
Poster: Privacy-Preserving String Search for Genome
Sequences using Fully Homomorphic Encryption

Yu Ishimaki∗, Kana Shimizu∗†, Koji Nuida†‡, Hayato Yamana∗
∗ Waseda University, Tokyo Japan

† Information Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
‡ Japan Science and Technology Agency (JST) PRESTO Researcher, Tokyo, Japan

Email: yuishi@yama.info.waseda.ac.jp, shimizu.kana@waseda.jp, k.nuida@aist.go.jp, yamana@yama.info.waseda.ac.jp

Abstract— Privacy protection for personal genome analyses is
one of the emerging issues in the area of medical genomics. We
assume the general case where a user would like to compute
some sort of score based on a similarity search between a
query and a database. In this study, we propose a cryptographic
protocol using fully homomorphic encryption (FHE) that enables
searching on genome sequences and still allows computation of
the score based on the search result. In our method, we use the
state-of-the-art technique that combines the recursive oblivious
transfer and the efficient discrete data structure that allows
linear time searching. In an experiment using a data set created
from the 1,000 genome project data, it took 535 seconds for
searching a query on 2,184 personal genomes. Though FHE is
highly inefficient, our proposed optimization method reduces the
runtime, which is only approximately 10 times longer than the
previous scheme. This may be considered in some applications
as an allowable trade-off with the fully enhanced subsequent
functionality.

I. INTRODUCTION

Personal genome analyses is one of the most important
topics in current medical genomics and protection of an
individual’s privacy poses many technical challenges. Here
we consider a general case where a user computes statistics
based on a personal genome database search. In this case, both
the user’s query and the database contents should be kept in
private except that only the user knows the statistics. In order
to facilitate designing a secure protocol for such a case, we
propose a secure genome search protocol whose output is an
encrypted count of similar genome sequences and the count
is easily used as an input to another function for computing
some sort of score.

Among previous works, PBWT-sec [1] is an efficient secure
protocol for counting prefix match in a large collection of
aligned genome sequences. The output of the protocol is
encrypted by homomorphic encryption (HE), which can thus
basically be reused as an input for subsequent secure com-
putations. However, since the previous work uses additively
HE, the subsequent functionality is very limited, e.g., ordinary
statistical analysis is not available.

To resolve the restriction, here we propose to use fully HE
(FHE) as an alternative building block. The main contribu-
tion of this paper is that our proposed method can support
both addition and multiplication in encrypted form to realize
statistical analysis.

A portion of this work was supported by CREST, JST.

II. PREVIOUS WORK

PBWT-sec[1] is an efficient two-party protocol for privacy-
preserving genome sequences search. The protocol assumes
the following model: A server holds a set of aligned genome
sequences and a user holds a genome sequence. After the
computation, only the user can obtain the count of prefix
match larger than a given threshold without knowing any other
information about server’s sequences.

The key idea of the PBWT-sec is to combine the positional
Burrows-Wheeler Transform (PBWT) [2] and the recursive
oblivious transfer [1]. The PBWT is a data structure to search
substring match for a set of aligned genome sequences where
a (k+1)-gram match is found in constant time by computing a
function with the previous k-gram match as an input. During
the search, the match is reported as an interval [f, g] and
f and g is updated upon extending the match. It is known
that the update task of f and g is replaced by looking up a
lookup-vector that stores the values obtained by computing
the function in advance. Thus one can obtain the prefix match
by computing v[. . . v[f0] . . .] and v[. . . v[g0] . . .] where v is
denoted as the vector and [f0, g0] is an initial interval.

The recursive oblivious transfer protocol enables the user to
repeat oblivious transfer in such a way where the user inputs
the output of the previous search but the user obtains only the
last output and all the other intermediate outputs are invisible
to the user. In PBWT-sec, the user obtains the elements of the
lookup-vector to find the subsequent interval, i.e., extending
a match by a letter by using recursive oblivious transfer and
obtains count of the match by computing g − f .

III. METHOD

We design the protocol based on the same idea to PBWT-sec
by adopting FHE. To reduce both runtime and communication
size, we focus on Smart et al.’s packing technique [3] which
enables encrypting an integer vector into one ciphertext. Be-
sides that, addition and multiplication can be conducted on the
ciphertext via element-wise computation on a plain-text vector
(each element is called a slot).

We assume that the server has an n-length vector v, and
prepares the two same-length vectors v0 and v1. Here, v0 =
v/ℓ and v1 = v mod ℓ, where ℓ is the number of slots (ℓ ≥√
n). Moreover, the server divides them into ℓ sub vectors, all

having a length of ℓ. Here, the j-th sub vectors of v0 and v1

are denoted by v0j and v1j , respectively.



Our proposed algorithm is described in the following 3
steps. This is repeated by the length of the user’s query string,
e.g., 4 times when the query string is ”ATTG”.

