
Poster: Classifying Downloaders

Yu Ding1, Liang Guo3,Chao Zhang2, Yulong Zhang2, Hui Xue2, Tao Wei2, Yuan Zhou3, Xinhui Han1
Peking University1, UC Berkeley2 , Beihang University3

{dingelish,greenpear1991,gausszhch,ansonzyl,huixue.uiuc,lenx.wei}@gmail.com, zhouyuantd@163.com, hanxinhui@pku.edu.cn

Abstract—Downloader plays an important role in malware
distribution, botnet construction and pay-per-install service.
Downloader fetches specified programs from remote server and
executes these programs under the attackers’ control. Analyzing
and classifying downloaders help us understand how downloaders
propagate and evolve, also alert the system administrators about
incoming attacks.

I. INTRODUCTION

Downloader is a software which fetches software from re-
mote server and executes the fetched files under the attackers’
control. Not only botnet constructors, also software download
sites, pay-per-install service providers utilize downloaders to
spread their software. Downloader is in people’s everyday life.
People need to carefully click the links, in case of download
malicious downloaders.

Analyzing downloader is different from analyzing tradi-
tional malware. It is because that downloader itself does not
perform malicious behavior, such as stealing privacy, install
backdoor etc. So behavior based malware analysis cannot
apply effectively on downloader analysis. Also, downloaders
are packed and encrypted in variety of ways. The packers and
the encryptors make it hard for static analysis. What’s more,
some downloaders detect VM and resist on VM based analysis.
This makes dynamic analysis harder and harder.

Previous researches on downloaders mainly focus on mal-
ware downloaders. Rossow et al. [1] characterizes malware
downloaders on network level. AMICO [2] refines this re-
search and shows more details about the traffic of malware
downloaders. Nazca [3] is a novel approach to identify web
requests related to malware downloads and installations. How-
ever these approaches characterize malware downloaders on
network level. There is no deep analysis of general downloader
binaries.

In this paper, we show DUST, our approach to automatically
detect downloaders and cluster the detected downloaders. The
input of DUST is binary files and the output is the cluster
which the binary belongs to. DUST can be deployed together
with gateway, which has the ability to collect executable binary
files from network traffic. To conclude, our contributions are:

• We first look into the analysis of binary analyzed down-
loader clustering.

• We design and build DUST. DUST is an automated
system which gets executables as input and output down-
loader cluster as result.

VM

User Space

Kernel Space

Downloader
Process

DUST
userspace

Process

DUST syscall hook

Cluster
Service

dumped
Code segment

Cluster
Database

Fig. 1. General Structure of DUST

II. SYSTEM DESIGN

Figure 1 shows the structure of DUST. DUST runs input
binaries in VMs and use system call hook at kernel level to
monitor the behavior of input binaries. The userspace DUST
process communicate with the kernel hook function and get
essential runtime information about the process of input binary.
Also, it judges whether the input binary is a downloader. If the
input binary is judged as a downloader, DUST rolls back the
VM and re-runs the binary. This time, the kernel level hook
monitors all network activities and dump process’ code section
after the downloader unpack itself. And then the kernel level
hook function passes the dumped code section to the user level
DUST process and finally to the cluster service. The cluster
service cluster the input code sections automatically and save
the cluster information into the cluster database. The first run
of input binary is called stage 1 and the second run of the
input binary is called stage 2. The cluster procedure is stage
3.

A. Stage 1: Detect Downloader

In the first stage, DUST judge whether the input binary is
a downloader. The name ‘downloader’ indicates that the input
binary should download something and then execute it. So in
the first stage, DUST judge whether the input binary acts out
as a downloader.

We utilize dynamic taint analysis technique to achieve this
goal. The taint source of this algorithm is incoming network
bytes. We mark the network incoming bytes as tainted during
the execution. The sink is file access API and process/thread
create API. On file write, we mark the file contains tainted data



as tainted file. On invoking CreateProcess series function,
we check if the executed binary is a tainted file. On invoking
CreateThread series function, we check if the code section
at the thread entry point is tainted. If any execution starts on
tainted bytes, DUST judges the input binary as downloader.

B. Stage 2: Unpack Downloader

In the first stage, the input binary is judged as downloader.
Then DUST rolls back the VM and executes the input binary
again to unpack it. In this stage, the kernel space hook function
plays an important role of deciding when the downloader
unpack itself. As is known to all, general unpack method is an
unsolved problem. Here we assume that the unpack process
does not access internet. The kernel system call hook function
traces every system call of the input binary process and pause
the process on first network access. Then it traces back the
stack and locates the code section. In the end, it saves the
code section (which invokes the network system call) to file
and pass it to the user space DUST process.

C. Stage 3: Clustering

In stage 3, the userspace DUST process gets the unpacked
code section and passes it to the cluster service. The cluster
service gathers a certain amount of input code section and use
a graph-based algorithm to cluster them.

