Revisiting Square Root ORAM

Efficient Random Access in Multi-Party Computation

Samee Zahur Jack Doerner David Evans

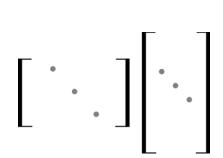
Xiao Wang Jonathan Katz

Mariana Raykova

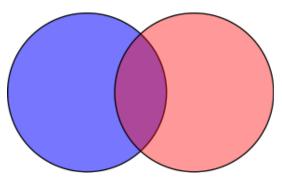
Adrià Gascón

oblivc.org/sqoram

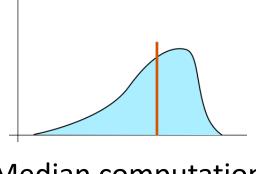
Secure multi-party computation applications



Matrix factorization for recommendations [NIWJTB13]

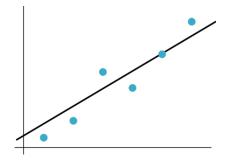


Set intersection [FNP04]



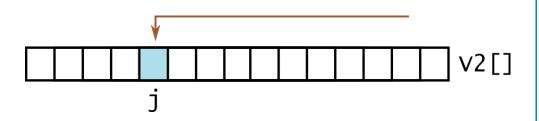
Median computation [AMP04]

Iris code matching [LCPLB12]



Linear ridge-regression [NWIJBT13]

Random Access

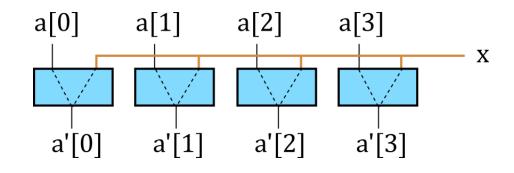


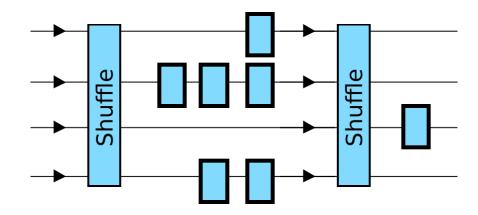
```
void oscrypt_smix(obliv uint8_t * B, s
. . .
for (i = 0; i < N; i += 2) {
  j = integerify(X, r) & (N - 1);
  temp = V2[j];
  xorBits(X,temp,32*r);
  oscrypt_blockmix_salsa8(X, Y, r);
  j = integerify(Y, r) & (N - 1);
  temp = V2[j];
  for (size_t jj = 0; jj < 32 * r; j</pre>
   Y[jj] \wedge = temp[jj];
```

