
Intro vORAM HIRB Results

A Practical Oblivious Map Data Structure
with Secure Deletion and History Independence

Daniel S. Roche Adam J. Aviv Seung Geol Choi

Computer Science Department
United States Naval Academy

Annapolis, Maryland, USA

IEEE Security & Privacy 2016
San Jose, California

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 1 / 24



Intro vORAM HIRB Results

Goal: A remote key/value store with. . .

Strong privacy
Hidden keys, values, and access patterns (Obliviousness)

Secure against powerful attackers (Secure Deletion and History Independence)

Practical utility
No computation on server

Poly-logarithmic local storage, bandwidth, computation

Low round complexity

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 2 / 24



Intro vORAM HIRB Results

Oblivious RAM

Oblivious RAM (ORAM) hides access patterns as well as data.
(Goldreich & Ostrovsky JACM’96, and many more since then!)

Cloud eavesdropper learns the number of operations and nothing else.

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 3 / 24



Intro vORAM HIRB Results

Oblivious RAM

Oblivious RAM (ORAM) hides access patterns as well as data.
(Goldreich & Ostrovsky JACM’96, and many more since then!)

Cloud eavesdropper learns the number of operations and nothing else.
Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 3 / 24



Intro vORAM HIRB Results

Problem 1

What if the size of data is not fixed?
ORAM reveals the number of operations, and therefore data size.

Insecure solution
Send multiple blocks depending on the data size

Inefficient solution
Pad all data up to the maximum size

Our approach: Oblivious RAM with variable blocks (vORAM)
Hide large data in the overhead of Path ORAM,
Large data blocks are stored across multiple ORAM “buckets”.

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 4 / 24



Intro vORAM HIRB Results

Problem 1

What if the size of data is not fixed?
ORAM reveals the number of operations, and therefore data size.

Insecure solution
Send multiple blocks depending on the data size

Inefficient solution
Pad all data up to the maximum size

Our approach: Oblivious RAM with variable blocks (vORAM)
Hide large data in the overhead of Path ORAM,
Large data blocks are stored across multiple ORAM “buckets”.

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 4 / 24



Intro vORAM HIRB Results

Oblivious Data Structures (ODS)

Storing a data structure in ORAM (Wang et. al, CCS’14)

Pieces of data structure (i.e., nodes) are stored in ORAM blocks.

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 5 / 24



Intro vORAM HIRB Results

Oblivious Data Structures (ODS)

Storing a data structure in ORAM (Wang et. al, CCS’14)

Pieces of data structure (i.e., nodes) are stored in ORAM blocks.

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 5 / 24



Intro vORAM HIRB Results

Problem 2

What if your data structure has varying running time?
The number of memory accesses in each operation are leaked by ORAM.

Insecure solution
Let the number of operations vary by access

Inefficient solution
Perform dummy operations up to the worst-case cost

Our approach: History-Independent Randomized B Tree (HIRB)
Use a fixed-height tree data structure, so that no padding is necessary.

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 6 / 24



Intro vORAM HIRB Results

Problem 2

What if your data structure has varying running time?
The number of memory accesses in each operation are leaked by ORAM.

Insecure solution
Let the number of operations vary by access

Inefficient solution
Perform dummy operations up to the worst-case cost

Our approach: History-Independent Randomized B Tree (HIRB)
Use a fixed-height tree data structure, so that no padding is necessary.

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 6 / 24



Intro vORAM HIRB Results

“Catastrophic” Attacks

An attacker may be able to coerce the private key.

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 7 / 24



Intro vORAM HIRB Results

“Catastrophic” Attacks

An attacker may be able to coerce the private key.

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 7 / 24



Intro vORAM HIRB Results

Problem 3

What if your private key is compromised?

Some leakage is inevitable
ORAM reveals entire history, including prior deletions
Most data structures also leak history information

Inefficient solution
Re-encrypt and transfer entire data set on every access

Our approach (vORAM+HIRB)
HIRB data structure leaks no history nor prior deletions.
vORAM leaks minimal history and no prior deletions.

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 8 / 24



Intro vORAM HIRB Results

Problem 3

What if your private key is compromised?

Some leakage is inevitable
ORAM reveals entire history, including prior deletions
Most data structures also leak history information

Inefficient solution
Re-encrypt and transfer entire data set on every access

Our approach (vORAM+HIRB)
HIRB data structure leaks no history nor prior deletions.
vORAM leaks minimal history and no prior deletions.

