
Poster: Secure Multi-Party Computation as
a Tool for Privacy-Preserving Data Analysis

Samuel Havron
University of Virginia
havron@virginia.edu

Abstract—A Secure multi-party computation (MPC) protocol
allows two or more parties to compute a function on sensitive
input data provided by both parties, without revealing anything
about the inputs (other than what can be inferred from the
revealed output result). Social scientists often work with private
datasets that cannot be shared due to legal restrictions and
ownership issues, but many interesting studies could be enabled
if MPC allows joint data analyses on private data analysis. We
are exploring opportunities for using MPC to enable scientific
research that would not otherwise be possible. We have developed
tools and libraries that enable joint scientific data analyses with
private data, and report on preliminary results using MPC to
enable linear regression analyses over private data.

I. INTRODUCTION

Many social scientists and researchers need to perform sta-
tistical analyses across large, independently-owned datasets for
their work, but they are often met with difficulties in obtaining
sensitive data and computing results in a safe manner. For
instance, an education researcher may be interested in using
statistical methods to analyze the relationship between family
income and grade point average for a particular school system
or collection of school systems. Obtaining such sensitive data
is often difficult to do without trusting one or more parties
with some of the private input data, as well as considering
ownership and legal restrictions on having clear access to
private data. One government agency has information about
incomes, but cannot share it without violating regulations (and
compromising privacy); a local school district has information
about students’ grades, but cannot correlate that with their
family incomes. Secure multi-party computation (MPC) is
a protocol which can be used as a tool for carrying out
large-scale scientific data analysis in these situations without
compromising the privacy of any party’s data, or risking it
being exposed.

II. APPROACH

Several approaches to MPC have been developed, including
application-specific custom protocols and generic, universal
techniques that can be used to compute any function pri-
vately. We use universal techniques since it is important
that new functions can be developed quickly and without
needing new security proofs, and we anticipate needing to
incorporate auditing and other functionality into the MPC.
The most common universal MPC techniques are based on
secret sharing, homomorphic encryption, and garbled boolean

circuits using Yao’s protocol. We use garbled circuits, which
are generally the most scalable and high performance MPC
approach currently known.

Obliv-C (http://oblivc.org) is a programming language
which allows an application developer to quickly implement
scalable, secure MPC protocols, using the language’s API or
writing specific functionality by extending the language’s ex-
isting library as well as experimenting with the implementation
of library protocols [8]. Obliv-C provides an implementation
of Yao’s garbled circuit protocol for use with semi-honest
adversaries, although it can also be used to implement other
protocols. The language is compiled and built on top of the
standard C language, allowing for developers to integrate C
tools and libraries with Obliv-C seamlessly. This is important
for our goals, since we want the programming required to build
an MPC protocol to be as little as possible, while allowing
programmers to integrate existing tools and libraries.

An excerpt of Obliv-C code below demonstrates input and
revealing the encrypted correlation coefficient of a linear
regression:

for(int i = 0; i < n; i++) {
oArr[i] = feedOblivInt(iArr[i],party);

}
obliv int orsqr = getOblivRSquared(oArr);
revealOblivInt(&io -> rsqr,orsqr,0);

The obliv qualifier built into Obliv-Cs type system ensures
the variable used is encrypted with the garbled circuit scheme
[8]. iArr is an integer array which is converted from plain
integers into obliv integers through the feedOblivInt()
API, which synchronously executes by both parties. Explicit
typing rules and control flow handling can be found in
the language’s repository (https://github.com/samee/obliv-c).
Following the last two lines of this example, the variable
is the correlation coefficient of linear regression analysis,
obtained through some function call to a method within the
MPC protocol that requires the previously converted array
of obliv values. The result is revealed to specified parties
through the API revealOblivInt(), which works by
cooperatively decrypting the encrypted value into a normal
C struct. Revealing an integer stores the result into a struct
which is accessible to specified parties (“0” means all parties
in this context).

mailto:havron@virginia.edu
http://oblivc.org
https://github.com/samee/obliv-c

III. PRELIMINARY RESULTS

In our experiments so far, we have implemented a linear
regression application as an MPC where data is split between
two parties (see repository at https://goo.gl/jQE3QY). One
node instance provided independent (x) data points, while
the other provided dependent (y) data points; data points
used were 32-bit integers, using fixed-point mathematics to
convert raw data values into scaled integers, as Obliv-C does
not currently support floating point numbers. The output of
the computation is the coefficients that result from the linear
regression, which are publicly revealed to both parties.

Testing was done using c4.large Elastic Compute Cloud
(EC2) nodes from Amazon Web Services (AWS) [1], which
provide high-frequency Intel Xeon E5-2666 v3 (Haswell)
processors optimized specifically for EC2, two vCPUs, and
3.75 GiB of DRAM. Two c4.large instances were launched and
connected through Obliv-C’s API for TCP/IP connections. The
instances were both located in the same datacenter in Oregon,
with approximately 1 Gbps measured bandwidth between the
nodes.