Hiding access pattern

Linear scan

Oblivious RAM





Access every element

Per-access cost: $\Theta(n)$

Continually shuffle elements around Per-access cost: $\Theta(\log^p n)$

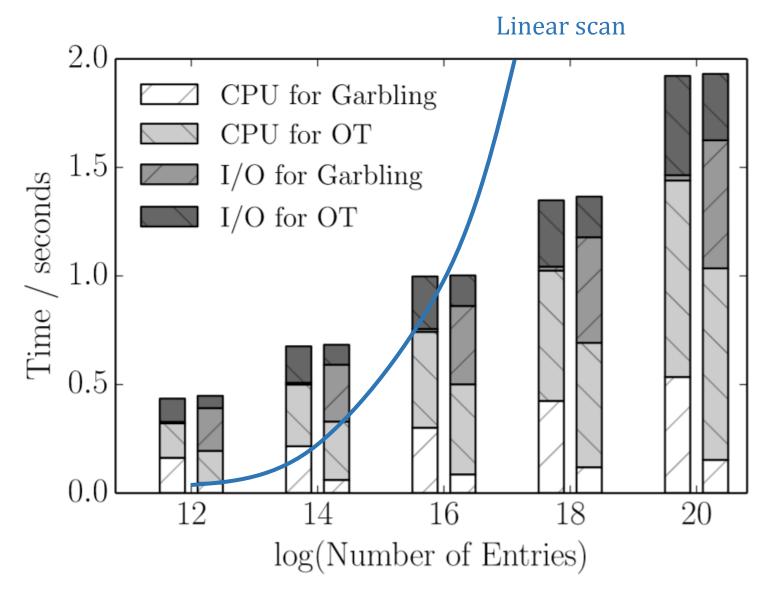
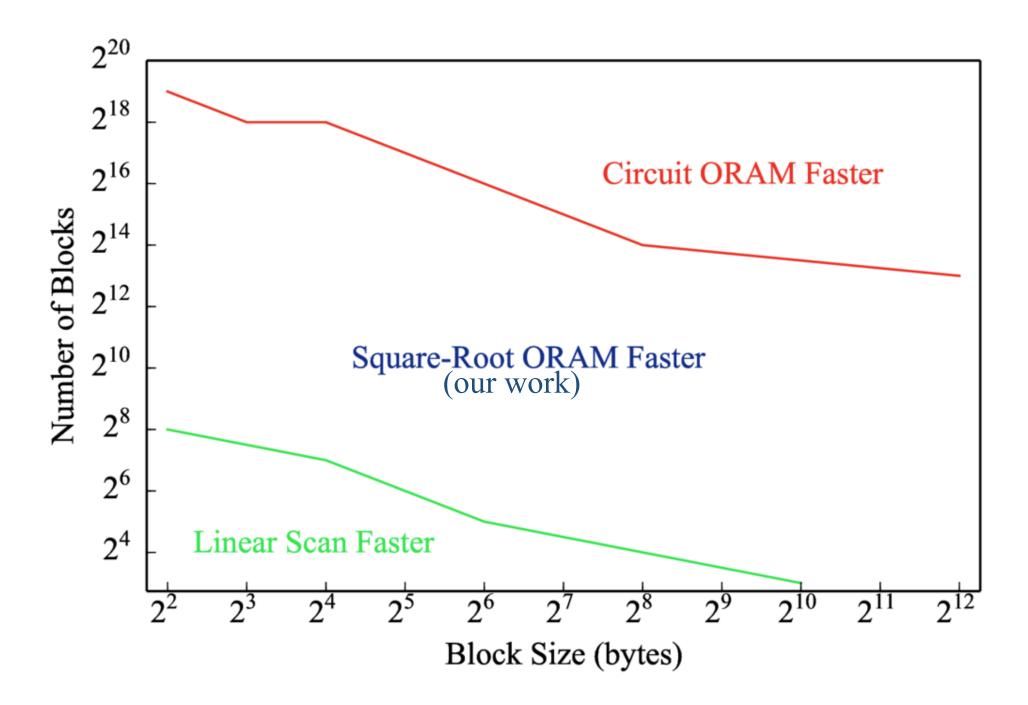


Figure from: Wang, Chan, Shi. Circuit Oram. CCS'15

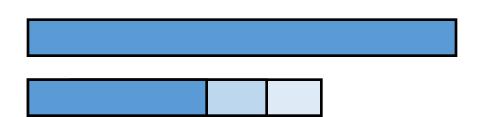


Approach: revisit old schemes

Classic "square root" scheme by Goldreich and Ostrovsky (1996).

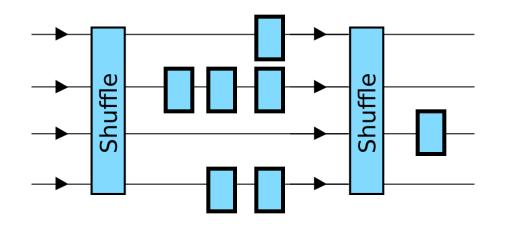
Considered slow for MPC because of per-access hash evaluation.

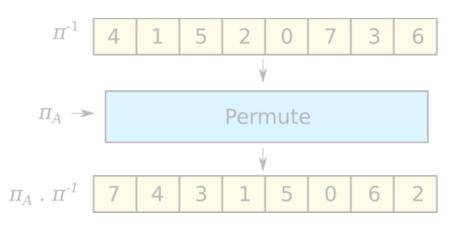
Per-access amortized cost: $\Theta(\sqrt{n} \log n)$



