
Poster:
Full-fledged App Sandboxing for Stock Android

Michael Backes
CISPA, Saarland University & MPI-SWS
backes@cs.uni-saarland.de

Sven Bugiel, Christian Hammer,
Oliver Schranz, Philipp von Styp-Rekowsky

CISPA, Saarland University
{lastname}@cs.uni-saarland.de

Abstract—We present the first concept for full-fledged app
sandboxing on stock Android. Our approach is based on appli-
cation virtualization and process-based privilege separation to
securely encapsulate untrusted apps in an isolated environment.
In contrast to all related work on stock Android, we eliminate
the necessity to modify the code of monitored apps, and thereby
overcome existing legal concerns and deployment problems that
rewriting-based approaches have been facing. We realize our
concept as a regular Android app called BOXIFY that can be
deployed without firmware modifications or root privileges. A
systematic evaluation of BOXIFY demonstrates its capability to
enforce established security policies without incurring a signifi-
cant runtime performance overhead.

I. MOTIVATION

Security research of the past five years has shown that the
privacy of smartphone users—and in particular of Android OS
users, due to Android’s popularity and open-source mindset—
is jeopardized by a number of different threats. Those include
increasingly sophisticated malware and spyware [1], overly
curious libraries [2], but also developer negligence and absence
of fail-safe defaults in the Android SDK [3]. To remedy this
situation, the development of new ways to protect the end-
users’ privacy has been an active topic of Android security
research during the last years.

Status quo of deploying Android security extensions. From
a deployment perspective, the proposed solutions followed two
major directions: The majority of the solutions (e.g., [4], [5],
[6], [7], [8]) extended the UID-centered security architecture
of Android. In contrast, a number of solutions (e.g., [9],
[10], [11]) promote inlined reference monitoring (IRM) as an
alternative approach that integrates security policy enforcement
directly into Android’s application layer, i.e., the apps’ code.

However, this dichotomy is unsatisfactory for end-users:
While OS security extensions provide stronger security guar-
antees and are preferable in the long run, they require ex-
tensive modifications to the operating system and Android
application framework. Since the proposed solutions are rarely
adopted [12] by Google or the device vendors, users have
to resort to customized aftermarket firmware if they wish to
deploy new security extensions on their devices. However,
installing a firmware forms a technological barrier for most
users. In addition, fragmentation of the Android ecosystem and
vendor customizations impede the provisioning of custom-built
ROMs for all possible device configurations in the wild.

In contrast, solutions that rely on inlined reference moni-
toring avoid this deployment problem by moving the reference

monitor to the application layer and allowing users to install
security extensions in the form of apps. However, the currently
available solutions provide only insufficient app sandboxing
functionality [13] as the reference monitor and the untrusted
application share the same process space. Hence, they lack the
strong isolation that would ensure tamper-protection and non-
bypassability of the reference monitor. Moreover, inlining ref-
erence monitors requires modification and hence re-signing of
applications, which violates Android’s signature-based same-
origin model and puts these solutions into a legal gray area.

The sweet spot. The envisioned app sandboxing solution
provides immediate strong privacy protection against rogue
applications. It would combine the security guarantees of OS
security extensions with the deployability of IRM solutions,
while simultaneously avoiding their respective drawbacks.
Effectively, such a solution would provide an OS-isolated
reference monitor that can be deployed entirely as an app on
stock Android without modifications to the firmware or code
of the monitored applications.

II. OUR APPROACH

In this poster we present a novel concept for Android
app sandboxing based on app virtualization, which provides
tamper-protected reference monitoring without firmware al-
terations, root privileges or modifications of apps. The key
idea of our approach is to encapsulate untrusted apps in a
restricted execution environment within the context of an-
other, trusted sandbox application. To establish a restricted
execution environment, we leverage Android’s “isolated pro-
cess” feature, which allows apps to totally de-privilege se-
lected components—a feature that has so far received little
attention beyond the web browser. Code running within an
isolated process has no platform permissions, no access to
the Android middleware, nor the ability to make persistent
changes to the file system. By loading untrusted apps into
a de-privileged, isolated process, we shift the problem of
sandboxing the untrusted apps from revoking their privileges
to granting their I/O operations whenever the policy explicitly
allows them. The I/O operations in question are syscalls (to
access the file system, network sockets, bluetooth, and other
low-level resources) and the Binder IPC kernel module (to
access the application framework). We introduce a novel app
virtualization environment that proxies all syscall and Binder
channels of isolated apps (see Figure 1). By intercepting any
interaction between the app and the system (i.e., kernel and app
framework), our solution is able to enforce established and new



Isolated App A
(Target)

SyscallBinder IPC

Isolated App B
(Target)

Process
boundaries Broker (Reference Monitor)

Shim Shim

Linux Kernel

Binder Module Syscall API
(DAC + MAC)

App Framework

Boxify

Service / System App
(Platform Permissions)

Process
boundaries

Fig. 1. High-level architecture of BOXIFY. Untrusted apps run in isolated pro-
cesses (Target) within BOXIFY, their I/O operations (Binder IPC and Syscalls)
are intercepted (Shim) and forwarded to the reference monitor (Broker) which
runs in a seperate, privileged process. Policy-allowed operations are forwarded
by the Broker to the underlying OS (Linux Kernel, App Framework) and their
results are returned to the Target process.

privacy-protecting policies. Additionally, it is carefully crafted
to be transparent to the encapsulated app in order to keep
the app agnostic about the sandbox and retain compatibility
to the regular Android execution environment. By executing
the untrusted code as a de-privileged process with a UID that
differs from the sandbox app’s UID, the kernel securely and
automatically isolates at process-level the reference monitor
implemented by the sandbox app from the untrusted processes.
Technically, we build on techniques that were found successful
in related work (e.g., libc hooking [10]) while introducing new
techniques such as Binder IPC redirection through Service-
Manager hooking. We realize our concept as a regular app
called BOXIFY that can be deployed on stock Android. To the
best of our knowledge, BOXIFY is the first solution to introduce
application virtualization to stock Android.