The time needed to execute the MPC between instances
appears to scale linearly with the size of the data input; 100K
data points finished execution in 12.7 minutes on average,
500K completed in 63.7 minutes, and 1 million data points
finished execution in just over 127 minutes on average. Given
the relative cost of using a c4.large instance (as of writing,
$0.105 per hour), executing this program over larger inputs,
such as 10 million data points, will only incur about $4.45
between two instances in the estimated runtime of 21 hours.
(All numbers are averages over 5 executions between c4.large
instances.)

Artificial data was generated for testing the scalability
of input size, and considerations to automated data match-
ups between two separate datasets were not implemented;
the artifical data was presumed to already be matched and
sorted properly. To provide a clear example of the utility of
Obliv-C for analyzing sensitive datasets, additional data for
computation was obtained from the public New York State
Department of Health dataset of Hospital Inpatient Discharges
from 2011 [6] and is currently being tested. This dataset is
publicly available and in a single database, but provides a
reasonable model of data that is sensitive and would be kept
privately in different subsets kept by different organizations.

The datasets used in our preliminary experiments assume
that data is matched, sorted, and comprises of comparable
values. In a realistic scenario, it is more likely that the two par-
ties have data for different individuals, and first need to match
up the corresponding records. This can be done using private
set intersection, which has been efficiently implemented as an
MPC [5].

IV. RELATED WORK

A similar approach in taking distinct federal datasets and
comparing them was done by Bogdanov et al., where correla-
tions between working hours and failure to graduate on time in
Estonia was investigated, matching over 10 million tax records

and 500K education records [2]. This analysis utilized the re-
searchers’ own framework for secure computation, ShareMind,
a database and analytics system which uses three somewhat-
trusted parties to carry out computations, and uses arithmetic
manipulations to implement secure MPC, rather than boolean
circuit evaluation [3]. The model where sensitive data is split
between three parties that are trusted to not collude or disrupt
the protocol enables many efficiencies not possible in standard
MPC, but requires three parties in which both participants have
a high degree of trust.

Another privacy-preserving approach to analyzing millions
of records uses a combination of homomorphic encryption
(for linear computations) and Yao circuits (for non-linear
computations) in order to compute ridge regression [7]. This
approach is designed for many users to send data to a central
server that performs the bulk of the computation, in contrast to
the two-party model used in MPC. Yet another approach used
for secure multiple linear regression relies on protocols based
on homomorphic secret sharing, and data which is partitioned
across several databases [4].

V. CONCLUSION

Using MPCs for scientific analysis of large datasets is
promising for social scientists and researchers whom would
otherwise need to reveal some of one party’s input to another
party in order to analyze their data or be unable to perform
analysis due to legal restrictions and ownership issues. We
hope progress in MPC implementation will enable new kinds
of scientific data analysis, and envision tools that will make
these techniques accessible to social scientists. Future work
invites a closer examination of automatic data-matching be-
tween separate datasets with private set intersection, improving
fixed-point integer conversion for decimal data values used in
computation, and other privacy-preserving applications.

REFERENCES

[1] Amazon Web Services. Amazon EC2 Instance Types. https://aws.amazon.
com/ec2/instance-types/.

[2] Dan Bogdanov, Liina Kamm, Baldur Kubo, Reimo Rebane, Ville Sokk,
and Riivo Talviste. Students and Taxes: a Privacy-Preserving Social
Study Using Secure Computation. Cryptology ePrint Archive, Report
2015/1159, 2015.

[3] Dan Bogdanov, S. Laur, and J. Willemson. Sharemind: A Framework
for Fast Privacy-Preserving Computations. In European Symposium on
Research in Computer Security (ESORICS), 2008.

[4] Rob Hall, Stephen E. Fienberg, and Yuval Nardi. Secure Multiple Linear
Regression Based on Homomorphic Encryption. Journal of Official
Statistics, (4), 2011.

[5] Yan Huang, David Evans, and Jonathan Katz. Private Set Intersection:
Are Garbled Circuits Better than Custom Protocols? In Network and
Distributed Systems Security Symposium, 2012.

[6] New York Department of Health. New York State Health Data. https:
//health.data.ny.gov/.

[7] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan
Boneh, and Nina Taft. Privacy-Preserving Ridge Regression on Hundreds
of Millions of Records. In IEEE Symposium on Security and Privacy,
2013.

[8] Samee Zahur and David Evans. Obliv-C: A Lightweight Compiler
for Data-Oblivious Computation. Cryptology ePrint Archive, Report
2015/1153, 2015. http://oblivc.org.

https://goo.gl/jQE3QY
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://health.data.ny.gov/
https://health.data.ny.gov/
http://oblivc.org

	Introduction
	Approach
	Preliminary Results
	Related Work
	Conclusion
	References

