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Motivation

» Leakage of location information a major privacy concern Brightest Flashlight Free ®

o Can be used to track users, find their identity or home / work locations " Froa oo

* Mobile OSs have some protections to prevent location access

o Permissions for accessing location information S
o Increasing awareness among users regarding location privacy
= But many still careless (E.g. 4.7 stars for Brightest flashlight app) " S ‘
‘ =t WA~ -

* Protecting location leakage from side-channels a harder problem
o No permissions for accessing sensors or restrictions on rate /1 - -
o No notifications to users about access rEwws o e

FTC Approves Final Order Settling
Charges Against Flashlight App
Creator

Goal: Demonstrate feasibility of using smartphone sensors to infer user routes with high probability
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Outline

* Graph Theoretic Approach

« Map Data Graph Construction

« Sensors for Inference

* Sensor Data Route Construction
* The Search Algorithm

« Evaluation Results (simulation and real)



Graph Theoretic Approach

Preparation (One-time)
o Download road network for areas
o Convert information to graph G = (V, E)

Data Collection
o Detect and record sensor data of user driving

Data Processing
o Perform noise correction and alignment
o Convert aligned data to subgraph

Search
o Search maximum likelihood route on graph

Block diagram of the attack

Preparation I — [ Search
g Data Processing
Data Collection



Map Data Graph Construction

« Extract map data
Road information from OpenStreetMaps & Speed limits from Nokia HERE platform

O

» Construct directed graph
Decompose each road into one-way atomic sections
Sections - road between two intersections / end-points
Does not contain turns or sharp curves

Contains curve, heading and minimum time (from speed limit + overspeed)
Reconstruct atomic sections to form segments

O

O

Segments - Many sections connected to form straight or curved road

Example Road Network
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Sensor Data

« Gyroscope
o Extract turn angles and curvature
o Most stable and useful for inference

 Accelerometer
o Calculate idle time

 Magnetometer
o Calculate heading direction



Sensor Limitations

Gyroscopes drift

O

Values drift away from axis (axis misalignment)

Accelerometers not suited for speed estimation

Magnetometers add difficulty in heading estimation
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Extremely sensitive to motion and very noisy
Vibrations, potholes, road slopes induce large accelerations
Difficult to remove bias (user calibration required)

Extremely sensitive to car electromagnets (fans, speakers)
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Sensor Data Route Construction

» Reduce drift from Gyroscope data

» Align to horizontal reference frame
o Puts turn information in z axis

» Detect turns (edges) and extract segment (vertices)
o Segment - Trace between two turns (includes curvature)

« Condition information to segments
o Remove idle time (acceleration = gravity for continuous time)
o Add compass heading (field strength = region’s magnetic field)
= 30-50 pT for North-East USA
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Search Algorithm

« Goals and theorems
o Find sequence of turns (8) in graph (G) that maximize probability of matching observed turns (a)
o If turn errors approximate to a zero-mean Gaussian distribution (mean = 0 and std dev = 0)
= Maximizing the probability of optimal route is equivalent to minimizing the L2 norm of the error (||a - 6]|)
= The optimal route tracking solution becomes max(||a - 6||) forall 8 & G

« Based on ‘Trellis Code Decoding’ technique
o More complex as start segment not known
o Improved results by filtering unlikely connections

* |Individual and Cluster Rank metrics
o ldentify individual routes traversed
o Cluster similar routes to increase confidence in an area



Search Algorithm (contd.)

* The algorithm
o Assume each segment as a potential starting point
o lterate through each potential path (for every intersection)
»  Filter out all unlikely connections
=  Score remaining connections (add previous score)
o Pick top scoring paths (trade-off between speed and accuracy)

* Filtering out unlikely connections
o Reported turn angle - Connection turn angle < Turn threshold
o Reported segment heading - Connection heading < Heading threshold (if stable)
o Reported travel time < Minimum time between intersections
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Scoring

« Based on weighted turn angles, curvature and travel time
o Turn Score = Turn weight * abs(Reported turn angle - Connection turn angle)
o Time Score = Time weight * abs(Reported travel time - Minimum time between intersections)

* Curvature Scoring
o Split graph segment curvature into equal parts as Gyroscope segment curvature
= Assume constant velocity

o Calculate normalized distance between segment and Gyroscope curve for each part
= Curve Score = (1/ Segment time) * sum(abs(Reported curve - Segment curve) for all parts)

« L2 norm theoretically optimal for Gaussian distributions, however
o L1 norm preferred over L2 norm (Gyroscope errors not truly Gaussian)
o L2 squaring amplifies sparse large errors