With BOXIFY, untrusted applications are not executed
by the Android system itself, but run completely encapsu-
lated within the runtime environment that BOXIFY provides.
Thereby, BOXIFY allows the instantiation of a wide range of
security models from the literature on Android OS security
extensions (e.g., [4], [8], [7]) purely at the application layer.
BOXIFY is capable of monitoring multiple (untrusted) apps at
the same time. By creating a number of isolated processes,
multiple apps can run in parallel yet securely isolated in a
single instance of BOXIFY. Further, BOXIFY fully controls all
inter-component communication between the sandboxed apps
and is thus able to not only separate different apps from one
another but also to allow controlled collaboration between
them. Moreover, BOXIFY has the ability to execute apps
that are not regularly installed on the phone: Since BOXIFY
executes other apps by dynamically loading their code into one
of its own processes and handles all the interaction between
the sandboxed application and the OS, there is no need to
register the untrusted app with the Android system. Hence,
applications can be installed into, updated, or removed from
BOXIFY without having Android system permissions.

III. CONCLUSION

We presented the first application virtualization solution
for the stock Android OS which combines the strong security
guarantees of OS security extensions with the deployability of
application layer only solutions. BOXIFY is deployable as a

regular app on stock Android (no firmware modification and
no root privileges required) and avoids the need to modify
sandboxed apps. Our current BOXIFY prototype supports de-
vices with Android version 4.1 through 4.4 (i.e., four out of
five devices in the Android ecosystem) and we are currently
finalizing support for the Android Runtime of Android v5.0
and later. Furthermore, we will make the BOXIFY source code
freely available.

BOXIFY offers all the security advantages of traditional
sandboxing techniques and is thus of independent interest for
future Android security research. As future work, we are cur-
rently investigating different application domains of BOXIFY,
such as application-layer only taint-tracking for sandboxed
apps, programmable security APIs, or BOXIFY-based malware
analysis tools.

REFERENCES

[1] Y. Zhou and X. Jiang, “Dissecting Android malware: Characterization
and evolution,” in Proc. 33rd IEEE Symposium on Security and Privacy
(Oakland’12). IEEE Computer Society, 2012.

[2] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A Study of An-
droid Application Security,” in Proc. 20th USENIX Security Symposium
(SEC’11). USENIX Association, 2011.

[3] S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgärtner, and
B. Freisleben, “Why Eve and Mallory love Android: An analysis of
Android SSL (in) security,” in Proc. 19th ACM Conference on Computer
and Communication Security (CCS’12). ACM, 2012.

[4] Y. Zhou, X. Zhang, X. Jiang, and V. Freeh, “Taming information-
stealing smartphone applications (on Android),” in Proc. 4th Interna-
tional Conference on Trust and Trustworthy Computing (TRUST’11).
Springer, 2011.

[5] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone
application certification,” in Proc. 16th ACM Conference on Computer
and Communication Security (CCS’09). ACM, 2009.

[6] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and
B. Shastry, “Towards Taming Privilege-Escalation Attacks on Android,”
in Proc. 19th Annual Network and Distributed System Security Sympo-
sium (NDSS’12). The Internet Society, 2012.

[7] X. Wangy, K. Sun, and Y. W. J. Jing, “DeepDroid: Dynamically
Enforcing Enterprise Policy on Android Devices,” in Proc. 22nd Annual
Network and Distributed System Security Symposium (NDSS’15). The
Internet Society, 2015.

[8] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, and
B. Shastry, “Practical and lightweight domain isolation on Android,”
in Proc. 1st ACM Workshop on Security and Privacy in Smartphones
and Mobile Devices (SPSM’11). ACM, 2011.

[9] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster,
and T. Millstein, “Dr. Android and Mr. Hide: Fine-grained Permissions
in Android Applications,” in Proc. 2nd ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices (SPSM’12). ACM, 2012.

[10] R. Xu, H. Saı̈di, and R. Anderson, “Aurasium – Practical Policy
Enforcement for Android Applications,” in Proc. 21st USENIX Security
Symposium (SEC’12). USENIX Association, 2012.

[11] B. Davis, B. Sanders, A. Khodaverdian, and H. Chen, “I-ARM-Droid:
A Rewriting Framework for In-App Reference Monitors for Android
Applications,” in Proc. Mobile Security Technologies 2012 (MoST’12).
IEEE Computer Society, 2012.

[12] S. Smalley and R. Craig, “Security Enhanced (SE) Android: Bringing
Flexible MAC to Android,” in Proc. 20th Annual Network and Dis-
tributed System Security Symposium (NDSS’13). The Internet Society,
2013.

[13] H. Hao, V. Singh, and W. Du, “On the Effectiveness of API-level Access
Control Using Bytecode Rewriting in Android,” in Proc. 8th ACM
Symposium on Information, Computer and Communication Security
(ASIACCS’13). ACM, 2013.


