
Poster: Using Implicit Calls to Improve Malware
Dynamic Execution

Mourad Leslous, Valérie Viet Triem Tong
EPI CIDRE

CentraleSupelec, Inria, Univ. Rennes 1, CNRS,
F-35065 Rennes, France
mourad.leslous@inria.fr,

valerie.viettriemtong@centralesupelec.fr

Jean-François Lalande
INSA Centre Val de Loire

88 Bld Lahitolle
CS 60013

18022 Bourges Cedex
jean-francois.lalande@insa-cvl.fr

Abstract—The number of Android malware has been increas-
ing for the last 5 years. These malware use more often evasion
techniques to hide their malicious intent and avoid analysis tools.
In this work, we focus on triggering the most suspicious parts of
code in malicious applications in order to monitor their behaviors
using dynamic analysis tools for a better understanding of their
activities. To do this, a global control flow graph (CFG) is used to
exhibit an execution path to reach specific parts of code. Here we
explain why using only explicit interprocedural calls may lead to
a partial build of the CFG.In this poster, we explain that concept
and propose a solution that improves malicious code reachability
by means of integrating implicit calls.

I. THE NEED FOR MALWARE TRIGGERING

Android OS is deployed on more than 80% of the global
mobile market [1]. With this domination, Android malware
number knows a fast growth in app markets especially on
unofficial ones. According to a recent report [2], a variety
of Android malware types has been found, as phishing, ran-
somware and SMS/call fraud malware. Different static analysis
approaches have been used to detect them. Nevertheless,
malware authors use many techniques to evade static analysis,
such as string obfuscation, reflection, dynamic code loading
and execution of native code. They use also several techniques
to evade dynamic analysis, that mostly consists in delaying the
attack by executing malicious code after a specific time, after
receiving a system event or a remote server command. Despite
of these protection mechanisms, in this work, we focus on
triggering the suspicious part of the code in order to capture
automatically the dynamic behavior of suspicious application.
Thus, by reproducing this dynamic analysis at large scale we
aim at better understanding malware activities.

In a previous work [3], we have introduced GroddDroid,
a tool that automatically triggers and executes the suspicious
code of an application. Firstly, GroddDroid locates the sus-
picious code inside the application using a method explained
in DROIDAPIMINER [4]. This approach is based on the fact
that some framework classes are used more often by malware
than by benign apps. For instance, the class TelephonyManager
is used by malware to send premium SMSs, and the class
PackageManager is used to detect the presence of specific
security programs and to install new apps without the user’s
knowledge. Then, GroddDroid builds a global control flow

graph (CFG) of the app. This CFG contains, for each call
of a method from another one, an edge that represents it.
Then, GroddDroid exhibits an execution path from an entry
point, which can be an Activity’s onCreate() or other
similar entry points, to the malicious code. Next, the app is
instrumented to force necessary branches in this path to arrive
to the malicious code. Finally, the application is executed to
observe the real malware behavior using dynamic analysis
tools such as Blare [5], which tracks information flows caused
by the execution of the app.

II. INCLUDING IMPLICIT CALLS INTO CFGS

GroddDroid succeeds on a set of 100 malware to trigger
28% of suspicious code, instead of 20% using only pseudo-
random event injection. These results need improvement.
One of the limits of GroddDroid is that it uses only explicit
method calls as interprocedural edges to build apps’ global
CFGs. For example, calling the malicious method evil()
of the object foo from MainActivity.onCreate would
be foo.evil(). This kind of calls is explicit and can be
observed and used to construct the global CFG as the edge
MainActivity.onCreate() −→ foo.evil(). On the
other hand, an implicit call is the fact that a method present in
the app’s code get called by the framework while there is no
explicit call to it in the app’s code. Let us take the example
of the method MyCmp.compare(Object, Object) that
overrides Comparator.compare(Object, Object)
and calls the malicious method Foo.evil(). If we
call the method Collections.sort(list,new
MyCmp) from MainActivity.onCreate(), the method
MyCmp.compare(Object, Object) will be called
implicitly to sort the list’s elements. In this case, we have
two explicit edges: onCreate −→ sort and compare
−→ evil. The Global CFG is incomplete because it does
not contain the implicit edge sort −→ compare, and thus,
no path from onCreate to evil (cf. Figure 1). Ignoring
this type of calls may lead to lose information about the
application behavior, and therefore, an incomplete CFG will
prevent from monitoring a dynamic execution that reaches
the suspicious functions.

