
Poster: Comparative Evaluation of the Effectiveness of Constraint Solvers
against Opaque Conditionals

Fabrizio Biondi

ESTASYS Team
INRIA/IRISA (France)
fabrizio.biondi@inria.fr

Sébastien Josse

DGA (French Ministry of Defense)
sebastien.josse@polytechnique.edu

Axel Legay

ESTASYS Team
INRIA/IRISA (France)

axel.legay@inria.fr

Software protection against reverse engineering has become a
subject of interest for security researchers. Obfuscation
transformations are designed to increase the cost of information
extraction. We note that the analysis of obfuscated code is
hampered by the presence of opaque conditionals, that is to say
expressions conditioning connections to different execution paths
of the program. These expressions are opaque to the extent that it
is difficult for an analyst to determine their values. As a
consequence, the analyst is unable to extract manually or
statically a relevant representation of the program, starting with
the control flow graph. It is therefore necessary to execute
(concretely or symbolically) the program to determine the values
of these expressions.

Symbolic and concrete/symbolic analyses use constraint
solvers (SMT solvers) to decide the truth value of an expression
conditioning a branch in the target code. We note that the
effectiveness of these solvers against such obfuscation
mechanisms has little been studied. Many techniques for hiding
both data and control flow have been proposed, along with
evidence of their resilience against static analysis. Experience
shows that many of them do not provide acceptable security
when assessed by analysts in the real world, using a conjunction
of static, symbolic and dynamic analysis tools.

We illustrate this problem by studying a candidate method
[ZMGJ07, JXZ08] to generate opaque conditionals. Authors of
this (patented) method claim that “Such transforms resist reverse
engineering with existing advanced tools and create NP-hard
problems for the attacker”. In particular, they assess the
robustness of these opaque constraints against some well known
computer algebra systems (Maple and Mathematica).

We propose to compare the effectiveness of several tools
(including computer algebra system, several SMT solvers and a
dynamic synthesis method) against such opaque conditionals, to
evaluate their limitations and define areas for improvement.

1. MBA-based obfuscation

1.1. Mixed Boolean Arithmetic

Authors of [ZMGJ07] propose a general obfuscation
method to hide information (secret constants, intermediate
values, algorithms) in software, based on mixed mode
computation over Boolean-arithmetic algebras (MBA) and
on invertible polynomial functions over Z/(2n). Both the
polynomial and its inverse must be of limited degree so
that polynomial code transformations are efficient.

1.2. MBA constraints generation

Let us give an example of application of the method
given in [ZMGJ07]. Consider the following conditional to
be obfuscated:
if (IN == 0x87654321)

..
else

..

Using the two linear MBA identities:
2y = -2*(x|(-y-1))-((-2x-1)|(-2y - 1)) - 3;
x + y =(x ^ y) - ((-2x - 1)|(-2y - 1)) - 1;

and one invertible polynomial transform:
F(x) = 727318528x*x + 3506639707*x + 6132886

The following opaque constraint is generated:
a = x*(x1 | 3749240069);
b = x*((-2*x1 - 1) | 3203512843);
d = ((235810187*x + 281909696 - x2) ^ (2424056794 +
x2));
e = ((3823346922*x + 3731147903 + 2*x2) | (3741821003 +
4294967294*x2));
f = 4159134852*e + 272908530*a + 409362795*x +
136454265*b+ 2284837645 + 415760384*a*a +
415760384*a*b+1247281152*a*x+ 2816475136*a*d
+1478492160*a*e+3325165568*b*b+2771124224*b*x+1408237568
*b*d+2886729728*b*e+4156686336*x*x
+4224712704*x*d+70254592*x*e+1428160512*d*d +
1438646272*d*e+1428160512*e*e+135832444*d;
if (IN == f)

..
else

..

The output value of f is always the constant K =

0x87654321 regardless of values in x, x1 and x2 because:
F-1(4076439043*MBA1 + 859287276*MBA2 + F(K)) = F-1(F(K))
= K

2. Evaluation

We investigate in this section:
- the possibilities given by computer algebra systems to

simplify the MBA-based opaque conditional described
in section 1

- the behavior of several SMT solvers against randomly
generated MBA-based opaque conditionals.

- the possibilities given by a hybrid dynamic-symbolic
approach, especially crafted to simplify such obfuscated
constraints.

2.1. Robustness against Computer Algebra Systems

Let us observe that even if computer algebra systems
may encounter some problem to simplify the above
formula, such a construction can be recognized, analyzed
and simplified manually, by first factoring the resulting
multivariate polynomial, thus identifying the polynomial
F, then calculating F-1 and extracting MBA1 and MBA2

before finding back F-1(F(K)) = K.