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 8 / 24



Intro vORAM HIRB Results

Outline and Related Work

1 Problem Statement and Goals

2 vORAM: Oblivious RAM with variable-sized blocks
Path ORAM (Stefanov et al., CCS’13)
Secure deletion B-tree (Reardon et al., CCS’13)

3 HIRB: History Independent Randomized B-Tree
Oblivious Data Structures (Wang et al., CCS’14)
History-Independent Data Structures (Naor & Teague ’01, Hartline et al. ’02, Golovin ’08)

4 Experimental Results

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 9 / 24



Intro vORAM HIRB Results

Path ORAM with Variable-Sized Blocks: vORAM

General idea: Large items are rare; distribute their bits along an ORAM path.

Terminology: Each tree node is a bucket stored on the server.
The user stores blocks of data.
Each block may be broken up into chunks of bytes.

Crucial restrictions:

All chunks of the same block are on the same path

Chunks of the same block are always in order

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 10 / 24



Intro vORAM HIRB Results

vORAM Example: Setup

3

1 1

1 1

1 1

3 1

1 3 1

4 1

4 1

4 1

7 1

1 1

0 1 2 3 4 5 6 7

Stored blocks: 1 1 1 1

Color represents data, Width = size, Number = position.

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 11 / 24



Intro vORAM HIRB Results

vORAM Example: Update

3

1 1

1 1

1 1

3 1

1 3 1

4 1

4 1

4 1

7 1

1 1

0 1 2 3 4 5 6 7

Stash:

6 3

UPDATE(1 ): Evict, Re-assign, Writeback

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 12 / 24



Intro vORAM HIRB Results

vORAM Example: Update

3

1 1

1 1

1 1

3 1

1 3 1

4 1

4 1

4 1

7 1

1 1

0 1 2 3 4 5 6 7

Stash: 6 3

UPDATE(1 ): Evict, Re-assign, Writeback

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 12 / 24



Intro vORAM HIRB Results

vORAM Example: Update

6

3

1 1

1 1

3 1

1 3 1

4 1

4 1

4 1

7 1

1 1

0 1 2 3 4 5 6 7

Stash:

6 3

UPDATE(1 ): Evict, Re-assign, Writeback

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 12 / 24



Intro vORAM HIRB Results

More details on vORAM

Identifiers are chosen randomly, and the position (leaf node index)
is a prefix of the identifier.

The entire path is fetched and returned in parallel,
resulting in 2 rounds per operation.

Each node encrypted with a key stored in the parent node that is refreshed on each
operation — implies secure deletion.

No history beyond the most recent O(n/ log n) operations is revealed,
matching an asymptotic lower bound

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 13 / 24



Intro vORAM HIRB Results

How big should the buckets be?

An crucial parameter is bucket size: number of bytes per bucket.

As with Path ORAM, if this is too small, the root node (or stash) will “overflow”.

Theorem
The vORAM stash will overflow with only negligible probability if:

Block sizes are bounded by a geometric distribution

Bucket size is 20 times the expected block size

Note: In practice, the constant can be only 6, not 20.

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 14 / 24



Intro vORAM HIRB Results

Oblivious Data Structures

Recall the identifiers in vORAM: 4 6

These identifiers are random; where do we store them?

Standard solution: Store a position map in recursively smaller ORAMs

ODS (Wang et al. ’14): If you’re storing a data structure,
store each node’s identifier in its parent node!

To store a key/value map, use an AVL tree.

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 15 / 24



Intro vORAM HIRB Results

Oblivious Data Structures

Recall the identifiers in vORAM: 4 6

These identifiers are random; where do we store them?

Standard solution: Store a position map in recursively smaller ORAMs

ODS (Wang et al. ’14): If you’re storing a data structure,
store each node’s identifier in its parent node!

To store a key/value map, use an AVL tree.

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 15 / 24



Intro vORAM HIRB Results

Example: AVL Tree Leakage

We want to store a key/value data structure within the vORAM.

But most data structures leak history information!

Were you browsing reddit or youtube?

ieee

arxiv stackoverflow

usna

ieee

arxiv usna

stackoverflow

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 16 / 24



Intro vORAM HIRB Results

Example: AVL Tree Leakage

We want to store a key/value data structure within the vORAM.

But most data structures leak history information!