III. DUST IMPLEMENTATION

The userspace DUST program for stage 1 is a dynamic taint
analyzer. We port libdft [4] to Windows platform as dftwin [5].
On invoking of NtDeviceIoControlFile function, we
check if it is a network input request. We mark the network
input bytes as tainted. Also we check all the file writes in
this system call and mark the written file which contains
tainted bytes as tainted. On invoking of NtCreateProcess
and NtCreateThread series of system call we check if
the executed binary/code section contains tainted data. The
system enters stage 2 if the user space DUST program detects
downloader behavior in 10 minutes.

In stage 2, the kernel space hook system call by
hooking SSDT table. It monitors every system call of
NtDeviceIoControlFile and pause the process of input
program on first network request. Then it traces back the user
stack and locates the code section and dump the code section.
The reason why we do not conduct such dump in stage 1 is
because PIN has a special memory model and dynamically
instrument codes in PIN code cache. We cannot precisely
locate the unpacked codes in the first stage.

In stage 3, DUST cluster the dumped code sections. The
cluster algorithm is based on CFG similarity calculation. The
algorithm has three steps: (1) gather information of all basic
blocks and functions, (2) create CFG for each function, (3)
cluster the gathered code sections by compare the CFGs.

In (1), DUST uses IDA pro to decompile the dumped code
section heuristically. Then it creates CFG for each dumped
code section. The CFG includes how the basic block connects
to each other in one function. Also the op code sequence in

one basic block is saved. DUST saves all basic blocks into BB
table in a database and indexes them using unique numbers.

In step (2), DUST creates CFG for each function. The CFG
is described in adjacency lists. Once a CFG is created, DUST
compares it with every CFG in CFG table in database by
calculating the graph similarity [6] between them. If the newly
generated CFG is different from all known CFGs, DUST
inserts it to the CFG table together with the id of its code
section. In such way, we create a table for all basic blocks
and another CFG table to save all the CFGs of functions.

After (1) and (2), we have CFGs for each function and we
index them by using code section id. In step (3), we compare
the similarity between each pair of code sections. We use
Jaccard index to evaluate the similarity of two code sections
and create clusters.

IV. PRELIMINARY RESULTS

We collect 49732 binaries from a network gateway and
detect 1161 of them performs downloader behavior (execute
after download). The cluster service clusters the dumped code
sections into 72 different clusters. The biggest cluster contains
126 samples. All the 126 samples are 32k-bytes and they
falls into 10 different md5 hash values. The cluster algorithm
successfully generated CFGs for them and found out that they
are same to each other with similarity value over 99.9%. We
compare our results with BitShred [7]. The accuracy is no less
than the accuracy of BitShred.

V. CONCLUSION

In this paper, we show our design and implementation of
DUST, a downloader detection and cluster tool. DUST uses
dynamic taint analysis to judge if a binary is a downloader.
DUST uses system call hook to dump unpacked downloader
and cluster the downloaders by clustering the dumped code
sections. Preliminary results show that DUST can detect
software downloaders effectively.

REFERENCES

[1] C. Rossow, C. Dietrich, and H. Bos, “Large-scale analysis of malware
downloaders,” in Detection of Intrusions and Malware, and Vulnerability
Assessment, 2013, pp. 42–61.

[2] P. Vadrevu, B. Rahbarinia, R. Perdisci, K. Li, and M. Antonakakis,
“Measuring and detecting malware downloads in live network traffic,”
in ESORICS’13, 2013, pp. 556–573.

[3] L. Invernizzi, S. Miskovic, R. Torres, S. Saha, S.-J. Lee, C. Kruegel,
and G. Vigna, “Nazca: Detecting Malware Distribution in Large-Scale
Networks,” in Proceedings of the ISOC Network and Distributed System
Security Symposium (NDSS ’14), Feb 2014. [Online]. Available: http:
//seclab.cs.ucsb.edu/media/uploads/papers/invernizzi nazca ndss14.pdf

[4] K. Jee, G. Portokalidis, V. P. Kemerlis, S. Ghosh, D. I. August, and A. D.
Keromytis, “A general approach for efficiently accelerating software-
based dynamic data flow tracking on commodity hardware,” in In Pro-
cedeengs of the 19 th Network and Distributed System Security (NDSS),
2012.

[5] Y. Ding, “Dftwin, a dynamic taint flow analysis for windows.” [Online].
Available: https://github.com/dingelish/dftwin

[6] S. Cesare and Y. Xiang, “Malware variant detection using similarity
search over sets of control flow graphs,” in Proceedings of TrustCom’11,
Nov 2011, pp. 181–189.

[7] J. Jang, D. Brumley, and S. Venkataraman, “Bitshred: Feature hashing
malware for scalable triage and semantic analysis,” in Proceedings of the
18th ACM Conference on Computer and Communications Security, ser.
CCS ’11, 2011, pp. 309–320.


