Poster: Position Verification in Vehicular Platoons Using a Euclidean Distance Matrix

Tasnuva Tithi, Ryan Gerdes, Chris Winstead Department of ECE, Utah State University Logan, UT 84322-4120

tasnuvatithi@aggiemail.usu.edu, ryan.gerdes@usu.edu, chris.winstead@usu.edu

Abstract—This work presents a novel method for detecting false position claims in vehicle platoons based on the Euclidean Distance Matrix (EDM). Analytical and simulation results show that the EDM analysis is resistant to terrorist-fraud attacks and can identify an attacker in 100% cases if aided by a single colluder and 83.33% cases if aided by two colluders.

I. INTRODUCTION

In a vehicle platoon a group of vehicles act as single unit through coordination of movements. Platooning is expected to increase safety, roadway capacity, and efficiency. Accurate and timely vehicle position information, however, is critical in platooning operations [1]; in addition, inaccurate or unavailable position information can be leveraged by malicious individuals to decrease efficiency [2] or cause accidents [3], [4].

Existing secure localization approaches [5]–[7] are vulnerable to attack in the presence of multiple, colluding attackers. This work presents a method based on Euclidean Distance Matrix (EDM) analysis to detect two distance attacks. The method relies on only self-localization (e.g. through GPS) and adjacent neighbor distance measurements (e.g. using radar). Under the assumption that these measurements are reliable, EDM analysis is able to discover attackers in the majority of cases for the attack types considered.

II. ASSUMPTIONS AND ATTACK MODEL

Let us consider a platoon consisting of n vehicles ideally spaced at a distance of d^* from each other. We assume that vehicles move in a straight line and only the x coordinates of their positions are relevant. Each vehicle is able to localize itself and measures the distances to its adjacent neighbors via local sensors. Vehicles are required to broadcast their sensor measurements along with their position. The vehicle in the front of the platoon, the *leader* v_L , is in charge of detecting false position claims and identifying the attacker. We assume that the leader is honest and all measurements are noise free.

We denote the vehicle in the *i*th position as v_i . The true position of v_i is p_i , and the reported position is y_i . The sensor measurement of v_i to adjacent neighbor v_j is denoted by s_{ij} , where $j = i \pm 1$. In general, the physical distance between v_i and v_j is denoted by d_{ij} . If v_i and v_j are adjacent neighbors, we expect $d_{ij} = s_{ij} = s_{ji} = d_{ji}$. We assume that all vehicles report true position and sensor measurements, except those which are attackers or colluders. In this work, any vehicle that reports a false position and false sensor measurements is considered an attacker, and any vehicle that reports a true position but false sensor measurements to support the attacker is considered a colluder.

A. Attack type I

We first consider an attack executed by an attacker with a single colluder (Fig. 1a). Let an attacker v_a deviate by an amount δ from its reported position y_a . One of the adjacent vehicles to v_a is the colluder v_c , and the other adjacent vehicle is referred to as the target vehicle v_t . To cover the deviation, the attacker falsifies the sensor measurements such that

$$s_{at} = |y_a - y_t| = d^* \tag{1}$$

Colluder v_c supports v_a by tampering with s_{ca} such that $s_{ca} = |y_c - y_a| = d^* = s_{ac}$. The target v_t reports the true sensor measurement,

$$s_{ta} = |p_t - p_a| = |y_t - y_a| - \delta = d^* - \delta$$
(2)

where δ is positive if v_a is moving toward v_t . All reports from v_c except for s_{ca} are truthful.

B. Attack type II

In this attack it is assumed that v_a is supported by two colluders v_{c1} and v_{c2} as illustrated in (Fig. 1b). The purpose of this attack is to frame v_t as an attacker.

Case (i): v_a moving closer to v_t . To execute this attack, v_a deviates δ from reported position y_a to move towards v_t as shown in (Fig. 1 b). The deviation δ is positive if v_a is behind v_t ; δ is negative otherwise. Unlike attack type I, in this attack, v_a reports the true distance to v_t as $s_{at} = |p_a - p_t| = |y_a - y_t| - |\delta|$ to indicate it is v_t which has deviated by δ from y_t and came closer to v_a .

