
Poster: A Symbolic Logic with Concrete Bounds
for Cryptographic Protocols

Anupam Datta∗, Joseph Y. Halpern†, John C. Mitchell‡, Arnab Roy§ and Shayak Sen∗
∗Carnegie Mellon University, Pittsburgh, USA

{danupam,shayaks}@cmu.edu
†Cornell University, Ithaca, USA

halpern@cornell.edu
‡Stanford University, Stanford, USA

mitchell@stanford.edu
§Fujitsu Research, Sunnyvale, USA

arnabr@gmail.com

I. INTRODUCTION

Large and complex cryptographic protocols form the back-
bone of internet security today. A lot of attention has focused
on developing formal reasoning principles for proving the cor-
rectness of cryptographic protocols ([1], [2], [3], [4]). Formal
techniques for proving correctness of cryptographic protocols
have largely focused on the asymptotic computational model,
where security guarantees are violated with atmost some
negligible probability, given that keys chosen are long enough,
and the adversary’s runtime is bounded by some polynomial. A
concrete probability, key length or polynomial is not specified.
However, at the scale of the internet, protocols use keys to
communicate with millions of agents over extended periods
of time, with increasingly powerful adversaries attempting
to break them. In this scenario, evaluating security in a
quantitative sense with respect to key lengths and adversary
runtimes is critical. Concrete security is a practice-oriented
approach to cryptography that requires that proofs of a security
property be accompanied by a concrete probability with which
the property is false.

In this paper, we present Quantitative Protocol Composition
Logic (QPCL), a new program logic for reasoning about
concrete bounds of the security of cryptographic protocols.
QPCL allows reasoning about concrete probability bounds in
a computational model of cryptography. A typical assertion
in QPCL is a concrete security statement of the form Bε(ϕ),
where ϕ is temporal trace formula that represents a security
property of the execution of a protocol in the presence of
probabilistic polynomial time adversary, and ε is a probability
that is a function of η, the the security parameter governing the
length of keys and nonces, and t, the concrete runtime of the
adversary.1 This assertion is true if ϕ holds with probability
at least 1− ε(η, t). Typically, ε also depends on functions that
represent the probability of an adversary violating the security
of the specific cryptographic primitives used in a protocol.

QPCL assertions are interpreted over traces generated by
a simple probabilistic, concurrent programming language ex-

1ε has other parameters as well, which we omit here.

ecuting in the presence of an adversary. The operational se-
mantics of the programming language allows reasoning about
concrete probabilities and runtimes of traces. Importantly, the
adversary’s program is allowed to be any program that runs
in polynomial time, therefore allowing the soundness proofs
of our logic to be valid in a computational model.

Rules for reasoning in QPCL’s proof system can be broadly
categorized into the following forms: (1) axioms about cryp-
tographic primitives, (2) invariants and postconditions of pro-
tocol programs, (3) first-order probabilistic belief assertions,
and (4) temporal ordering of events.

QPCL axioms about cryptographic primitives such as signa-
ture schemes and pseudorandom-number generators introduce
a probabilistic error bound. These axioms have formal sound-
ness proofs that show whenever an axiom is false on a trace,
an attack on the corresponding primitive can be constructed.
Therefore, these probabilistic error bounds are closely related
to the security of the underlying primitive.

To prove invariants and postconditions of protocol pro-
grams, we borrow the syntax and style of reasoning from
Protocol Composition Logic (PCL) [5], a formal logic for
stating and proving security properties of network protocols,
which has been used to prove properties of protocols such as
SSL/TLS, IEEE 802.11i (WPA2), and extensions of Kerberos.
The Hoare Logic style assertion ϕ1[P ]Xϕ2 is used to state
pre/post-conditions about program fragments. Additionally, we
have a rule to lift local reasoning about program fragments to
global invariants about traces. An interesting consequence of
placing concrete runtime bounds on traces is that all programs
terminate when the runtime bound has elapsed, so global
invariants can never mention events in the future, resulting
in all assertions provable in QPCL being safety properties.

We reason about probabilistic belief in QPCL using an
approach introduced by Halpern [6], which in turn is based
on the ε-semantics of Goldszmidt, Morris, and Pearl [7].
Halpern’s logic has a binary operator →ε, where, roughly
speaking, ψ →ε ϕ means that the conditional probability
of ϕ given ψ is at least 1 − ε. Bε(ϕ) is an abbreviation of
true→ε ϕ. In our setting, the uncertainty ε is not a constant,



but a function of the security parameter η, the adversary’s
runtime t. Traces generated by protocol programs serve as
an instance of the more general semantic models of Halpern,
allowing us to embed the sound and complete proof system
from [6] into our logic.

We illustrate the use of the QPCL reasoning principles
by proving a “matching-conversations” property for a simple
initiator-responder protocol, which states that the precise order
in which messages are sent and received by the participants
of the protocol cannot be altered by an adversary.

