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Abstract—As our personal, organizational, and critical infras-
tructure are increasingly dependent on networked computing
assets, malicious software —malware—is one of the most serious
national security threats. Common malware detection practices
are proving insufficient, and the task poses significant challenges
when faced with automatically generated and polymorphic mal-
ware, as well as rootkits, which are exceptionally hard to detect.
To address these challenges, we propose an approach that uses an
unavoidable consequence of malware—consumption of electrical
power. The objective of this research is to determine whether
malware generates a detectable signal in the power consumption
of a general-purpose computer. Using unsupervised methods to
analyze CPU and motherboard power data, we exhibit 87.5%
true-positive, 0% false positive, 33.3% false-negative, and 100%
true-negative rates when detecting the Alureon rootkit.

I. INTRODUCTION

The current ability to protect networked assets from infec-
tion with malicious software (malware) is proving vastly insuf-
ficient, and this poses a serious national threat as compromises
result in halting critical infrastructure, disclosing state secrets,
and financial losses in the billions of dollars. While often our
first line of defense against malware, anti-virus (AV) software
and, more generally, signature-based detection methods, are
simply unable to keep pace with the rate and sophistication
of modern malware. By slightly changing the instructions of
an existing malware sample, new malware instances, called
variants, are now being generated automatically in extremely
high volume (on the order of millions per day) [1]. While these
variants appear to be different programs from the viewpoint
of signature-based AV scanners, they exhibit similar function-
ality to their predecessor; consequently, new malware variants
often enjoy the ability to bypass traditional detection methods
until a signature for them can be identified and incorporated
into detection software [2]. Moreover, modern malware is
polymorphic, meaning it regularly rewrites its syntax while
retaining identical functionality. Specifically, during propaga-
tion malware replaces byte sequences in its executable with
completely different byte sequences that have the same net
effect on the system. As a toy example, the statement, if x
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== 0 can be replaced with if x + 1 == 1. Polymorphic
malware can bypass simple heuristic detection techniques, yet
authors of detection systems have attempted to address this
problem by using approximate methods that are more powerful
than signature matching; for example, byte frequency [3],
general similarity measures [4], structural similarity [5], and
behavioral analysis [6] are proposed techniques. A common
weakness of these detection methods is that they operate on the
machine being monitored; hence, successful attackers may dis-
able the monitoring software or modify it to prevent detection
after gaining entry to the computer [7]. This is evidenced by
rootkits, which are a particularly insidious subclass of malware
that achieve administrative privileges that they use to hide
themselves. Consequently, rootkits are commonly associated
with the establishment of advanced persistent threats and pose
serious danger to our nation.

To overcome these limitations, we propose an approach to
malware detection by examining the DC power consumption
of the device. Because malware processes will necessarily
change the power profile of the device, our hypothesis is
that accurate detection of malware is possible via power
profile analysis. We note that successful demonstration of
this research addresses the problems of the current detection
methods. Firstly, by using unsupervised learning techniques,
we can detect qualitative changes in the power data without
relying on signature generation—this bypasses the multitude
of shortcomings associated with signature-based detection.
Secondly, as neither static nor dynamic code analysis is
performed, polymorphism will not be an effective evasion
technique for the malware. Thirdly, by using out-of-band
collection and processing of power data (i.e., on a separate
machine), malware cannot hide itself from this detection. In
summary, the use of power is an unavoidable consequence of
malware actions, and our research task in this short paper is
to prove the concept that even the most inconspicuous mal-
ware, rootkits, can be detected by using unsupervised learning
on power profiles. Similar power-based malware detection
research has emerged for smartphones with in-band power
collection [8], medical devices with AC power and supervised
techniques [9], software defined radio [10], and PFP1 provides
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a commercial product based on similar ideas. To the best of
our knowledge, no academic research has tested the efficacy
on general-purpose computers, in particular with respect to
detecting rootkits.

II. EXPERIMENTAL DESIGN & DATA COLLECTION

Our experimental system is a Dell OptiPlex 755, with a
clean installation of Windows 7. Using a 16 channel, 250kHz
data acquisition system (DAQ), we monitor current and voltage
for the three rails (3.3V, 5V, and 12V) feeding the motherboard
from the power supply unit (PSU), as well as the single 12V
rail to the CPU. In total, 8 channels (4 voltage channels and
4 corresponding current channels) were sampled every 10ms
(.01s), and corresponding channels multiplied to obtain a 4-
tuple of power for each sample. A laptop (separate computer)
records power measurements, and for real-time visualization,
we developed our own Visual Basic program.

To infect the experimental machine, we used the Alureon
rootkit, which is a trojan that attempts to steal personal data
by affecting network traffic. In particular, Alureon hides in
the master boot record, which makes it exceptionally hard to
detect [11]. We created a segregated network by connecting the
laptop via wireless to the Mifi [12] and sharing that connection
with the experimental machine. This design lets our chosen
rootkit behave normally without any possibility of infecting
the network and allowed us to monitor all of the experimental
machine traffic.

To ensure repeatability, a Python script is run that executes
the same sequence of events—opening ten windows of IE
each with a five second delay—during three states: (1) before
infection, (2) after infection, and (3) after infection plus reboot.
In order to segment these sections of the power profile,
we use a micro-benchmark written to stress the CPU for 5
seconds. This places markers in the power data before and
after the IE section. This workflow is completed four times
for each state resulting in four “clean,” four “infected,” and
four “infected+rebooted” power profiles to be compared.

III. RESULTS & CONCLUSIONS

Our primary goal is to prove that by only seeing “clean”
power profile segment(s), we can accurately detect the infected
segments. To do this, we robustly fit a Gaussian to each of
the 12 data sets using the Minimum Covariance Determinant
method with h = .9 [13]. This algorithm automatically
discards the 10% most outlying data points before fitting the
Gaussian so that anomalies will not effect the model. We use a
4-variate Gaussian to capture the correlation between the four
monitored rails. Finally, we pairwise compare the Gaussians
using absolute KL divergence (i.e., the information gain)—this
value is large if and only if the two models are dissimilar.
Our results show that the KL divergence of any two clean
sets is below 0.0825. Setting a threshold of 0.1, and taking
any of the “clean” data sets as a baseline, we can identify
all infected data segments except “infected 1.” This gives 7/8
= 87.5% true-positive, 1/3 = 33.3% false-negative, 0% false-
positive and 100% true-negative rate.

Fig. 1. Absolute KL-divergence heatmap

In conclusion, we have proved that malware, in particular
rootkits, are detectable via analysis of their power profile.
Future work entails testing on a variety of malware samples
and investigating a workflow that can trigger rootkit actions
without a priori knowledge of the malware’s intent.
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