Poster: Automatic Dissection of JavaScript Exploits
through Dynamic JS-Binary Analysis

Xunchao Hu, Aravind Prakash, Jinghan Wang, Rundong Zhou and Heng Yin
Department of EECS, Syracuse University, Syracuse, New York, USA
Email: {xhu31, arprakas, jwang153, rzhou02, heyin}@syr.edu

I. INTRODUCTION

JavaScript exploits impose a severe threat to the computer
security. Attacks in browsers, as well as JavaScript embedded
within malicious PDFs and Flash documents, are common
examples of how attackers launch attacks using JavaScript.
A special type of attack called “drive-by-download” makes
extensive use of JavaScript and is a major source of infections
on the web.

Once a zero-day exploit is captured, it is critical to quickly
pinpoint the JavaScript statements that uniquely characterize
the exploit and the payload location in the exploit. However,
the current diagnosis techniques are inadequate because they
approach the problem either from a JavaScript perspective and
fail to account for “implicit” data flow invisible at JavaScript
level, or from a binary execution perspective and fail to present
the JavaScript level view of exploit.

In this poster, we present JScalpel, a framework that
combines JavaScript and binary level analyses to analyze
exploits. It stems from the observation that seemingly complex
and irregular JavaScript statements in an exploit often exhibit
strong data dependencies in the binary. JScalpel utilizes
the JavaScript context information from the JavaScript level
to perform context-aware binary analysis. Further, it lever-
ages binary analysis to account for implicit JavaScript level
dependencies arising due to side effects at the binary level.
In essence, it performs JavaScript and binary, or JS-Binary
analysis. Given a JavaScript exploit, our framework performs
JS-Binary analysis to: (1) generate a minimized exploit script,
which in turn helps to generate a signature for the exploit, and
(2) precisely locate the payload within the exploit. It replaces
the malicious payload with a friendly payload and generates
a PoV for the exploit.

II. OVERVIEW
A. Problem Statement

We aim to develop JScalpel— a framework to combine
JavaScript and binary analyses to aid in analysis of memory
corruption exploits.

Input: JScalpel accepts a raw exploit and a vulnerable
program as input. The exploit consists of HTML and mali-
cious JavaScript components. The exploit can be obfuscated
or encrypted. JScalpel makes no assumptions about the
nature of payloads. That is, the payload could be ROP-only,
executable-only or combined.

Output: JScalpel performs JS-Binary tracing and slicing
and generates 3 specific outputs. (1) A simplified exploit
HTML that contains the key JavaScript statements that are re-
quired to accomplish the exploit, and (2) the precise JavaScript
statements that inject the payload into the vulnerable process’
memory along with the exact payload string within the
JavaScript. Finally, (3) an HTML page, where the malicious
payload is replaced by a benign payload is generated as a
Proof-of-Vulnerability (PoV).

B. JScalpel- Overview

Figure |I| presents the architecture of JScalpel, which
leverages Virtual Machine Monitor (VMM) based analysis. It
consists of the following 4 key components.

a) Multi-level Tracing: In order to perform effective
analysis of script based attacks, it is essential to not only
observe the program execution at a script level, but also
comprehend the corresponding effects at a binary level. The
vulnerable program is exploited within the VM. Meanwhile, a
JavaScript trace is gathered within the victim process’ context
using JavaScript debugger interface. The JavaScript tracer
selectively turns the binary tracer on such that the binary trace
precisely captures the instructions that are executed within the
context of the currently executing JavaScript statement.

b) Exploit and Payload Detection: JScalpel uses a
CFI component to detect exploits. Specifically, the execution
is monitored and when an exploit is detected, the corrupted
pointer is noted as a slicing-source for exploit simplification.
This source is the entry point for exploitation. Next, the exploit
is allowed to continue and successive violations are noted.
Each violation occurs due to execution of a ROP-gadget and
serves as a separate slicing-source for non-executable payload.
If at some point, memory allocated by the process is executed,
the entry point is noted as the slicing-source for executable
payload entry point.

