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Abstract—The execution of stable matching algorithms,
such as for matching aspirants to medical residency
programs and candidates to sororities, is often outsourced
to trusted arbiters in order to preserve the privacy of
the participants’ preferences. Multi-party computation
presents a privacy-preserving alternative that does not
require any trusted third party, but executing a stable
matching algorithm in a secure multi-party context has
thus far been infeasible for nontrivial inputs. We adapt the
classic Gale-Shapley algorithm for use in such a context,
and show experimentally that our modifications yield a
lower complexity and more than an order of magnitude
in practical cost improvement over previous techniques.

I. INTRODUCTION

The Gale-Shapley algorithm provides a method for
finding a stable pairing between two sets of n members,
each member having a ranking of the members of the
other set [2]. This concept has proven important to
understanding and optimizing market allocations, and
versions of it are used in many interesting applications,
including matching medical residents to hospitals.

In practice, stable matching processes are often out-
sourced to a trusted arbiter in order to hide the partic-
ipants’ reported preferences from their counterparties.
We consider how to run instances of stable matching
using secure computation, in order to obviate the need
for a trusted third party while preserving the participants’
privacy. As in previous private stable matching work, we
assume all members of each of the pairing sets trust one
representative, so the protocol can be run as a two-party
secure computation.

Executing an algorithm as complex as Gale-Shapley in
a secure computation has historically been too expensive
to be practical. For example, the protocols of Golle [3]
and Franklin et al. [1] required roughly O(n5) public-
key operations and were too complicated to implement.
Among other properties, secure computation requires

that all data-dependent memory accesses be hidden in
order to maintain security.

Recent advances in ORAM design [9] have reduced
costs significantly, but oblivious Gale-Shapley remains
impractical for any interesting scale. We overcome this
by using both state-of-the-art ORAM designs and effi-
cient custom oblivious data structures to adapt the stable
matching algorithm for secure computation.

II. ALGORITHM

We first consider the structure of the textbook Gale-
Shapley algorithm, typically presented via a process in
which suitors (i.e. members of one set) make proposals
to reviewers (members of the other set). The algorithm
proceeds through each suitor’s preference list from most-
preferred to least, swapping between suitors as they
become matched or invalidated by other matches. The
algorithm makes at most n2 pairings, but, critically, we
cannot determine in advance which suitor’s preferences it
will be evaluating on any particular iteration, nor how far
along that suitor’s preference list it will have advanced.

As any iteration could require access to any pairing,
the naïve approach requires that the preferences be stored
within an ORAM. Consequently, the algorithm must
perform n2 accesses to an ORAM of length n2. All other
ORAMs and queues required by the textbook algorithm
are of length n; thus, by finding a way to avoid storing
the preferences within an ORAM, we could significantly
improve both complexity and real-world performance.

Oblivious Linked Multi-lists. We observe that in this
algorithm, each suitor’s individual preference list is
accessed strictly in order, and each element is accessed
only once. Furthermore, an oblivious implementation
of Gale-Shapley does not require any accesses to be
dependent on oblivious conditions (the algorithm must
obliviously select which list is accessed, but exactly one
preference list is always accessed). In short, we need



Pairs Textbook (s) Improved (s)
Linear Circuit Sqrt Circuit Sqrt

64 611 1,329 145 88 22
128 9,543 6,164 1,396 392 113
256 152,781 34,747 12,264 1,916 597
512 - 188,973 119,405 12,574 3,252

TABLE I: Execution Time vs Pair Count. Values are mean
wall-clock times in seconds for full protocol execution in-
cluding initialization, for implementations using Linear Scan,
Circuit ORAM, and Square-Root ORAM.

a data structure that iterates over n elements, in order,
while hiding the progress of that iteration.

Instead of using a generic ORAM, we design a new
oblivious linked list data structure, which satisfies these
requirements more efficiently. Unlike an ORAM or an
oblivious queue, our oblivious linked list can be accessed
in Θ(1). We can extend this construction to iterate
through multiple preference lists by permuting multiple
lists together in a single array, and storing their metadata
in another data structure. While our solution still requires
a general ORAM of n elements in order to maintain
the current matches for each of the reviewers, removing
the n2 element ORAM makes a significant improve-
ment in practice and a slight improvement in theory.
Furthermore, our new data structure can be initialized
by sorting, which dramatically reduces the initialization
time compared to previous techniques.

Complexity Analysis. The textbook Gale-Shapley al-
gorithm performs Θ(n2) operations upon an n2 length
memory, incurring a total complexity of Θ(n4) for im-
plementations based upon linear scan. Using Square-
Root ORAM reduces the complexity to Θ(n3

√
log(n)).

Our formulation of the Gale-Shapley algorithm performs
Θ(n2) operations upon an n length memory; using a
Square-Root ORAM for array accesses yields a complex-
ity of Θ(n

5
2
√

log(n)). Using Circuit ORAM [7] reduces
the asymptotic complexity to Θ(n2log3(n)), but is less
efficient in practice for reasonable values of n because
of the high concrete costs of Circuit ORAM.

III. RESULTS

We implemented and benchmarked our algorithm,
along with the textbook version, using Obliv-C [8] and
the fastest available implementations of Square-Root and
Circuit ORAM. We ran it on a pair of Amazon EC2
C4.2xlarge nodes located within the same datacenter and
connected via a (measured) 1.03 Gbps link.

Table I presents our findings, which are consistent with
our analytical results. At 512×512 members, we achieve
more than an order of magnitude improvement over the
previous best technique, for a total execution time of
one hour, compared to thirty three hours as reported
by Zahur et al. [9]. Previously, Terner et al. [6] found
that a secure stable matching protocol on 100 × 100
participants required more than 13 hours, and Keller and
Scholl [4] reported a method that can match 128×128
participants in roughly 2.5 hours, but it also requires
1000 processor-days of offline compute time (i.e., work
independent of the input).

IV. FUTURE WORK

We are interested in producing an secure version of
the algorithm used by the National Resident Matching
Program to match medical residents to hospitals [5],
which places about 20,000 physicians in jobs each year.
Although this is more than an order of magnitude larger
than the largest benchmarks we have run so far, the
hospital-resident matching algorithm does not require
that participants rank all of their potential partners —
only that they rank a small subset of the most preferred.
This significantly reduces the number of available pair-
ings, enabling solutions that are much more efficient than
when full preference rankings are used.
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