
No Pardon for the Interruption:
New Inference Attacks on Android Through Interrupt
Timing Analysis

May 24, 2016

Wenrui Diao, Xiangyu Liu, Zhou Li, and Kehuan Zhang

IEEE S&P 2016

Motivation -- Hardware and Kernel
• Mobile platform – mobility and usability
• New specialized hardware components

• Previous research → particular hardware components
→ reading data directly from sensors

Q: What about the security implications of the integration of
specialized hardware and tailored kernel?

2/18

Main Idea -- Hardware Interrupt
• Android inherits the interrupt mechanism from Linux.
• Efficient communication method between CPU and external devices.

• Public interrupt statistical information: /proc/interrupts

• Reflect the real-time running status of devices
ØInference attack!
ØNew attack surface!

3/18

Main Idea -- Interrupt Timing Analysis

• Root Cause: ill-conceived integration of specialized hardware components and tailored
kernel.

• Gifts from mobile platform → new hardware components
→ interact with user directly

• Related work: Zhang et al. Usenix’09, Jana et al. S&P’12

A: Through analyzing the time series of interrupts occurred for a
particular device, user’s sensitive information could be inferred.

4/18

Background -- Hardware Interrupt Mechanism
• Enable timely event management

PIC

Hardware
IRQ

Halt the current
execution thread

Invoke the registered
interrupt handler

Preserved context is
restored and halted
execution is resumed Interrupt occurred

process complete

requires immediate attention

5/18

Public /proc/interrupts on Linux

• Counter update → Interrupt occurred → Event coming

The amount of
interrupts occurred

6/18

Concrete Attack Showcases
• General Approach: Interrupt Timing Analysis

• Inferring unlock pattern -- Touchscreen Controller

• Inferring foreground app -- Display Sub-System (DSS)

7/18

Attack Case 1 -- Touchscreen and Unlock Pattern

• Unlock pattern

• Overcome the usability

• 3 × 3 matrix

• Connect dots in a certain order

• Touchscreen: A large amount of user’s sensitive information pass through.

8/18

Touchscreen Controller and Interrupt

• Different lines could result in different interrupt sequences and a gap could be observed
between lines’ interrupts.

• Touch/Leave the touchscreen -- Interrupt

9/18

Monitoring /proc/interrupts

Inferring Unlock Pattern -- Work Flow

State Sequence Analysis

Single State Analysis

Unlock Pattern Modeling

Data Pre-processing

Reading Interrupt Count

Derive the correct state from a single gram
-- Gaussian-like model

Cluster the swipe lines by the length and the
grams by the interrupt count

10/18

Derive the state sequence, solve HMM

Inferring Unlock Pattern -- Experiment
• Target all 389,112 patterns, without training specific pattern in advance.

• Cai et al. HotSec’11 → 1 pattern, Aviv et al. ACSAC’12 → 50 patterns

• Five users to get the length-interrupt relationship (Gaussian-like model).
• Another two users joined the testing phase.

• In total, obtain 160 password patterns from each user
• Draw each generated pattern two times.
• Consider 2-gram, 3-gram, 4-gram and 5-gram types.
• Randomly generated 20 patterns for each type.

11/18

Inferring Unlock Pattern -- Result

Pattern Search Space Reduction Success Rate
2-gram 389,112 → 168 98.75%
3-gram 389,112 → 2,544 92.5%
4-gram 389,112 → 11,048 97.5%
5-gram 389,112 → 37,160 97.5%

Success Rate for Gram Segmenting (Gap Searching)

Search space has be
substantially reduced.

12/18

Inferring Unlock Pattern -- Result

User # Top N 2-gram 3-gram 4-gram 5-gram

User 1

Top 3 50% 25% 7.5% 0
Top 5 80% 27.5% 10% 0
Top 10 97.5% 40% 20% 2.5%
Top 20 97.5% 60% 37.5% 12.5%
Top 40 97.5% 90% 52.5% 17.5%

User 2

Top 3 45% 20% 15 2.5
Top 5 62.5 22.5 22.5 5
Top 10 95 35 25 10
Top 20 100 50 40 20
Top 40 100 70 57.5 22.5

Success Rate for State Sequence Inference

Random guess: 0.0157%
(guessing 3 times)

Improve up to thousands of
times

13/18

Attack Case 2 -- App Running in the Foreground
• Phishing attacks

14/18

UI Refreshing and Interrupts
• Foreground UI is continuously refreshed.

• UI Refreshing -- Display Sub-System (DSS) → Interrupt request (vsync)
• Different UI layout and refreshing strategies – different interrupt time series

15/18

UI Refreshing and Interrupts

Interrupt patterns of 6 apps’ launching processes

16/18

One-page Take-away
• New attack surface in the interrupt handling mechanism: public /proc/interrupts
• Counter update → Interrupt occurred → Event coming
• General approach: interrupt timing analysis

• Concrete cases:
• Touchscreen controller -- unlock pattern inference
• Display Sub-System -- foreground app inference

• Defense: fine-grained access control, decreasing the resolution

17/18

Q&A
• Contacts:

• Wenrui Diao
• The Chinese University of Hong Kong
• Email: dw013@ie.cuhk.edu.hk
• Homepage: http://home.ie.cuhk.edu.hk/~dw013/

18/18

Backup: Inferring Foreground App -- Experiment
• Select 100 popular apps from Google Play to build the training set.
• Each app is launched 10 times, and 1,000 fingerprints are recorded in total.

• Testing set, we randomly select 10 apps from these 100 apps in the training set, run
each one 10 times -- 100 fingerprints in total.

19/18

Backup: Inferring Foreground App -- Result

k k=3 k=5 k=7 k=9
Top 1 77% 87% 83% 82%
Top 2 85% 91% 88% 90%
Top 5 93% 95% 94% 93%
Top 10 94% 96% 96% 98%

Success Rate for App Identification under different k (k-NN)

20/18

Backup: Inferring Foreground App -- Result

App Name Top 1 Top 2 Top 5
tv.danmaku.bili 100 % 100 % 100 %
com.baidu.search 80 % 90 % 90 %
com.icoolme.android.weather 90 % 90 % 90 %
com.scb.breezebanking.hk 80 % 90 % 100 %
ctrip.android.view 50 % 50 % 60 %
com.lenovo.anyshare.gps 100% 100 % 100 %
com.sometimeswefly.littlealchemy 100 % 100 % 100 %
io.silvrr.silvrrwallet.hk 90 % 100 % 100 %
com.cleanmaster.mguard 100 % 100 % 100 %
com.ted.android 80 % 90 % 100 %

Success Rate for App Identification k=5

21/18