Colluder v_{c1} supports v_a by tampering with its sensor measurement to v_a such that $s_{c1a} = s_{ac1} = |y_a - y_{c1}|$. Colluder v_{c2} supports v_a by tampering with its sensor measurement to v_t such that $d_{c2a} = d_{ac2} = s_{c2t} + s_{ta} = |y_{c2} - y_a| = 2d^*$. Therefore,

$$s_{ta} = |p_t - p_a| = |y_t - y_a| - |\delta| = d^* - |\delta| = s_{at}$$
(3)
$$s_{c2t} = 2d^* - s_{ta} = 2d^* - d^* + |\delta| = d^* + |\delta|;$$
(4)

 s_{c2t} indicates that v_t is further than expectation and closer to v_a , supporting v_a 's claims. All other reports from v_{c1} and v_{c2} are true (except for s_{c1a} and s_{c2t}).

Case (ii): v_a moving away from v_t . If v_a is deviating by δ from y_a to move further away from v_t , we have

$$s_{ta} = |p_t - p_a| = |y_t - y_a| + |\delta| = d^* + |\delta| = s_{at}$$
(5)

$$s_{c2t} = 2d^* - s_{ta} = 2d^* - d^* - |\delta| = d^* - |\delta|; \quad (6)$$

Figure 1: Fraudulent position claims for a five vehicle platoon: true position p_i of the i^{th} vehicle v_i is indicated by "·" and reported position y_i is indicated by the " \diamond " symbol.

 δ is positive if v_a is in front of v_t , and negative otherwise.

In each attack case, distance bounding by the leader would be insufficient to identify the attacker due to the presence of the colluding attackers. The proposed EDM analysis can successfully detect these attacks and identify the attacker as well.

III. EUCLIDEAN DISTANCE MATRIX (EDM)

An EDM is a matrix D containing an exhaustive table of squared distances d_{ij}^2 between points taken by pair from a list of n points. The rank of D is a function of the embedding dimension (r) and does not depend upon the number of data points (n). Therefore, D is a low rank matrix, given n > r + 2. In our approach, we make use of the low rank property of EDM. An EDM constructed for an n vehicle platoon with embedding dimension of 1 will always have a rank of r + 2 = 3. We construct two matrices from the available information. Let $Y = \{y_1, ..., y_n\}^T$ be a column vector of positions reported by all the vehicles in the platoon, and $S = \{s_{12}, s_{21}, s_{23}, ..., s_{n(n-1)}\}$ be the vector of sensor measurements from the vehicles. We construct an EDM D_Y from Y

$$D_Y = \operatorname{diag}(YY^T)\mathbf{1}^T + \mathbf{1} \operatorname{diag}(YY^T)^T - 2(YY^T)$$
(7)

where the matrix YY^T is called the Gramian of the vector Y, and the vector 1 is a column vector of 1s of dimension n. D_Y is a rank 3 matrix. We denote the i,jth element of D_Y as d_{ij}^2 . It is expected that for v_i , $d_{ij} = s_{ij} = d_{ji} = s_{ji}$, where v_j is adjacent to v_i , i.e.; $j = i \pm 1$. We construct another matrix Dfrom D_Y and S by replacing all d_{ij}^2 in D_Y by s_{ij}^2 for $j = i \pm 1$, i.e.; replacing distances to adjacent neighbors for each vehicle by the sensor measurements. D looks as follows:

	$\int 0$	s_{12}^2	d_{13}^2)
		·•.	·	
D =	8	$s_{i(i-1)}^{2}$	0	$s_{i(i+1)}^2 \dots$
			·	·
	(($d_{n(n-2)}^2$	$s_{n(n-1)}^2 0$

IV. ANALYSIS OF EDM FOR ATTACK DETECTION

The matrix D is a rank 3 matrix if all the vehicles are honest and if there is no inconsistency in the sensor measurements. However, under an attack scenario described in Sec. II, D will have a higher rank than 3 as an immediate result of the attack. We define an error matrix $E = D_Y - D$, to analyze the differences between D and D_Y . We use a column sum of E to determine the vehicle with most conflict. Let us consider a n = 5 vehicle platoon with $Y = \{1, 2, 3, 4, 5\}, d^* = 1$.