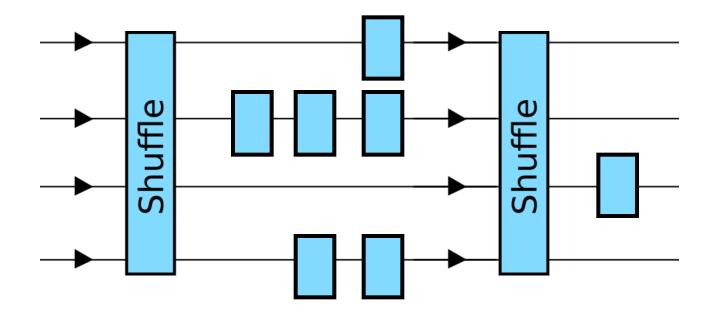
Four-element ORAM

Larger Sizes





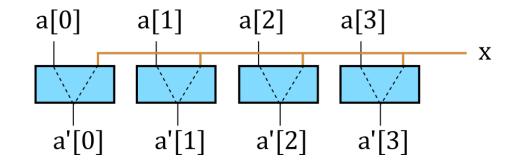
4-Block ORAM



Cost: 5B + B + 2B + 3B + ...= 11B every 3 accesses

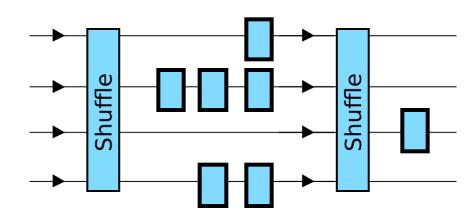
Comparison

Linear scan



Cost: 4B = 12B/3

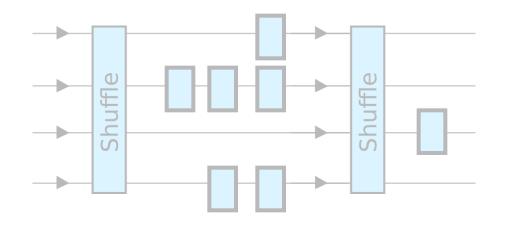
Our scheme

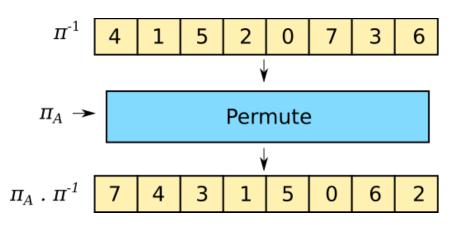


Cost: 11B/3

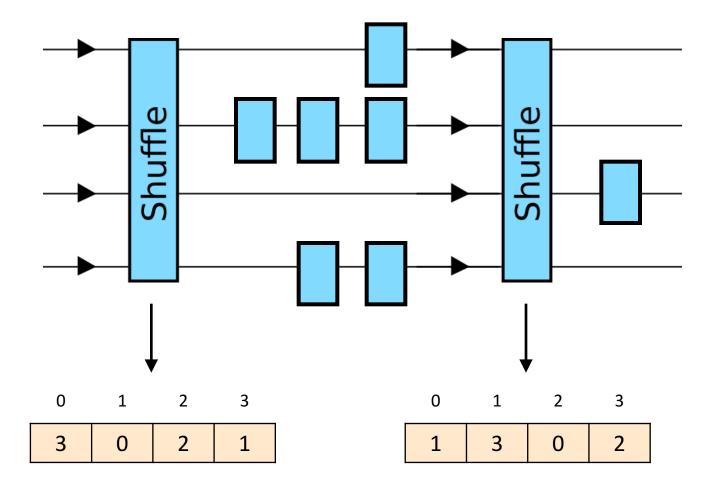
Four-element ORAM

Larger Sizes

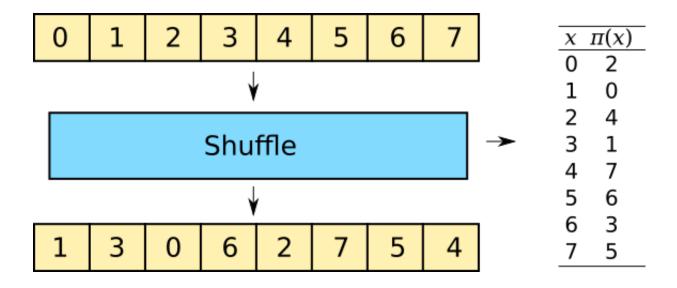