Step.1 User’s query construction
The user constructs two query bit-vectors qt0 and qt1 . If

he wants to know the t-th element of the server’s vector v, he
sets t0 = t/ℓ and t1 = t mod ℓ such that t = t0ℓ+ t1.

qt0 [i] =

{
1 (i = (t0 + t1)mod ℓ)
0 (i ̸= (t0 + t1)mod ℓ)

(0 ≤ i ≤ ℓ− 1) (1)

qt1 [i] =

{
1 (i = t1)
0 (i ̸= t1)

(0 ≤ i ≤ ℓ− 1) (2)

Then, the user encrypts them using Smart et al.’s packing
technique, and sends Enc(qt0) and Enc(qt1) to the server,
where they are used as the ciphertexts of qt0 and qt1 ,
respectively.

Step 2. Server’s calculation
The server obtains Enc(q̂t0) = Perm(Enc(qt0), (r

′
0 + r′1)mod ℓ)

and Enc(q̂t1) = Perm(Enc(qt1), r
′
1), where Perm(Enc(q), r)

denotes the permutation of Enc(q) whose j-th slot moves to
(j − r)mod ℓ. Here, r′0 and r′1 are initialized by 0 only at the
first iteration. The server then generates random values r0 and
r1, and calculates c0 and c1.

c0 =
⊕ℓ−1

i=0 Enc(q̂t1 )⊗ (v0i[i] + r0)mod ℓ ⊗ Perm(Enc(q̂t0 ), i)
c1 =

⊕ℓ−1
i=0 Enc(q̂t1 )⊗ (v1i[i] + r1)mod ℓ ⊗ Perm(Enc(q̂t0 ), i)

(3)
The server sends ĉ0 = Perm(c0,−r′1) and ĉ1 = Perm(c1,−r′1)

to the user. Subsequently, the server sets r′0 = r0 and r′1 = r1
for the next iteration.

Step 3. User’s decryption
The user obtains a0 = Dec(ĉ0, t1) and a1 = Dec(ĉ1, t1),

where Dec(ĉ, t′) denotes the t′-th element of the vector
obtained by decrypting ĉ. He then sets t0 = a0 and t1 = a1
for the next iteration.

IV. EXPERIMENTAL RESULT AND DISCUSSION

We have implemented our proposed algorithm by adopting
HElib[4] and compared it to PBWT-sec by using PBWT-
sec open-source library[5]. In the experiment, we used 2,184
haploid genome sequences from Phase 1 of the 1,000 Genomes
Project [6]. The experiment was run on the server equipped
with Intel Core-i7 3.40 GHz CPU with four threads and 16
GB RAM on the user side, and on the server equipped with
Intel Xeon E7-8880 v3 2.30 GHz CPU with 8 threads and
1TB RAM on the server side. The user’s query string had a
length of five. We set plain text space as 220, the depth of
evaluation as 10, the lattice dimension as 12,000, the number
of slots as 600, and security parameter as 128 in HElib.

The experimental results of our proposed algorithm and
PBWT-sec are shown in Fig.1 and Fig.2 whose x-axis rep-
resents the length of the server’s vector v. The results are
averaged by five times experiments. Fig.1 shows the runtime
consisting of key generation time on the user. It takes ap-
proximately 20 seconds for our proposed algorithm and 0.012
seconds for PBWT-sec. The runtime of our proposed algorithm

Fig. 1. Runtime of our proposed algorithm and PBWT-sec.

Fig. 2. Data transfer overhead of our proposed algorithm and PBWT-sec.

on the server is approximately 10 times longer than that of
PBWT-sec. Fig.2 shows the data transfer overhead. The data
transfer overhead of our proposed algorithm remains constant,
because the number of ciphertexts sent to both the user and
the server is fixed.

V. CONCLUSION

In this paper, we designed a privacy-preserving genome
sequences search method that is build on fully homomor-
phic encryption, based on the same design principle used
for PBWT-sec which is build on additively homomorphic
encryption. Though the performance of the proposed method
is rather lower, it is still acceptable level for some applications.
Our method can be extended to the computation method of a
complex statistics such as disease risks. We plan to extend our
method to support wild card searches and statistical analysis.

REFERENCES

[1] K. Shimizu, K. Nuida and S. Rätsch: Efficient Privacy-Preserving
String Search and an Application in Genomics, Bioinformatics,
doi:10.1093/bioinformatics/btw050, 2016.

[2] R. Durbin: Efficient haplotype matching and storage using the Positional
Burrows-Wheeler Transform (PBWT), Bioinformatics, Vol. 30, No. 9, pp.
1266-1272, 2014.

[3] N. P. Smart and F. Vercauteren: Fully homomorphic SIMD operations,
Designs, Codes and Cryptography, Vol. 71, No. 1, pp. 57-81, 2014.

[4] HELib. http://shaih.github.io/HElib/, accessed on 2016-4-1.
[5] PBWT-sec. https://github.com/iskana/PBWT-sec/, accessed on 2016-4-1.
[6] The 1000 Genome Project Consortium:An integrated map of genetic

variation from 1,092 human genomes, Nature, Vol. 491, pp. 56-65, 2012.