II. OVERVIEW OF THE FORMAL SYSTEM

QPCL is a probabilistic program logic with concrete se-
curity bounds for temporal trace properties of cryptographic
protocols. A concrete security bound on an assertion in our
logic expresses the probability with which a computationally
constrained adversary can violate the assertion in terms of the
length of keys, the runtime of the adversary and the number
of concurrent sessions of the protocol.

A. Programming Model

The models on which the logic is interpreted are traces gen-
erated by a simple protocol programming language executing
in the presence of an adversary. The requirements of the logic
neccessitate some features of the operational semantics of the
protocol programming language, as the operational semantics
defines how traces are generated from protocol programs
interacting in the presence of an adversary. We now motivate
some of these features.

• Concrete Runtime. Reasoning about concrete runtime re-
quires accounting for the runtime of every computation in
an execution. This runtime includes that of the adversary
as well protocol programs. The operational semantics
is defined by a transition system where transitions are
labeled by these runtime costs.

• Concrete Probabilities. Computing probabilistic bounds
requires considering probabilities of sets of traces. The
transition system is probabilistic and the probabilistic
branches induce an execution tree, where each path in
the tree is an execution trace. We use the tree to compute
the relevant probabilities.

• Computational completeness. For proofs to be valid in
a computational model, we cannot restrict the adversary
to a symbolic model. However, modeling the adversary
explicitly in a Turing complete language makes the lan-
guage very complicated. For proofs of security, which are
generally proofs via reduction to known hard problems, it
is possible to ignore the representation of the adversary.
Therefore, we do not explicitly restrict the adversary’s
program to a particular language, but reason only about
its input-output behavior.

• Concurrency and Adversarial Scheduling. Programs ex-
ecute concurrently; where the scheduler that switches
between programs is controlled by the adversary. The
scheduler is resource-constrained as well. The cost of the

computation required by the adversary to make schedul-
ing decision is accounted for in the runtime of a trace.

B. Logic and Proof System

QPCL allows declarative specifications of temporal trace
properties, and the proof system supports reasoning in a man-
ner very similar to first-order reasoning. Essentially, axioms
related to cryptography have error bounds associated with
them, and these error bounds are propagated throughout the
proof to derive a bound on the final assertion. To aid reasoning
about cryptographic protocols, QPCL supports the following
features:

• Temporal Trace Properties. Protocols, such as those
involving authentication, often require properties that
specify the precise order in which certain events occur.
To allow reasoning about properties such as message
ordering, QPCL supports temporal operators. Tradition-
ally, such properties are specified using games [1], which
imply that the security proofs typically involve the harder
task of proving equivalence of games.

• Concrete Security Bounds. Concrete security bounds on
assertions in QPCL depend on the protocol being rea-
soned about in a number of ways. First, protocols specify
the implementations of cryptographic primitives to be
used; these define the concrete bounds on the axioms
related to cryptography. Second, concrete bounds on
the cryptographic primitives usually also depend on the
number of queries made to the primitive, and to bound
this number on any particular trace, we use the number of
times the cryptographic primitive is called in a protocol.

• Safety Properties. Finally, since concrete security involves
computing the probability of a property being violated
as a function of the time available to the adversary, the
total runtime of a trace is bounded; traces end when the
total time elapsed is greater than the specified time bound.
Thus, we cannot talk about liveness properties (i.e., things
that will happen eventually happen) in QPCL.

REFERENCES

[1] M. Bellare and P. Rogaway, “Entity authentication and key distribution,”
in Advances in Cryprtology - Crypto ’93 Proceedings. Springer-Verlag,
1994, pp. 232–249.

[2] M. Bellare, R. Canetti, and H. Krawczyk, “A modular approach to the
design and analysis of authentication and key exchange protocols,” in
Proceedings of 30th Annual Symposium on the Theory of Computing.
ACM, 1998, pp. 419–428.

[3] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of
Computer and System Science, vol. 28, pp. 270–299, 1984.

[4] V. Shoup, “On formal models for secure key exchange (version 4),” IBM
Research, Tech. Rep. RZ 3120, 1999.

[5] A. Datta, J. Mitchell, A. Roy, and S. Stiller, “Protocol composition logic,”
In V. Cortier and S. Kremer (Editors), Formal Models and Techniques
for Analyzing Security Protocols, 2010, to be published by IOS Press.
http://www.andrew.cmu.edu/user/danupam/dmrs-pcl2010.pdf.

[6] J. Y. Halpern, “From qualitative to quantitative proofs of security prop-
erties using first-order conditional logic,” in Proc. Twenty-Third National
Conference on Artificial Intelligence (AAAI ’05), 2008, pp. 454–459.

[7] M. Goldszmidt, P. Morris, and J. Pearl, “A maximum entropy approach
to nonmonotonic reasoning,” IEEE Transactions of Pattern Analysis and
Machine Intelligence, vol. 15, no. 3, pp. 220–232, 1993.

http://www.andrew.cmu.edu/user/danupam/dmrs-pcl2010.pdf

	Introduction
	Overview of the Formal System
	Programming Model
	Logic and Proof System

	References