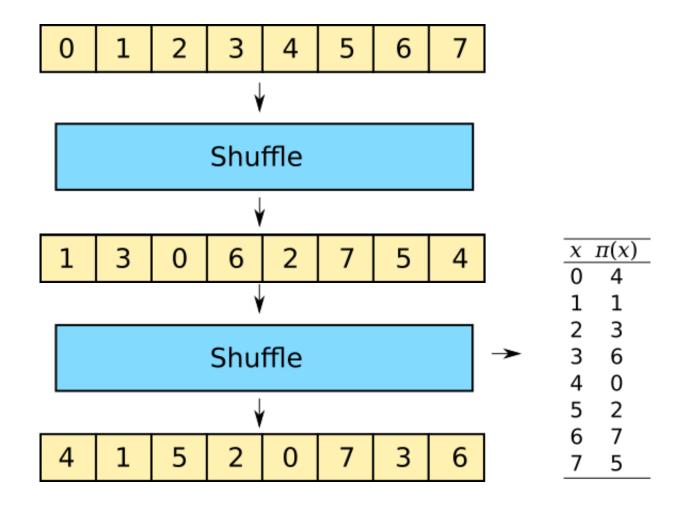
Position map



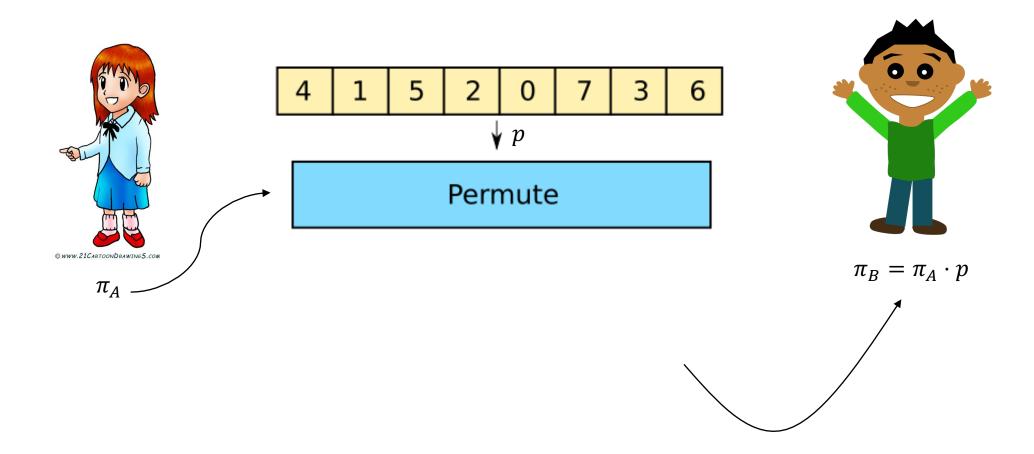
Creating position map



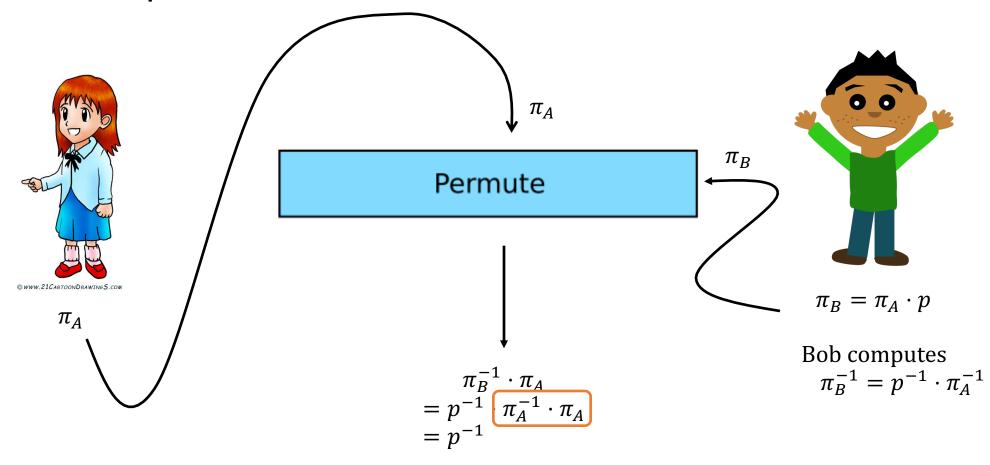
Creating position map



Inverse permutation



Inverse permutation

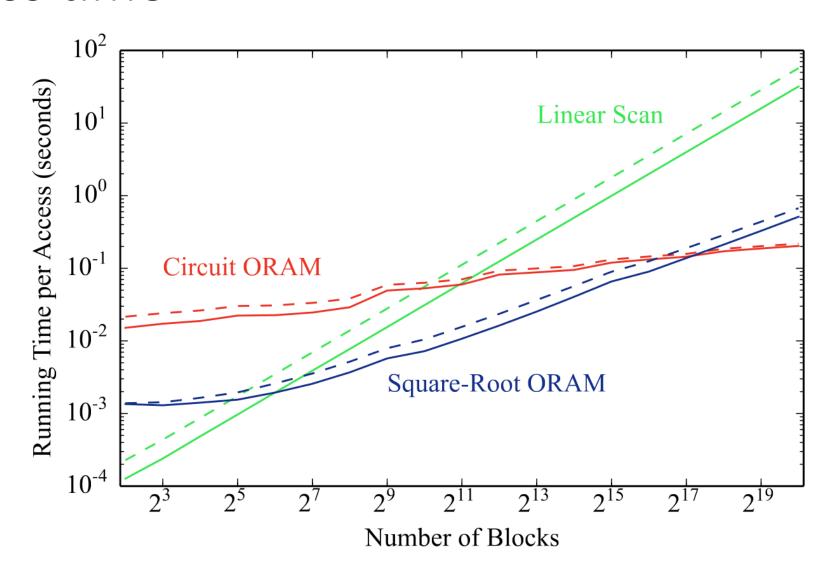


Rinse and repeat

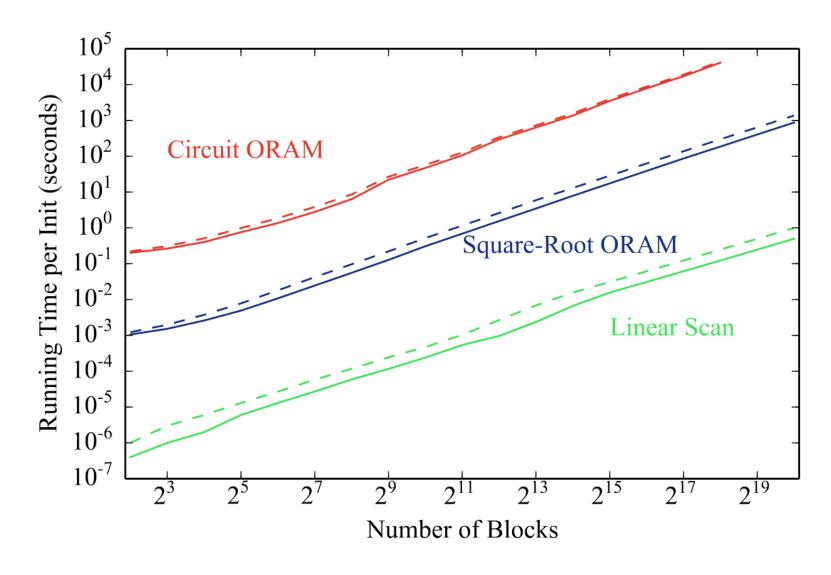


- 1. Shuffle elements
- 2. Recreate position map
- 3. Service $T = \sqrt{n \log n}$ accesses

Access time



Initialization cost



Benchmarks

Task	Parameters	Linear scan	Circuit ORAM	Square-root ORAM
Binary search	2 ¹⁰ searches 2 ¹⁵ elements	1020 s	5041 s	825 s
Breadth-first search	2 ¹⁰ vertices 2 ¹³ edges	4570 s	3750 s	680 s
Stable matching	2 ⁹ pairs	_	189000 s	119000 s
scrypt hashing	$N = 2^{14}$	≈ 7 days	2850 s	1920 s

Conclusion

We revisited a well-known scheme and used it to

- Lower initialization cost
- Improve breakeven point

Shows that asymptotic costs are not the final word, concrete costs require more consideration.

Download

oblivc.org/sqoram

Contact for help: Samee Zahur <samee@virginia.edu>