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Abstract—Control-flow hijack attacks remain a major security
problem, despite many years of research aimed at mitigating
them. Code-Pointer Integrity (CPI) [2] is the first protection
mechanism that systematically prevents all such attacks while
keeping performance overhead low. In the upcoming S&P’15
paper, Evans et al. [1] claim that CPI can be bypassed on x86-64
and ARM architectures. This poster is a clarifying response to
the claims in [1] that CPI as a whole has a security weakness.

The CPI property by itself is secure as shown by a formal
correctness proof [2]. Bugs or weaknesses in specific CPI imple-
mentations can lead to security weaknesses. We discuss different
implementation alternatives, analyze their security guarantees
and performance implications, and demonstrate that the attack
presented in [1] is only effective against the simplest proof-of-
concept implementation of CPI. The presented attack cannot
subvert the other implementation alternatives, e.g., the ones using
hardware-enforced segmentation or software fault isolation.

I. CODE-POINTER INTEGRITY
Code-Pointer Integrity (CPI) [2] is a protection mechanism

that prevents all control-flow hijack attacks that are caused
by memory corruption errors with low performance overhead.
CPI instruments C/C++ programs at compile time, enforcing
precise memory safety for all direct and indirect pointers to
code in a program, which ensures the above security guarantee.
CPI comes with a proof of correctness outlined in [2]. Code-
Pointer Separation (CPS) is a simplified version of CPI that
provides practical protection against most control-flow hijack
attacks by ensuring the integrity of direct pointers to code
only. The performance overhead of our CPI implementation
on SPEC2006 benchmarks is 8.4% on average, while the
performance overhead of CPS is 1.9% on average.

CPI achieves low performance overhead by limiting mem-
ory safety enforcement to sensitive pointers only (i.e., direct
or indirect pointers to code). The key idea is to split program
memory into two isolated regions: the safe region stores all
sensitive pointers, and the regular region stores everything else.
CPI uses static analysis to identify program instructions that
may access the safe region, and instruments them with memory
safety checks. CPI employs instruction-level isolation in order
to prevent all other instructions from accessing the safe region,
even if hijacked by the attacker. In order to avoid changing the
memory layout of the regular region, CPI reserves the locations
normally occupied by sensitive pointers in the regular region
and, in the safe region, it maintains a map from the addresses
of these reserved locations to pointer values and corresponding
metadata required for memory safety checks.

An implementation of CPI or CPS consists of (i) a static
analysis pass that splits all memory accesses in a program into
those that may access sensitive pointers and those that cannot,
(ii) an instrumentation pass that instruments all accesses that
might access sensitive pointers to use the safe region and

inserts runtime checks that enforce memory safety of these
accesses, and (iii) an instruction-level isolation mechanism that
prevents all memory accesses that are not instrumented with
memory safety checks from ever accessing the safe region,
even if a memory access is compromised by an attacker. This
poster focuses on the third step, as do Evans et al. [1].

We implemented and presented in [2] multiple mechanisms
that efficiently enforce instruction-level isolation using either
hardware-enforced segmentation, software fault isolation, or
randomization and information hiding. The security guaran-
tees and performance implications of these mechanisms are
summarized in Table I, we discuss them in detail below. We
focus on design choices behind each mechanism and ignore
potential non-design bugs in the prototypes we released.

The attack in [1] focuses on one of these mechanisms,
namely the one based on information hiding, and it is only
effective against its simplest proof-of-concept implementation.

A. Hardware-Enforced Segmentation Based Implementation
On architectures that support hardware-enforced segmenta-

tion, CPI uses this feature directly to enforce instruction-level
isolation. In such implementations, CPI dedicates a segment
register to point to the safe memory region, and it enforces, at
compile time, that only instructions instrumented with memory
safety checks use this segment register. CPI configures all
other segment registers, which are used by non-instrumented
instructions, to prevent all accesses to the safe region through
these segment registers on the hardware level.

Hardware-enforced segmentation is supported on x86-32
CPUs, but also on some x86-64 CPUs (see the Long Mode
Segment Limit Enable flag), which demonstrates that adding
segmentation to x86-64 CPUs is feasible, provided the tech-
niques that could benefit from it prove to be indeed valuable.

This implementation of CPI is precise and imposes zero
performance overhead on instructions that do not access sen-
sitive pointers. It is not vulnerable to the attack in [1].

B. Software Fault Isolation Based Implementation
On architectures where hardware-enforced segmentation is

not available (e.g., ARM and most of the x86-64 CPUs), the
instruction-level isolation can be enforced using lightweight

Security Overhead
CPI CPS CPI CPS

Hardware segmentation precise 8.4% 1.9%
Software fault isolation precise 13.8% 7.0%
Information hiding

- hashtable 16.6 20.7 9.7% 2.2%
- lookup table 15 17 8.9% 2.0%
- linear table 5 7 8.4% 1.9%

TABLE I. SECURITY GUARANTEES (EITHER PRECISE OR NUMBER OF
ENTROPY BITS) AND PERFORMANCE OVERHEAD (AVERAGE ON

SPEC2006) OF VARIOUS IMPLEMENTATIONS OF CPI/CPS



software fault isolation (SFI). In our implementation, we align
the safe region in memory so that enforcing a pointer to not
alias with it can be done with a single bitmask operation
(unlike more heavyweight SFI solutions, which typically add
extra memory accesses and/or branches for each memory
access in a program). Furthermore, accesses to the safe stack
need not be instrumented, as they are guaranteed to be safe [2].

