
TaoStore
Overcoming	Asynchronicity in	

Oblivious	Data	Storage
CET I N 	 S AH I N , 	 V I C TO R 	 Z A KHA R Y, 	 AMR 	 E L 	 A B BAD I , 	 HU I J I A 	 (R A CH E L) 	 L I N , 	 S T E FANO 	 T E S S A RO

UN I V E R S I T Y 	 O F 	 C A L I FO RN I A , 	 S A N TA 	 B A R BA R A
I E E E 	 S E CU R I T Y 	 A ND 	 P R I VA C Y, 	 2 0 1 6

Outsourced	Private	Data

Alice

read	(a)

ACKwrite	(c,	data)

read	(b)

Security	Concerns?
Confidentiality	of	Data

Encryption

Encryption	alone	is	not	enough!!!
Access	patterns	can	leak	sensitive	information	

[Islam	et	al.	NDSS’12]

vs

Is	encryption	
enough?

read(1),	read(1) read(1),	write(3)

Outsourced	Private	Data

Alice

Goldreich and	Ostrovsky ’96	
More	practical	solutions:	MG’11,	DB’11,	ES’11,	EK’12,	ES’12,	PW’12,	ES’13,	
CG’13,	KC’13,	KC’14,	LR’15,	TM’15	,	SD’16,	…

Goal:	Oblivious	Access

OBLIVIOUS	RAM	(ORAM)

Translate	each	logical	access	
to	a	sequence	of	random-looking	accesses

Secret	
State

ORAM

Multi-Client	Scenario

Alice

Bob

Carolyn

read	(a)

read	(a)

write	(c,	data)

Concurrency

Asynchronicity
ObliviStore	[Stefanov et	al.	Oakland’13]
CURIOUS	[Bindschaedler et	al.	CCS’15]

PrivateFS [Williams	et	al.	CCS’12]

ORAM	
Client

Secret	
State

ACKSingle	
ORAM	
Client

Secret	
State

A	security	model	for	asynchronous	
ORAM	and	attack

Contributions

TaoStore:	A	new	
asynchronous	and	concurrent	
tree-based	oblivious	storage

ORAM	Client

Asynchronous	ORAM	– Threat	Model

Storage

Alice Bob

Asynchronous	links
• Adversarially controlled	schedule

Important:
• Network	Intruder
• Adaptive	Scheduling
• Side	Channel

Honest-but-curious	adversary
• Sees	raw	storage	data
• Network	communication

Access	operations
• Adaptively	scheduled	by	adversary
• Adversary	learns	response	timing

ObliviStore [Stefanov et	al’13]	
non-adaptive	scheduling	+	no	response	time

New

Asynchronous	ORAM	- Security

aaob-security: adaptive	asynchronous	obliviousness

Indistinguishability-based	
security	definition.	

See	the	paper!

We	formalize	obliviousness	in	this	setting
Two	timing-consistent	executions	should	be	

indistinguishable	in	threat	model	

Are	existing	systems	aaob-secure?

Note:	No	claims	are	incorrect	in	CURIOUS

CURIOUS	is	secure in	ObliviStore’s threat	model

ObliviStore	is	not	secure	[Bindschaedler et	al.]

We	show	
CURIOUS	is	not	aaob-secure

Proxy Secret	StateProxy

SubORAM

CURIOUS	[Bindschaedler et	al	CCS’15]	

Secret	
State

SubORAM

Secret	
State

SubORAM

Secret	
State

READ(a)

Alice Bob

READ(b)

GET(a) GET(b)

RET(a)

RET(a)

RET(b)

RET(b)

Partition	
storage	space

Every	access	to	a	random	partition
Items	randomly	re-assigned	after	every	access

How	about	
conc accesses	on	same item?

Conc accesses	to	diff	partitions

Proxy Secret	State

SubORAM

CURIOUS	[Bindschaedler et	al	CCS’15]	

Secret	
State

SubORAM

Secret	
State

SubORAM

Secret	
State

READ(a)

Alice Bob

READ(a)

GET(a) GET($)

RET(a)

RET(a)

RET($)

RET(a)

Only	one	real	access
Others	fake (random)	accesses

How	about	
conc accesses	on	same item?

Attack	Against	CURIOUS

Access distinct itemsAccess same item
Server

Proxy

READ(a)
READ(a)

Server

Proxy
READ(a) RET(a)

READ(b)
RET(b)

fake

Reminder
Controls	scheduling	of	messages	+	operations
Knows	response	timings

Attacker	learns	whether	the	accesses	are	on	same	item	or	not

Fix? See	later	…	

RET(a)
RET(a)

real real
real

A	security	model	for	asynchronous	
ORAM	and	attack

Contributions

TaoStore:	A	new	
asynchronous	and	concurrent	
tree-based	oblivious	storage

CURIOUS:	Modular,	but	two	drawbacks

1. Security:	Not	aaob-secure

2. Efficiency:	partitioning	→	concurrency
(Underlying	single-client	ORAM	not	concurrent)

Wanted: Native	
concurrency!

