer routes with good accuracy
- Used graph theory to identify the most likely routes and clusters
- Collected 140 driving experiments (~980 km) for Boston and Waltham
- ~ 30% of routes in top 5 for Boston and 50% in top 5 for Waltham
- Performed simulations for 11 cities with diverse road characteristics
- Good inference for 8 cities in simulation with more than 50% of routes in top 10

Thank You

Questions?