Our SFI-based implementation of CPI is precise, and SFI
increases the overhead by less then 5% relative to hardware-
enforced segmentation. It is not vulnerable to the attack in [1].

C. Information-Hiding Based Implementation
Another way to implement instruction-level isolation is

based on randomization and information hiding. Such imple-
mentations exploit the guarantee of the CPI instrumentation
that, in a CPI-instrumented program, no pointers into the
safe region are ever stored outside of the safe region itself.
When the base location of the safe region is randomized,
the above guarantee implies that the attacker has to resort to
random guessing in order to find the safe region, even in the
presence of an arbitrary memory read vulnerability. On 64-bit
architectures, most of the address space is unmapped and so,
most of the failed guesses result in a crash. Such crashes, if
frequent enough, can be detected by other means.

The actual expected number of crashes required to find the
location of the safe region by random guessing is determined
by the size of the safe region and the size of the address space.
Today’s mainstream x86-64 CPUs provide 248 bytes address
space (while the architecture itself envisions future extensions
up to 264 bytes). Half of the address space is usually occupied
by the OS kernel, which leaves 247 bytes for applications.

As explained above, the safe region stores a map that,
for each sensitive pointer, maps the location that the pointer
would occupy in the memory of a non-instrumented program
to a tuple of the pointer value and its metadata. On 64-bit
CPUs, each entry of this map occupies 32 bytes and, due to
pointer alignment requirements, represents 8 bytes of program
memory. The expected number of entries depends on the
program memory usage, the fraction of sensitive pointers, and
the data structure that is used to store this map.

We released three versions of our information-hiding based
CPI implementation that use either a hashtable, a two-level
lookup table, or a linear table to organize the safe region [2].
We estimate the size of the safe region and the expected
number of crashes required to find its location for each of the
versions below. For the purpose of this estimation, we assume
a program uses 1GB of memory, 8% of which stores sensitive
pointers (which is consistent with the experimental evaluation
in [2]), which amounts to 1GByte × 8% / 8 bytes ≈ 223.4

sensitive pointers in total.
Hashtable This implementation is based on a linearly-

probed lookup table with a bitmask-and-shift based hash func-
tion, which, due to sparsity of sensitive pointers in program
memory, performs well with load factors of up to 0.5. Conser-
vatively assuming a load factor of 0.25, the hashtable would
occupy 223.4/0.25×32 = 230.4 bytes of memory. Randomizing
the hashtable location can provide up to 47−30.4 = 16.6 bits
of entropy, requiring 215.6 ≈ 51, 000 crashes on average to
guess it. In most systems, that many crashes can be detected
externally, making the attack infeasible.

Two-level lookup table This implementation organizes the
safe region similar to page tables, using the higher 23 bits

of the address as an index in the directory, and the lower
22 bits as an index in a subtable (the lowest 3 bits are
zero due to alignment). Each subtable takes 32 × 222 bytes
and describes a 8 × 222 bytes region of the address space.
Assuming sensitive pointers are uniformly distributed across
the 1GB of continuous program memory, CPI will allocate
1GByte/(8 × 222) × 32 × 222 = 232 bytes for the subtables.
Randomizing the subtables locations gives 47−32 = 15 bits of
entropy, requiring 214 crashes on average to guess. Note that
the attacker will find a random one among multiple subtables,
and finding usable code pointers in it requires further guessing.
This attack is thus also infeasible in many practical cases.

Linear table This simple implementation allocates a fixed-
size region of 242 bytes for the safe region that maps addresses
linearly. This implementation would give only 47−42 = 5 bits
of entropy. The location of the linear table in this implementa-
tion can be guessed while causing only 16 crashes on average.

Code-Pointer Separation, unlike full CPI, does not require
any metadata and has fewer sensitive pointers (by 8.5× on
average [2]). This increases the number of expected crashes
by 17× for the hashtable-based implementation, and by 4×
for the other two implementations.

The information-hiding-based implementation of CPI that
uses a hashtable to organize the safe region provides proba-
bilistic security guarantees with 216.6 bits of entropy (or 220.7
for CPS). The attack in [1] would cause ≈ 51, 000 crashes
(or ≈ 867, 000 for CPS) on average before the location of the
safe region is detected and the attack succeeds. We believe that
this number of crashes, especially given the uniform pattern of
these crashes, can be detected automatically by external means.

In our evaluations, all three versions of information-hiding-
based implementation have performance overhead comparable
to the hardware-enforced segmentation.

II. THE ATTACK ON CPI’S SIMPLEST IMPLEMENTATION
Evans et al. [1] present an attack against a CPI imple-

mentation based on information hiding that uses a linear
table to organize the safe memory region, one of the five
implementations of CPI described above. The attack is based
on a remote side channel information leak vulnerability in the
nginx web server that enables an attacker to remotely read
arbitrary locations in nginx memory with high confidence.
The attack first uses this arbitrary memory read capability in
order to probe program memory and locate the safe region,
exploiting a limitation of the proof-of-concept implementation
of CPI to further reduce the number of crashes below 16.
Once the address of the safe memory region is known, the
attack employs another memory write vulnerability in order to
overwrite the value of a sensitive pointer directly in the safe
region, which is not detected by CPI.

As discussed in the previous section, this attack is only
effective against the simplest of the CPI implementations out-
lined in Table I. We believe that the security of CPI as a whole
is not weakened by the existence of this attack, and discourag-
ing wide use of CPI would be a disservice to the community.

REFERENCES
[1] Isaac Evans, Sam Fingeret, Julián González, Ulziibayar Otgonbaatar,
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