
Poster: Privacy-Preserving Offloading of Mobile
App to the Public Cloud

Yue Duan Mu Zhang Heng Yin Yuzhe Tang
Department of EECS, Syracuse University, Syracuse, NY, USA

{yuduan,muzhang,heyin,ytang100}@syr.edu

Abstract— To support intensive computations on resource-
restricting mobile devices, studies have been made to enable
the offloading of a part of a mobile program to the cloud.
However, none of the existing approaches considers user privacy
when transmitting code and data off the device, resulting in
potential privacy breach. In this poster, we present the design
and implementation of a system that automatically performs fine-
grained privacy-preserving Android app offloading. It utilizes
static analysis and bytecode instrumentation techniques to ensure
transparent and efficient Android app offloading while preserving
user privacy. We conduct the evaluation of effectiveness and per-
formance of our system using two Android apps. Experimental
results show that our offloading technique can effectively preserve
user privacy while reducing hardware resource consumption at
the same time.

I. INTRODUCTION

Enabled by various mobile devices (ranging from tablets,
smartphones to emerging wearable devices), modern mobile
computing grows increasingly popular. Recently, sophisticated
mobile applications (e.g. photo-editing Android apps) are
developed. The limited hardware resources however present a
major performance problem for supporting those computation-
intensive applications. To address the problem, mobile applica-
tion offloading has been proposed [1], [2] to alleviate the work-
load on the mobile devices by offloading the computation-
intensive portion of program execution to the cloud.

Mobile app offloading, while reducing resource consump-
tion, may leak user privacy. To be specific, mobile app
offloading needs to send data to the public cloud (e.g. Amazon
AWS or MS Azure) to enable the program execution there.
The data sent which may contain sensitive personal infor-
mation (e.g. user location) would leak the user privacy; the
problem compounds especially when the public clouds are
deemed untrustworthy, evidenced by various security incidents
(due to attacks, hacks or “evil” nature of the cloud service
companies). This potential privacy-breach problem of mobile
app offloading, if not treated appropriately, could become an
obstacle for the use in practice.

While most existing research work focuses on identifying
computation-intensive portion of the program to offload, there
is little work to address the privacy-leakage issue. To the best
of our knowledge, the only privacy-aware offloading work is
a data-oriented offloading approach [3] which however has
fundamental design issues in protecting privacy effectively.1

1Being more specific, the data-partitioning approach only considers pre-
serving privacy at certain point during program execution, totally ignoring
the continuity of private data flow, which is addressed by our approach.

Android 
app

static analysis Instrumentation 
& Partition

Instrumented 
Android app

Java 
Program

Mobile Device

Cloud Server

Dynamic
decision 
making

RPC

Fig. 1: Overview of the System

We also argue that our problem specific to mobile apps is
different from the conventional research on privacy-aware
partitioning in the client-server scenario [4] which does not
consider limiting the resource consumption as much as in the
mobile scenario.

In this work, we address the privacy-preserving offloading
of mobile apps to the public cloud. Our proposed approach is
to enforce privacy preservation in a fully automatic and end-to-
end fashion. Concretely, our proposed approach performs static
data-flow analysis to discover all the instructions that operate
on private user data. The non-private instructions are then
offloaded to the cloud as lightweight RPC methods. Because
our offloading analysis occurs at the fine-grained statement
level, it could potentially amplify the communication overhead
to the cloud. To overcome this inefficiency, we propose a
novel technique to group offloadable statements in a way
to minimize communication overhead while preserving the
original program logic. To improve the runtime efficiency,
we instrument the original program to determine in real-time
where the offloadable code should run, remotely or locally.
Decisions are made dynamically based on device and network
conditions.

II. DESIGN & IMPLEMENTATION

In this section, we discuss the design and implementation
of our system prototype.

Our design leverages static program analysis to identify the
non-offloadable code, utilizes instrumentation techniques to
rewrite the app and relies on a decision making component to
make offloading decisions dynamically. Figure 1 illustrates the
overall design of our privacy-preserving offloading technique.

A. Static Analysis

The static analysis process contains three major steps: non-
offloadable code identification, offloadable code grouping and
pre-filtering.