Final score = Sum of (Turn + Time + Curve) score for all intersections
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Evaluation Metric - Gyroscope Accuracy

Error distribution used to check accuracy
o From real driving experiments
o Error = (Reported turn angle - OSM turn angle)

Key Results:

o Distributions resemble Gaussian distribution
o ~95% of errors less than 10°

Error Distribution for four smartphones

- ‘fd I 0 10 6‘0 —;ﬂ ‘—“J Q 1‘0 l;ﬂ
Error {degrees) Error {degrees)
{a) HTC One M7 (b) LG Nexus $
-;J -30 0 = 30 ;0 -;'MJ :‘.’J Q 0 60
Error {degrees) Error {degrees)
(¢) LG Newss SX (d) Sevsung S6
Phone No. Tarns V Mean Std. dev. o
HTC One M7 482 1.737 7.077
LG Nexus 5 618 -0.77° 7.89°
LG Nexus 5X 170 -1.12° 6.40°
Samsung S6 238 057° 7.51°
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C i ti e S fo r S i m u I ati O n Turn Distribution for four cities

* 11 cities for simulation
o Based on size, density and road structure

~180 -9 [«] ® 180 N 130 -0 0 9% 130
Turn Angle (degrees) Turn Angle (Eegrees)
» Large number of Vertices V and Edges E (@) Semmyvale (b) Boston

o Signifies big cities with low inference potential

» Disparate turn distribution

o Signifies unique turns with high inference potential T E— & .- gl g h - -
Tumn Angle (dogrvns) Tum Angle (degrees)
* Many similar turn radii (c) Rome (d) Concand
o Signifies grid-like with low inference potential Clity VT BT Mean jinm  Std Dev 7
Atlamta, GA, USA 10529 25557 88737 17,587
Berlin, Germany 4708 19752 88.21° 19.87°
Bostom. MA, USA 10 22149 89.697 20.52
Conoord, MA, USA LIRE 6467 88.137 2958
Loadon, UK 68 21968 87.83" 2038
Madnd, Spain o012 30144 8041 2513
Mankaltan, NY, USA 1033 6N 89.23° 17.81°
Paris, France 6744 11204 §6.35° 26.26°
Rome, laly MO8 2577 8S.98° 26,157
Sunmyvale, CA, USA 5592 12302 88.59° 16.00°
Waltham, MA, USA 1366 9437 §8.93° 2053
| KO




Creating Simulation Routes

» Creating simulation routes

(@)
(@)

Connect segments starting at a random start segment
Inject variable noise (turn, curve & time) to simulate real driving routes

 Noise scenarios

O

@)

Ideal (noise free scenario)

Typical (moderate traffic and current sensors)
= Using values from real driving experiments

High Noise (heavy traffic and less accurate sensors)

Future (moderate traffic and more accurate sensors)
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Evaluation Metric - Simulation Routes

8000 routes for each city

2000 routes * 4 noise scenarios

©)
Key results

o Good inference for 8 cities (Individual / Cluster)
= Typical scenario: 50 / 60% in top 10
= High noise scenario: 35/40% in top 10

o Low inference for grid-like cities
= E.g. Manhattan

o Turn & curvature combined have largest impact
= E.g. London and Rome
= Boston, Madrid and Paris have straight roads

o Size of city doesn’t impact inference
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e 70 routes each in Boston & Waltham (~ 980 km)

o Restrictions - Fixed Position and no reversal

 Key results

o Boston
n _ 30 / 35cyo in tOp 5 (1 3% ranked 1) (3) Travelad routes in Boson (b) Trawveled rowes in Waltham
= Leans toward high noise scenario of simulation z
o Waltham L \ i’
* ~50/60% intop 5 (38% ranked 1) "7 wmwdne  Owecetes |
= Leans toward typical noise scenario of simulation {€) Tums Distritutios ) Distance Distritution

Real Driving Experiments Results
100F T T Y '< 100F T

Rarks ks

(a) Bowon by Waltham 1 6



Summary

 Demonstrated that apps with no permissions can infer routes with good accuracy
» Used graph theory to identify the most likely routes and clusters

» Collected 140 driving experiments (~980 km) for Boston and Waltham

» ~ 30% of routes in top 5 for Boston and 50% in top 5 for Waltham

» Performed simulations for 11 cities with diverse road characteristics

» Good inference for 8 cities in simulation with more than 50% of routes in top 10
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Thank You

Questions?
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