We suggest to resolve this problem by integrating implicit
calls into the app’s global CFG to improve malicious code
triggering. Obviously, listing manually all possible implicit
calls in the Android framework is likely impossible due to
the large codebase of the latter. CHEX [6] uses heuristics
to find prospective calls of methods present in the app’s
code and discover data flows. It connects potential callbacks
to the containing object’s constructor. This proposition may
give incorrect estimations because it uses just a model of
the Android framework when analyzing the app. Another
methodology has been proposed by EdgeMiner [7]: it analyzes
the codebase of the Android framework and performs an
inter-procedural backward data flow analysis to extract a
list of registration-callback pairs. For example, it extracts
the pair: java.util.Collections: void sort
(java.util.List, java.util.Comparator)
java.util.Comparator: int compare
(java.lang.Object, java.lang.Object) #1,
where 1 is the position of the compare’s defining class
(Comparator) in the parameters’ list of the registration
method sort. EdgeMiner analyzes the framework once
for each Android version, and the results can be used to
find implicit calls in Android apps running on that specific
version.

At the moment, we are working on integrating the work
proposed by EdgeMiner into GroddDroid. The problem we
face is that results from EdgeMiner are not applicable di-
rectly, because of the inheritance relation between methods
in app’s code and those in EdgeMiner results. For instance,
callbacks are always implemented in app’s code and they
override framework methods. Registration methods can also be
overridden in both, framework’s and app’s code. In addition,
the inheritance relation may be indirect. For instance, if we
take the previous example of the malicious method evil()
that has been called from MyCmp.compare, the EdgeMiner
registration-callback pair mentioned in the previous paragraph
is not applicable directly in this case, because MyCmp im-
plements Comparator. Consequently, we have to match
the registration method with another method that receives a
MyCmp object instead of Comparator as parameter, and
match the callback method with another method that overrides
it. In this particular case, we should add an implicit edge
from Collections.sort() to MyCmp.compare()
instead of an edge from Collections.sort() to
Comparator.compare(). As a result, for each combina-
tion of invoke site and method in the app’s code, we have
to run over all EdgeMiner registration-callback pairs to check
if there is one that matches them and allows to add a new
implicit edge to the global CFG.

III. EXECUTING MALWARE

Our goal is to improve the malicious code execution beyond
the 28% obtained just by taking into account explicit calls. We
expect that using implicit calls may improve suspicious code
runtime coverage and thus the quality of dynamic analysis. We
designed an algorithm that resolves this inheritance problem

Android Framework

MainActivity.onCreate

Foo.evil

Collections.sort

MyCmp.compare

−→ Explicit call
99K Implicit call

Fig. 1. sort−→compare implicit call

and implemented it. We are now working on optimizing the
execution time of our tool in order to be able to run it on big
applications and on a large set of random malware. The next
step is to test the new version of GroddDroid with the CFG
construction method improved with implicit calls on a wide
range of malware. At the end of this execution and triggering
campaign, we will measure the malicious code coverage with
just random event injection, forcing branches without implicit
calls, and forcing branches while taking into consideration
implicit calls between methods.

REFERENCES

[1] IDC. (2015) Smartphone os market share, 2015 q2. [Online]. Available:
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

[2] Google, “Google report: Android security 2014 year in review,”
2015. [Online]. Available: https://static.googleusercontent.com/media/
source.android.com/en//security/reports/Google Android Security
2014 Report Final.pdf

[3] A. Abraham, R. Andriatsimandefitra, A. Brunelat, J.-F. Lalande, and
V. Viet Triem Tong, “Grodddroid: a gorilla for triggering malicious
behaviors,” in 10th International Conference on Malicious and Unwanted
Software. IEEE Computer Society, 2015.

[4] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level features
for robust malware detection in android,” in Security and Privacy in
Communication Networks. Springer International Publishing, 2013, pp.
86–103.

[5] J. Zimmermann, L. Mé, and C. Bidan, Recent Advances in Intrusion
Detection: 5th International Symposium, RAID 2002 Zurich, Switzerland,
October 16–18, 2002 Proceedings. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, ch. Introducing Reference Flow Control for Detecting
Intrusion Symptoms at the OS Level.

[6] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: Statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings of
the 2012 ACM Conference on Computer and Communications Security,
ser. CCS ’12. New York, NY, USA: ACM, 2012, pp. 229–240.
[Online]. Available: http://doi.acm.org/10.1145/2382196.2382223

[7] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna,
and Y. Chen, “Edgeminer: Automatically detecting implicit control flow
transitions through the android framework,” in NDSS, 2015.