¢) Multi-level Slicing: Multi-level slicing comprises of
binary- and JavaScript-level slicing. First, starting from each
of the slicing sources identified by the CFI module, the trace
is sliced to obtain key binary instructions. From the context
information obtained from the JavaScript tracer, the JavaScript
statements corresponding to the binary instructions are re-
trieved. These JavaScript statements form the slicing-sources
for JavaScript slicing. Next, backward slicing is performed
at the JavaScript-level to generate the simplified script. To
ensure that the simplified script is functional, both control- and

WML +38 | 2 o JavaScript
: @ oD
Attack Script EXPLOIT 52 Trace
o Q
@
Browser

Exploit & Payload Detector |

JS-Binary Trace

Penetration
Test Case

Semantics-Preserving
Multi-level Slicing

Minimized

Binary Slicing

DECAF

Sources Exploit

Fig. 1: Architecture of JScalpel

TABLE I: Exploit Analysis Results

Unique # JS slicing sources # Stmts from | Can Stmts from | # Stmts from | Are exploit- Size red-
CVE JS f . .| JS analysis JS-only analysis | JS-Binary semantics .
rom binary analysis . uction

stmts only cause crash? analysis preserved?
2009-0075 30 9 6 v 17 v 43.3%
2010-0249 45 3 6 X 19 v 57.7%
2010-0806 803 2 10 v 10 v 98.8%
2010-3962 105 1 1 v 1 v 99%
2011-1255 97 40 1 X 16 v 83.5%
2012-1876 67 32 1 X 30 v 55.2%
2012-1889 77 1 2 v 2 v 97.4%
2012-4969 117 16 1 X 8 v 93.2%
2013-3163 43 9 1 X 13 v 69.8%
2013-3897 187 26 1 X 41 v 78.1%

data-dependencies are taken into account while performing
the JavaScript-level slicing. Furthermore, the slicing can also
identify the string payload and segregate the payload into non-
executable and executable payloads.

d) Generating Minimized Exploit and Proof-of-
Vulnerability (PoV): The JavaScript level slice readily
yields the simplified script for a given source. Therefore,
simplified exploit and the payload injecting statements are the
slices corresponding to slice source from first CFI violation
and payload-related slice-sources respectively. The HTML
code is extracted from the original exploit HTML page and
repackaged along with the simplified exploit.

Payloads are often encoded within strings in an exploit. The
runtime value during decryption can be compared against the
payload content identified by the CFI module. This yields the
exact offsets of non-executable and executable payloads within
the string. The executable payload is replaced by a benign
payload to generate the PoV.

III. IMPLEMENTATION & EVALUATION

We implemented JScalpel prototype on top of DECAF
[2. The code comprises of 890 lines of Python, 2300 lines
of Java and 4000 lines of C++ code. Table [I] presents the
evaluation of JScalpel on a corpus of 10 exploits, 9 from
Metasploit [1] and 1 wild exploit. With pure JavaScript level
analysis, only 4 of 10 exploits can be minimized and generate
functional exploits . However, with our new JS-Binary analysis

technique, we were able to minimize the exploit-specific state-
ments by about 77.6% on average, and precisely identify the
payload, in a semantics-preserving manner, meaning that the
minimized exploits are still functional. In each of the exploits
tested, we replaced the payload and generated a Metasploit
test case.

IV. CONCLUSION

We presented JScalpel, a framework that combines
JavaScript and binary analyses to analyze JavaScript exploits.
Our multi-level tracing bridges the semantic gap between
JavaScript level and binary level to perform dynamic JS-
Binary analysis. By performing multi-level slicing from the
sources identified by CFI violation, JScalpel is able to
determine the payload injection and exploitation statements
of the JavaScript exploits. We analyze 9 recent memory
corruption exploits from Metasploit and 1 exploit from the
wild and successfully recover the payload and a minimized
exploit for each of the exploits.

REFERENCES

[1] Metasploit: Penetration testing software. http://www.metasploit.com/.

[2] HENDERSON, A., PRAKASH, A., YAN, L. K., Hu, X., WANG, X.,
ZHOU, R., AND YIN, H. Make it work, make it right, make it fast:
Building a platform-neutral whole-system dynamic binary analysis plat-
form. In Proceedings of the 2014 International Symposium on Software
Testing and Analysis (New York, NY, USA, 2014), ISSTA 2014, ACM,
pp. 248-258.

	Introduction
	Overview
	Problem Statement
	JScalpel– Overview

	Implementation & Evaluation
	Conclusion

