
Poster: An Efficient Solution for Detecting
UI-Mimicking Android Applications

Jian Mao⇤, Hanjun Ma ⇤†, Yaoqi Jia†, Zhenkai Liang†, and Xuxian Jiang‡
⇤School of Electronic and Information Engineering, Beihang University

†School of Computing, National University of Singapore
‡Qihu 360 Technology Co. Ltd.

I. MOTIVATION

In the Android system, apps are managed by centralized
markets, such as Google Play. To eliminate malicious apps,
the markets actively check apps using scanners, which perform
program analysis to detect malicious logic in apps. Many
solutions have been developed to further enhance the accuracy
of detection [4], [6], [10].

Meanwhile, malicious apps often deceive users via faked
UIs. For example, phishing apps [5] mimic UIs of their
target apps, such as banking apps, to lure private information
from users. As another example, UI-hijacking apps [3] detect
internal states of target apps, and replace the fore-ground UI,
such as the payment interface of Google Pay, with their faked
ones to intercept user inputs. Therefore, UI similarity is an
important metric in detecting this type of malicious apps,
which is missed by most of the scanners used in app markets.

Several techniques have been developed to detect mali-
cious Android apps based on their resources. For example,
ViewDroid [9] detects similarity in Android apps based on
the relationship among apps’ activities. DroidEagle [8] and
ResDroid [7] detect similar UIs in Android apps based on the
syntax features of layout files. Though such solutions offer
basic techniques in detecting similar UIs, they can be evaded
when attackers make simple changes to the content of the
resources, without significantly changing the UI’s appearance.

To reliably detect similar UIs among Android apps, an
effective solution needs to detect UI similarity based on the
actual presence of the UI. Specifically, it needs to identify UI
features that represent their visual effects. In addition, it needs
to efficiently quantify UI similarity based on such features.

II. SOLUTION

In this work, we present an efficient solution to detect
Android apps with mimicking UIs. The core component of
our approach is the technique to measure the similarity of the
UIs. It extracts visual features of an Android apps’ UIs, and
scores UI similarity using such features.

Android represents UIs using XML-based layout files in
apps’ APK packages. Our approach first extracts the layout
files to compare using apktool, which unpacks APK files
and extracts the layout files to compare from the res direc-
tory.

Taking two Android layout files as inputs, our approach
evaluates UIs’ similarity in two modules: Visual Feature

Extraction and Similarity Detection.

• Visual Feature Extraction. This module first converts
the layout files into tree structures based on the XML
structure of the layout files. It traverses the UI layout
trees, propagates the visual features through all the leaf
nodes in the layout trees, and extracts the visual features
that represent the layout’s visual appearance. The features
are represented as a set of UI components.
In our feature set, each UI component has a list of
properties. We currently include three main properties:
type, position, size. The type property describes the
UI component’s type as defined by Android, such as
TextView, EditText, etc. The position property describes
the absolute position of the component on a standard
screen. The size property describes the size of the UI
component. The outputs of this module are two UI feature
sets, F1 and F2.

• UI Similarity Detection. This module evaluates the UI
similarity rate of two applications. It takes as inputs two
UI feature sets and outputs the similarity score of the two
applications’ UIs.
The inputs F1 and F2 are two sets of UI component
feature set. Intuitively, we need to make pair-wise compo-
nents similarity comparison between two UI feature sets
and select the component pairs that is the best match.
We first measure the similarity of two UI components
based on its properties. Given the type, position, and size,
we quantify the similarity score of the two components
based on their normalized similarity.
With the pair-wise similarity scores of components in
F1 and F2, we need to determine the best match of the
components in F1 and F2, so that the sum of the similarity
scores under the component match is maximized. Finding
such an optimized map can be solved as an assignment
optimization problem [1]. We adopt the Munkres algo-
rithm (K-M algorithm) [2] to solve this problem.
Our approach computes the UIs’ similarity rate by aggre-
gating the selected components’ similarity score under the
optimized mapping.



Fundamental*
Feature*
Extracting

UI*Similarity*
Computing*
S(F1,F2)(

feature(set(F1

feature(set(F2

Similarity(
rateApplication91

Application92

Fig. 1: The core technique of our approach.

Fig. 2: Synthesized UIs for correctness evaluation. From the
left, UI1, UI2, UI3, UI4.

TABLE I: Similarity Score of Examples

UI1-UI2 UI1-UI3 UI1-UI4
Similarity 0.884 0.665 0.374

III. PRELIMINARY RESULTS

We have implemented a prototype of our approach using
Python and Shell script.

Correctness. To validate its correctness, we use our tool to
detect the similarity of UIs we synthesized. Figure 2 shows
four different UIs, namely, UI1, UI2, UI3, UI4. UI1 is the
target UI to be compared to. UI2 is slightly different to UI1;
UI3 has more changes in the size and position of controls;
UI4 is significantly different from UI1. The corresponding
similarity checking results in Table I demonstrate the effec-
tiveness of our algorithm.

Case Study. We select one pair of repackaged
apps as a case study: The original app (MD5:
61b9eb788fb2071db6cf4bac2a8d1e87) is obtained
from Google Play, and a repackaged app (MD5:
6024a7bdbcffd5cc9d6ca33624565408) has some mimic
UIs as the original one. We tested this pair of apps using our
tool and found that they have 6 pairs of mimic UIs whose
similarity scores are 0.949, 0.989, 0.949, 0.996, 0.999, 0.805,
respectively.

Figure 3 gives the screenshots of one UI pair that layout files
are named /res/layout/game start.xml. The similarity testing
result is 0.989. The original UI is shown in the left part of
Figure 3, together with the mimicking UI on the right. They
look very similar but the layout files are different. The mimic
one doesn’t have the share button on the right top and the

Fig. 3: Examples of mimic UIs

position of the cloud and button are a little bit different too.
Our approach analyzes their layouts by visual appearance and
outputs a high similarity score.
Acknowledgment: This work was supported in part by
the National Natural Science Foundation of China (No.
61402029), the National Key Basic Research Program
(NKBRP) (973 Program) (No. 2012CB315905), the National
Natural Science Foundation of China (No. 61370190), Singa-
pore Ministry of Education under NUS grant R-252-000-539-
112.

REFERENCES

[1] Assignment optimization problem. https://en.wikipedia.org/wiki/
Assignment problem.

[2] Hungarian algorithm. https://en.wikipedia.org/wiki/Hungarian
algorithm.

[3] Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick Fratantonio,
Christopher Kruegel, and Giovanni Vigna. What the app is that?
deception and countermeasures in the android user interface. In IEEE

S&P, 2015.
[4] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid:

behavior-based malware detection system for Android. In SPSM Work-

shop, 2011.
[5] Adrienne Porter Felt and David Wagner. Phishing on mobile devices.

In W2SP, 2011.
[6] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian

Jiang. Riskranker: scalable and accurate zero-day android malware
detection. In MobiSys, 2012.

[7] Yuru Shao, Xiapu Luo, Chenxiong Qian, Pengfei Zhu, and Lei Zhang.
Towards a scalable resource-driven approach for detecting repackaged
android applications. In ACSAC, 2014.

[8] Mingshen Sun, Mengmeng Li, and John Lui. Droideagle: seamless
detection of visually similar android apps. In WiSec, 2015.

[9] Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and
Peng Liu. Viewdroid: Towards obfuscation-resilient mobile application
repackaging detection. In WiSec, 2014.

[10] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off of
my market: Detecting malicious apps in official and alternative android
markets. In NDSS, 2012.

2


