

No Pardon for the Interruption: New Inference Attacks on Android Through Interrupt Timing Analysis

May 24, 2016

Wenrui Diao, Xiangyu Liu, Zhou Li, and Kehuan Zhang

香港中文大學 The Chinese University of Hong Kong

Motivation -- Hardware and Kernel

- Mobile platform mobility and usability
- New specialized hardware components

• Previous research \rightarrow particular hardware components \rightarrow reading data directly from sensors

Q: What about the security implications of the integration of specialized **hardware** and tailored **kernel**?

Main Idea -- Hardware Interrupt

- Android inherits the **interrupt mechanism** from Linux.
- Efficient communication method between CPU and external devices.
- **Public** interrupt statistical information: /proc/interrupts

shell@shamu:/ \$ ls -l /proc/interrupts -r--r--r-- root root 0 2016-04-13 14:39 interrupts

• Reflect the **real-time running status** of devices

- >Inference attack!
- >New attack surface!

Main Idea -- Interrupt Timing Analysis

A: Through analyzing the **time series of interrupts** occurred for a particular device, user's **sensitive information** could be inferred.

- Root Cause: ill-conceived integration of specialized hardware components and tailored kernel.
- Gifts from mobile platform \rightarrow new hardware components

 \rightarrow interact with user directly

• Related work: Zhang et al. Usenix'09, Jana et al. S&P'12

Background -- Hardware Interrupt Mechanism

• Enable timely event management

Public /proc/interrupts on Linux

shell@shamu:/_\$ cat /proc/interrupts						
	CPUC	CPU1	CPU2	CPU3		
20:	41662	16103	14960	14905	GIC	arch_timer
25:	0	0	0	0	GIC	MSM_L1
33:	2007	0	0	0	GIC	bw_hwmon
34:	0	0	0	0	GIC	MSM_L2
35:	0	0	0	0	GIC	apps_wdog_bark
39:	2162	1375	1354	819	GIC	arch_mem_timer
61:	85	0	0	0	GIC	mxhci_hsic_pwr_evt
64:	6022	0	0	0	GIC	xhci-hcd:usb1
65:	5434	0	O	0	GIC	kgsl-3d0
74:	0	Θ	O	0	GIC	msm_iommu_nonsecure_irq
75:	0	0	O	0	GIC	<pre>msm_iommu_secure_irq, msm_iommu_secure_irq</pre>
76:	616	0	0	0	GIC	msm_vidc
78: 0				0	GIC	<pre>msm_iommu_secure_irq, msm_iommu_secure_irq</pre>
79: Monometry The amount of		of	0	GIC	msm_iommu_nonsecure_irq	
81:	81: 2 interrupts occurred		0	GIC		
		meen apts oot				

• Counter update \rightarrow Interrupt occurred \rightarrow Event coming

Concrete Attack Showcases

- General Approach: Interrupt Timing Analysis
- Inferring unlock pattern -- Touchscreen Controller
- Inferring foreground app -- Display Sub-System (DSS)

Attack Case 1 -- Touchscreen and Unlock Pattern

• Touchscreen: A large amount of user's sensitive information pass through.

- Unlock pattern
- Overcome the usability
- 3×3 matrix
- Connect dots in a certain order

Touchscreen Controller and Interrupt

• Touch/Leave the touchscreen -- Interrupt

• Different lines could result in different interrupt sequences and a gap could be observed between lines' interrupts.

Inferring Unlock Pattern -- Work Flow

Derive the state sequence, solve HMM

Inferring Unlock Pattern -- Experiment

- Target all 389,112 patterns, without training specific pattern in advance.
 - Cai et al. HotSec'11 \rightarrow 1 pattern, Aviv et al. ACSAC'12 \rightarrow 50 patterns
- Five users to get the length-interrupt relationship (Gaussian-like model).
- Another two users joined the testing phase.
- In total, obtain 160 password patterns from each user
 - Draw each generated pattern two times.
 - Consider 2-gram, 3-gram, 4-gram and 5-gram types.
 - Randomly generated 20 patterns for each type.