0

2000

4000

6000

8000

Photo Editor Color Detecor

R
e

sp
o

n
se

 T
im

e
(m

ill
is

e
co

n
d

s)
 

apps 

original

intrumented

Fig. 2: Runtime Performance

0

30

60

90

Photo Editor Color Detecor

B
at

te
ry

 u
se

d
 (

J)
 

apps 

original

intrumented

Fig. 3: Power Consumption

300000

400000

500000

600000

700000

Photo Editor Color Detecor

A
p

p
 s

iz
e

(b
yt

e
) 

apps 

original

intrumented

Fig. 4: App Size

Non-Offloadable Code Identification: In order to detect
offloadable code regions, we identify and mark the following
four types of code statements as non-offloadable: 1) private
data manipulation code statements; 2) GUI components that
directly interact with users; 3)local resource access code
statements and 4) other Android APIs that rely on either An-
droid OS or physical device to execute. We perform context-
sensitive, flow-sensitive and interprocedural data-flow analysis
to locate them.

Offloadable Code Grouping: In theory, all statements
other than the non-offloadable ones are offloadable. How-
ever, to maintain the original program logic, we group those
offloadable code statements into a number of code regions
without breaking the original control-flow. At the same time,
we keep the code regions as large as possible to minimize
instrumentation and communication overhead.

Pre-filtering: We also perform pre-filtering to figure out
which code regions actually contain heavy computation and
can potentially bring performance gain if offloaded. This pro-
cess is necessary to ensure runtime performance and minimize
the app size increase introduced by instrumentation.

B. Instrumentation & Offloading

Based on dataflow analysis, we create an offloaded Java
class for a target program. We also instrument the original
program, so that it can dynamically choose to execute the
offloaded code or its corresponding local copy, according to
the runtime performance measurement.

Offloaded Java Class: We first make a copy of the
offloadable code regions in the app. Then, each copied code
region is formed into one RPC (i.e. remote procedural call)
method. In the end, all the RPC methods are encapsulated
into one dummy class, which is deployed on the cloud side.
To minimize data transmission, we perform points-to analysis
to discover only the necessary data for execution.

Instrumentation: We then instrument the original program
by inserting decision making code and remote procedural calls.
For each offloaded RPC method, we locate its counterpart in
the local code, introduce a method call to decide whether to
run this local copy or the remote one and insert a conditional
statement which checks the return value of the decision
making method. Depending on this return value, it may jump
to one of the two target branches. The first branch is the
original local code and the second one is a call to the remote
code. To this end, we insert a call statement to invoke the

corresponding RPC method.

C. Cloud Side Deployment

We then push the dummy class generated during instrumen-
tation to server-side. This Java class contains all the offloaded
code regions as each one is an individual function. We choose
not to maintain a cloned Android VM because maintaining
such a VM involves heavy synchronization overhead. We use
RPC to communicate between mobile device and cloud.

D. Dynamic Decision Making Component

We create an Android service to make runtime decisions.
The decision making service runs in the background to
gather real-time system information periodically and make
decisions based on collected information. In order to invoke
this component, we instrument the app at the beginning of
each offloadable code region to send an intent to the service
and receive the offloading decision at runtime.

III. PRELIMINARY RESULTS

We evaluate our system with two Android applications. The
result shows that our system can effectively boost runtime
performance and reduce battery consumption while preserving
privacy. As shown in Figure 2, response times for the two apps
are reduced by 25.5% and 53.8% respectively. As depicted
in Figure 3, power consumption for the two apps decreases
from 81.7J and 70.7J to 68.7J and 43.4J, resulting in reduce
rates of 15.9% and 38.7% respectively. We also evaluate the
sizes of our instrumentation code. Figure 4 shows that the
sizes of apps before and after instrumentation are almost the
same with negligible increases around 0.4% and 0.8%. This
means storage on mobile devices will not be affected by our
offloading technique.

REFERENCES

[1] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services. ACM, 2010, pp. 49–62.

[2] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proceedings of
the sixth conference on Computer systems. ACM, 2011, pp. 301–314.

[3] M. Al-Mutawa and S. Mishra, “Data partitioning: An approach to
preserving data privacy in computation offload in pervasive computing
systems,” in Proceedings of the 10th ACM Symposium on QoS and
Security for Wireless and Mobile Networks, 2014.

[4] O. Arden, M. George, J. Liu, K. Vikram, A. Askarov, and A. Myers,
“Sharing mobile code securely with information flow control,” in Security
and Privacy (SP), 2012 IEEE Symposium on, 2012.

2


	Introduction
	Design & Implementation
	Static Analysis
	Instrumentation & Offloading
	Cloud Side Deployment
	Dynamic Decision Making Component

	Preliminary Results
	References