2.2. Robustness against SMT solvers

We use the LLVM [LA04] compilation framework to
implement the MBA-based obfuscation transformations.

To evaluate the effectiveness of constraints solvers
against MBA-based opaque conditionals, we use the
KLEE symbolic execution engine and the multi-solver
support in KLEE provided by the MetaSMT framework.

We use the STP, Z3 and Boolector SMT solvers for the
quantifier-free theory of bit-vectors, in combination with
the quantifier-free extensional theory of array. The logic
QF_AUFBV extends QF_BV (quantifier-free fixed size
bit-vectors) with arrays, arbitrary sorts and function
symbols. Experiments are conducted on a Intel Core i5
1.60-2.30 GHz.

The following figure gives the time (in seconds)
required to analyze randomly generated MBA-based
opaque constraints, for MBA expressions of 16 variables
and polynomials of degree 2, 3, 4 and 5.

 0

 100

 200

 300

 400

 500

2 3 4 5

MBA-based opaque constraints analysis time (in seconds)

klee-stp
stp
z3

btor

The following figure gives the average number of
constructions per (solver) query and the total LLVM
instructions for MBA expressions of 16 variables and
polynomials of degree 2, 3, 4 and 5 over integers of size
32 and 64 bits.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

2 3 4 5

Average constructs per query and total instructions

32_avg
32_total
64_avg
64_total

The number of coefficients in the Newton’s
multinomial formula explains the instruction number
growth with the polynomial’s degree1.

2.3. Robustness against dynamic synthesis

Several methods have been applied to extract
dynamically a compact representation from an opaque
constraint, modeled as the combination of affine and non-

1
Complexity (d+m)!/(d!m!) is the number of distinct m-tuples of

non-negative integers, whose sum is lesser or equal d, where d is the
degree of the polynomial and m the number of bit-vectors. Here, m = 16
and d = 2,..,5.

linear layers. From this representation we can efficiently
synthesize a compact formula, easier to analyze manually.

Several works take advantage of concrete tests to
improve symbolic execution efficiency (this is called
concolic execution, that is to say, both concrete and
symbolic). However, our method has not (in our
knowledge) been investigated against opaque conditionals
and never used to drive concolic execution.

2.4. Preliminary results and future work

The approach described in section 2.1 is efficient
against the MBA multinomial example given in section 1.2
but is in our opinion not generic enough.

From experiments given in section 2.2, we observe that
the 3 solvers are not equally competitive against MBA-
based opaque conditionals. We also observe that the
complexity of the analysis grows with the complexity of
the resulting formula (and its size!). Lastly, the size of the
ring Z/(2n) has a low impact.

Symbolic execution appears to be an efficient angle of
attack for these opaque constraints. However, we infer
from these preliminary results that there is still room for
improvement against such obfuscation transformation. It is
planned to compensate the observed limitations of
symbolic execution engines against opaque conditionals
by the realization of a specialized solver, taking advantage
from concrete executions of the target function.

The idea is to modify the usual concolic strategy to
enable compact representations of the opaque constraints,
more synthetic and easy to read. In addition, the simplified
constraint may be possibly easier to solve. We make the
conjecture that such an approach may be applied to a large
class of opaque constraints (in addition of the MBA-based
obfuscation transformation).

3. References

[Bru09] Robert Daniel Brummayer, “Boolector: An Efficient SMT
Solver for Bit-Vectors and Arrays”, in 15th TACAS International
Conference, pp 22-29, 2009.

[CDE08] Cristian Cadar and Daniel Dunbar and Dawson Engler, “KLEE:
Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs”, 2008.

[HFF+11] Finn Haedicke and Stefan Frehse and Görschwin Fey and
Daniel Große and Rolf Drechsler, “metaSMT: Focus On Your
Application Not On Solver Integration”, 2011.

[LA04] C. Lattner and V. Adve, “LLVM: a compilation framework for
lifelong program analysis & transformation”, in International Symposium
on Code Generation and Optimization, pp. 75--86, 2004.

[ZMGJ07] Yongxin Zhou and Alec Main and Yuan Xiang Gu and Harold
Johnson, “Information Hiding in Software with Mixed Boolean-
Arithmetic Transforms”, 2007.

[JXZ08] Harold Johnson and Yuan Xiang Gu and Yongxin Zhou,
“System and method of interlocking to protect software-mediated
program and device behavior”, US Patent, 2008.