Partitioning	as	simple	
add-on

Our	solution	– TaoStore
Tree-Based	Asynchronous Oblivious	Store

Enables	easy	partitioning

Many	tree-based single-client	ORAMs	available:	ES’11,	ES’13,	CG’13,	
KC’13,	KC’14,	XW’15,	LR’15,	SD’16,	TM’15,	…

Main	challenge
How	to	make	tree-based	ORAM	concurrent?

Simple

Fully	concurrent

Starting	point	– Path	ORAM	[Stefanov et	al	CCS’13]
Server Storage	is	organized	as	a	binary	tree

Every	access	to	a	random	path
Items	randomly	re-assigned	after	every	
access

Stores	the	assignment

Leaf	1 Leaf	2 Leaf	3 Leaf	4

Stash

Pos Map

Proxy

a→3

a

O(1)	blocks	

Possible	to	outsource	position	
map	recursively

Starting	point	– Path	ORAM	
Server

1)	Read	path
• Fetch	associated	path
• Read/Modify	block
• Assign	block	to	a	new	random	path	in	

position	map

2)	Flush
• Push	every	block	to	the	lowest	non-

full	node	that	intersects	with	its	
assigned	path	(otherwiseàstash)

3)	Write-back
• Re-encrypt	w/	fresh	

randomness

Read/Write	block	a

Leaf	1 Leaf	2 Leaf	3 Leaf	4

Stash

Proxy

a→3

aa

a→1

a

If	root	is	full	
move	to	stash

a

Pos Map

TaORAM – Basic	Approach
How	to	handle

≤	k	concurrent	requests?
Server

Leaf	1 Leaf	2 Leaf	3 Leaf	4

Proxy

Stash

Process	k operations
• Fetch	corresponding	k
paths

• Form	a	subtree in	proxy

STAGE	1

• Re-assign	k items	to	
new	random	paths

• Flush	along	the	entire	
subtree	and	write-back

STAGE	2

Blocking
flush	and	write-back

Concurrent	accesses
on	same	block

Two	problems

Pos Map

From	Partial	to	Full	Concurrency
Server

Proxy

Non-blocking	write-back
Continue	processing	
operations	while	write-back	
is	ongoing

Acknowledgement

What	should	we	delete?

What	should	we	delete?

Proxy

+ more	cases

Acknowledgement

?

now

ACKWBReq Res

ACKWBReq Res

fresh

stale

waiting	for

keep!

Proxy

Server

Proxy

Server

TaoStore Achieves	Full	Concurrency

*See	the	correctness	analysis	in	the	paper.

“The	items	in	the	local	subtree	
and	stash	are	always	up-to-date”

Fresh-Subtree	Invariant

by	maintaining

Concurrent	accesses	on	same	item

Server

Proxy

READ(a) RET(a)
READ(b) RET(b)

Our	solution:	Sequencer
Ensures	logical	requests	replied	in	the	same	order	they	arrive

Generic	solution:	Also	fixes	CURIOUS

TaORAM

Sequencer

requests replies
serialized

Use	Fake	Access	(as	in	CURIOUS) security	
problem

• Block Size: 4 KB - 1 GB dataset
• Proxy@UCSB (commodity workstation) + Storage Server: AWS EC2 (NorCal)
• Upstream/DownStream: 11 Mbytes/s. RTT: 12 ms
• Benchmark schedule: Adaptive requests

0

10

20

30

40

50

1 5 10 15

Th
ro
ug
hp

ut
	(o

ps
/s
)

Number	Of	Concurrent	Clients

Throughput

3/1/2016 PHD	PROPOSAL	– CETIN	SAHIN 22

Cloud-based	performance	analysis

saturation	due	to	
bandwidth	
exhaustion

Bandwidth	matters!

0
0.01
0.02
0.03
0.04
0.05
0.06

36

37

38

39

40

41

40 80 160 240
Ra

tio
	

Th
ro
ug
hp

ut
	(o

ps
/s
)

k

Throughput Max	Outsource	Ratio

3/1/2016 PHD	PROPOSAL	– CETIN	SAHIN 23

Cloud-based	performance	analysis

a	low-memory	
utilization	
achieves

similar	performance

• Block Size: 4 KB - 1 GB dataset
• Proxy@UCSB (commodity workstation) + Storage Server: AWS EC2 (NorCal)
• Upstream/DownStream: 11 Mbytes/s. RTT: 12 ms
• Benchmark schedule: Adaptive requests

write-back	in	batches	after	k	(240)	path	fetches

THANKS!

A	security	model	for	asynchronous	ORAM	
and	attack

TaoStore:	A	new	
asynchronous	and	concurrent	
tree-based	oblivious	storage