Inferring Unlock Pattern -- Result

Success Rate for Gram Segmenting (Gap Searching)

Pattern	Search Space Reduction	Success Rate	
2-gram	$389,112 \rightarrow 168$	98.75%	
3-gram	$389,112 \rightarrow 2,544$	92.5%	
4-gram	389,112 → 11,048	97.5%	
5-gram	389,112 → 37,160	97.5%	
	Search space has be substantially reduced.		

Inferring Unlock Pattern -- Result

Success Rate for State Sequence Inference

User #	Top N	2-gram	3-gram	4-gram	5-gram
	Тор 3	50%	25%	7.5%	0
	Top 5	80%	27.5%	10%	0
User 1	Тор 10	97.5%	40%	20%	2.5%
	Тор 20	97.5%	60%	37.5%	12.5%
	Тор 40	97.5%	90%	Random guess: 0.0157%	
	Тор 3	45%	20%	(guessing 5	
	Top 5	62.5	22.5 Improve up to		to thousands of
User 2	Тор 10	95	35	times	
	Тор 20	100	50	40	20
	Тор 40	100	70	57.5	22.5

Attack Case 2 -- App Running in the Foreground

• Phishing attacks

17:07	0.02 % 🕲 🛜 🛍 💷 55					
<	뤥 恒生銀行 HANG SENG BANK					
	Logon					
Userr	iame					
	Password Security Device					
Tips To enj service	Tips To enjoy Full e-Banking services and MPF services, please click here					
	E					
<u>Te</u>	ms & Conditions Security Tips FAQ Contact Us					

UI Refreshing and Interrupts

• Foreground UI is continuously refreshed.

- UI Refreshing -- Display Sub-System (DSS) → Interrupt request (vsync)
- Different UI layout and refreshing strategies different interrupt time series

UI Refreshing and Interrupts

Interrupt patterns of 6 apps' launching processes

One-page Take-away

- New attack surface in the interrupt handling mechanism: public /proc/interrupts
- Counter update \rightarrow Interrupt occurred \rightarrow Event coming
- General approach: interrupt timing analysis
- Concrete cases:
 - Touchscreen controller -- unlock pattern inference
 - Display Sub-System -- foreground app inference
- Defense: fine-grained access control, decreasing the resolution

• Contacts:

- Wenrui Diao
- The Chinese University of Hong Kong
- Email: <u>dw013@ie.cuhk.edu.hk</u>
- Homepage: <u>http://home.ie.cuhk.edu.hk/~dw013/</u>

Backup: Inferring Foreground App -- Experiment

- Select 100 popular apps from Google Play to build the training set.
- Each app is launched 10 times, and 1,000 fingerprints are recorded in total.
- Testing set, we randomly select 10 apps from these 100 apps in the training set, run each one 10 times -- 100 fingerprints in total.

Backup: Inferring Foreground App -- Result

Success Rate for App Identification under different k (k-NN)

k	k=3	k=5	k=7	k=9
Top 1	77%	87%	83%	82%
Top 2	85%	91%	88%	90%
Top 5	93%	95%	94%	93%
Тор 10	94%	96%	96%	98%

Backup: Inferring Foreground App -- Result

Success Rate for App Identification k=5

App Name	Top 1	Top 2	Top 5
tv.danmaku.bili	100 %	100 %	100 %
com.baidu.search	80 %	90 %	90 %
com.icoolme.android.weather	90 %	90 %	90 %
com.scb.breezebanking.hk	80 %	90 %	100 %
ctrip.android.view	50 %	50 %	60 %
com.lenovo.anyshare.gps	100%	100 %	100 %
com.sometimeswefly.littlealchemy	100 %	100 %	100 %
io.silvrr.silvrrwallet.hk	90 %	100 %	100 %
com.cleanmaster.mguard	100 %	100 %	100 %
com.ted.android	80 %	90 %	100 %