Were you browsing reddit or youtube?

ieee

arxiv stackoverflow

reddit usna

ieee

arxiv usna

stackoverflow youtube

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 16 / 24



Intro vORAM HIRB Results

HIRB = History-Independent Randomized B-tree

Overview:

B-tree structure, but the height of each element is uniquely determined.

Heights determined from a randomly-selected hash function.

The keys of key/value pairs are not stored, only their hashes.

Strong history independence (Naor & Teague, STOC’01):
The contents of the tree uniquely determine its structure.

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 17 / 24



Intro vORAM HIRB Results

HIRB Example

Over-simplification: Height = number of trailing zeros in hash

Example: Insert HELLO
hash(HELLO) = 510

400

390

145 386 398

480 640

8 489 493 531 674 679

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 18 / 24



Intro vORAM HIRB Results

HIRB Example

Over-simplification: Height = number of trailing zeros in hash

Example: Insert HELLO
hash(HELLO) = 510

400

390

145 386 398

480 640

8 489 493 531 674 679

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 18 / 24



Intro vORAM HIRB Results

HIRB Example

Over-simplification: Height = number of trailing zeros in hash

Example: Insert HELLO
hash(HELLO) = 510

400

390

145 386 398

480 510 640

8 489 493 531 674 679

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 18 / 24



Intro vORAM HIRB Results

Choosing the heights

At tree creation: Choose a random hash function.

Crucial parameter: β, the expected block size

Given an element: Compute its hash, to seed a PRNG.

Sample from a geometric distribution with probability
β − 1
β

to determine the height.

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 19 / 24



Intro vORAM HIRB Results

HIRB+vORAM

The HIRB is perfectly suited for vORAM:

Node sizes follow a geometric distribution

Identifiers can be stored in parent nodes

Height is fixed — no padding necessary

Combination still provides secure deletion

HIRB leaks no operation history beyond what vORAM inevitably leaks

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 20 / 24



Intro vORAM HIRB Results

Comparison baselines

vORAM+HIRB: Good performance, near-best security.

Path ORAM with AVL tree: Poor performance, no secure deletion.
Uses padding for obliviousness.

Secure deletion B-tree: Best performance, no obliviousness.
A normal B-tree, re-encrypting nodes on each access.

Naı̈ve baseline: Worst performance, best security.
Re-encrypt and transfer the entire dataset on each access.

All implemented by us, in Python3, and tested using Amazon AWS.

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 21 / 24



Intro vORAM HIRB Results

Biggest Factors of Performance Improvement

Height of HIRB compared to AVL tree

Larger nodes in HIRB to take advantage of block size

Efficient block packing in vORAM

Parallel fetching of paths from vORAM

All leads to significantly reduced round complexity

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 22 / 24



Intro vORAM HIRB Results

Experimental Timings

 0.01

 0.1

 1

 10

 100

 1000

 10000

29 210 211 212 213 214 215 216 217 218 219

M
e
d
ia

n
 A

cc
e
ss

 T
im

e
 (

s)
 (

lo
g
sc

a
le

)

Number of Entries (logscale)

vORAM+HIRB
Path ORAM with AVL tree

Secure deletion B-tree
Naive Baseline

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 23 / 24



Intro vORAM HIRB Results

Take-Aways

ORAMs don’t (have to) suck.
Our construction has practical utility in a real cloud setting.

We can get more flexibility and privacy from ORAMs.
We support variable-size blocks, secure deletion, and (limited) history independence.

Specialized data structures are needed to work well in ORAMs
Our HIRB tree is ideally suited for vORAM.

Thank You!
Daniel S. Roche, Adam Aviv, and Seung Geol Choi (U.S. Naval Academy)

A Practical Oblivious Map Data Structure with Secure Deletion and History Independence

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 24 / 24



Intro vORAM HIRB Results

Take-Aways

ORAMs don’t (have to) suck.
Our construction has practical utility in a real cloud setting.

We can get more flexibility and privacy from ORAMs.
We support variable-size blocks, secure deletion, and (limited) history independence.

Specialized data structures are needed to work well in ORAMs
Our HIRB tree is ideally suited for vORAM.

Thank You!
Daniel S. Roche, Adam Aviv, and Seung Geol Choi (U.S. Naval Academy)

A Practical Oblivious Map Data Structure with Secure Deletion and History Independence

Roche, Aviv, & Choi (USNA) vORAM & HIRB May 23, 2016 24 / 24


	Intro
	vORAM
	HIRB
	Results