To demonstrate a case of Attack type I, assume $v_c = v_2$, $v_a = v_3$, $v_t = v_4$, $v_L = v_5$, and v_a is moving toward v_t . Vehicle v_1 is a benign vehicle in the platoon. As described in Sec. II-A, v_t reports $s_{ta} = d^* - \delta = 1 - \delta$. Therefore, D_Y , D, and E have the structure as shown:

	D_Y					D				E					
	v_1	v_c	v_a	v_t	v_L	v_1	v_c	v_a	v_t	v_L	$\overline{v_1}$	v_c	v_a	v_t	v_L
v_1	0	1	4	9	16	0	1	4	9	16	0	0	0	0	0
v_c	1	0	1	4	9	1	0	1	4	9	0	0	0	0	0
v_a	4	1	0	1	4	4	1	0	1	4	0	0	0	0	0
v_t	9	4	1	0	1	9	4	$(1-\delta)^2$	0	1	0	0	$2\delta - \delta^2$	0	0
v_L	16	9	4	1	0	16	9	4	1	0	0	0	0	0	0

A column sum of E reveals an anomaly for v_a of amount $2\delta - \delta^2$ for any value of δ .

A similar analysis of Attack type II shows, to identify v_a when it is deviating by an amount δ from y_a towards v_t ,

$$|\delta| < \frac{2}{3}d^* \tag{8}$$

When v_a when it is deviating by an amount δ from y_a away from v_t

$$|\delta| < 2d^* \tag{9}$$

Therefore, detection probability is $\frac{2}{3}$ when the attacker is coming nearer to the target, and 1 when the attacker is moving away from the target. The total detection probability is therefore

$$0.5 \times 1 + 0.5 \times \frac{2}{3} = 0.8333 \tag{10}$$

which translates to 83.33% detection. Additionally, as the attacker cannot instantaneously achieve a distance of $\frac{2}{3}d^*$ to the target, the initiation of this attack could be detected by employing the EDM method at a fine grained time-scale. That is, using small intervals between position verification cycles allows for 100% detection.

V. CONCLUSION

A position verification scheme for vehicular platooning that relies on only local measurements and their broadcast, and which is resistant to terrorist-fraud attacks, was presented.

REFERENCES

- X.-Y. Lu and S. E. Shladover, "Automated truck platoon control and field test," in *Road Vehicle Automation*. Springer, 2014, pp. 247–261.
- [2] R. M. Gerdes, C. Winstead, and K. Heaslip, "Cps: an efficiency-motivated attack against autonomous vehicular transportation," in *Proceedings of the 29th Annual Computer Security Applications Conference*. ACM, 2013, pp. 99–108.
- [3] J. J. Haas, "The effects of wireless jamming on vehicle platooning," 2009, [Tech report; online; accessed 04-June-2014].
- [4] S. Dadras, R. M. Gerdes, and R. Sharma, "Vehicular platooning in an adversarial environment," in *Proceedings of the 10th ACM Symposium* on Information, Computer and Communications Security. ACM, 2015.
- [5] J. T. Chiang, J. J. Haas, and Y.-C. Hu, "Secure and precise location verification using distance bounding and simultaneous multilateration," in *Proceedings of the second ACM conference on Wireless network security*. ACM, 2009, pp. 181–192.
- [6] D. Singelee and B. Preneel, "Location verification using secure distance bounding protocols," in *Mobile Adhoc and Sensor Systems Conference*, 2005. IEEE International Conference on, Nov 2005, pp. 7 pp.–840.
- [7] T. Leinmuller, E. Schoch, and F. Kargl, "Position verification approaches for vehicular ad hoc networks," *Wireless Communications, IEEE*, vol. 13, no. 5, pp. 16–21, October 2006.