Poster: Defining a Model for Defense-In-Depth

James Sullivan, Michael E. Locasto
University of Calgary
{jfsulliv, locasto} @ucalgary.ca

I. INTRODUCTION

Defense In Depth is a strategy for securing information sys-
tems that is characterized by the use of layered and redundant
security measures. The principal concept behind Defense in
Depth is fault-tolerance of a system- that any given attack path
will be covered by multiple measures in case any of them fail.

Though the effectiveness of Defense In Depth is touted
by many organizations (such as [1], [2]), there is a gap in
the understanding of the limitations and benefits of Defense
In Depth from a formal perspective. We present Defense
Graphs, a formalized model for the properties of a layered
security architecture, enabling a more principled analysis of
the comparative effectiveness of security postures.

In our model we propose four properties arising in a
layered security posture. Independence refers to the degree
to which individual security measures in a system will not
interact with one another. Coverage refers to the extent of
the instrumentation provided by a given security measure, or
the language that it instruments. Redundancy is the degree to
which security measures overlap in their coverage. Cost is a
measurement of the cost of a given system, including both
financial and computational resource costs.

II. MOTIVATION

It is known that in general, security policies are not secure
under composition [3]- interference between security mech-
anisms may induce subtle failure in one or both. Technical
discussion of Linux Loadable Security Modules (LSMs) in [4]
shows that this problem is not restricted to formal domains,
and is a concern in the practical domain as well.

Our own experiments have shown easily induced interac-
tions between mechanisms. We performed a series of tests in
which two commodity antiviruses were concurrently used on
a system, which was subject to a set of standard EICAR [5]
test files. Despite the simplicity of these tests, we observed
that not all mechanisms were able to correctly operate once
they were paired with another antivirus. Table 1 contains the
results of our analysis, as proportional values of the tests in
which failure was induced to the total number of tests.

Trial 1 Trial 2 Trial 3 Average
IDF | 0.056 0.056 0.048 0.054
IPF | 0234 0266 0.242 0.247
IAPF | 0.113 0.113 0.097 0.108

Fig. 1: Results from the Antivirus case study. “IDF, IPF”
refer to Induced Detection/Protection Failure. "IAPF” refers
to Induced Absolute Protection Failure.

Despite these well-established compositional effects, many
organizations advocate the layering of security mechanisms
as an effective strategy for information assurance. Though
Defense-in-Depth is often characterized as a best-practice
approach [1], the principle seems to stand at odds with other
common recommendations for securing information systems,
such as maintaining a simple, clean security architecture, or
minimizing the interface that a system exposes and focusing
efforts on controlling this interface [6].

The model that we present is a tool to make apparent the
compositional structure of systems. Using Defense Graphs to
model a system allow a system designer to identify regions
where there may be undesirable interactions between mecha-
nisms, and to inform better uses of their assets. By shifting
the focus away from individual interfaces and mechanisms,
patterns of interference and non-interference may be revealed
that can be used to inform best practices for the layout of
a set of security mechanisms. Rather than examining every
mechanism and every interface individually, we view the
system as a whole and search for key patterns that make a
system more or less susceptible to exploitation.

III. MODELLING DEFENSE-IN-DEPTH

A Defense Graph is a directed, acyclic graph that is com-
posed of:

1) Vertices V' which are either security mechanisms (re-
ferred to as policy enforcers) or points where informa-
tion is routed, multiplexed, or demultiplexed based on
its semantics (referred to as policy selectors).

2) Edges E' which indicate that there is an uninterrupted
data stream between two vertices.

3) A unique entry point and a unique target in the system,
with no in-bound and no out-bound edges respectively.

Each policy enforcer has associated with it an input lan-
guage I and an output language O. The input language [
of a mechanism is the set of inputs that the mechanism
can accept as legal input. For example, syntactically correct
network packets are the input language of a firewall. The
output language O of the mechanism is the set of output which
it will emit, given some input.

We say that two adjacent mechanisms compose when the
input of one mechanism is a subset of the output of the other,
and there is an edge between the two mechanisms. There
are two key classes of composition, deterministic and non-
deterministic.

A deterministic composition of m;, m; is a policy enforcer
m;; that has an output language O;; € O; N Oy, and an input
language I;; = I;. This is a composition where the order of
application of mechanism is consistent and well-defined.

Firewall

(a) Dy - High Coverage, Low Redundancy, Low Independence

@ Firewall 1 IDS 1 Firewall 2 DS 2 @

(c) D3 - High Coverage, High Redundancy, Low Independence

(b) D2 - High Coverage, Low Redundancy, High Independence

Firewall 1

(d) D4 - High Coverage, High Redundancy, High Independence

Fig. 2: The Four principal patterns in Defense Graphs (the empty pattern is omitted).

A non-deterministic composition of m;,m; is a policy
enforcer n;; that is formed when the two mechanisms compose
in some unreliable order. For example, if two mechanisms
operate on the same data, but their order depends on the
scheduling by the operating system, then they are in non-
deterministic composition. n;; necessarily has that I;; = I;UI;
and Oij Q OZ @] Oj.

For any given enforcer m, we say that the coverage of m
C'(m) is the set of all input that m instruments. In other words,
C(m) = I,,. We emphasize that this is not a measure of
the mechanism’s effectiveness- this would require an effective
method to decide if input is malicious or not, which is
known [7] to be undecidable. The entire system’s coverage
is the union of its mechanism’s coverage. See equation la.

Two mechanisms m;, m; have a certain degree of over-
lap, modelled by the redundancy property. The redundancy
between two mechanisms m;,m; is the proportion to which
their coverage overlaps, or more precisely the ratio of the size
of their intersection to the size of their union.

Similarly, the redundancy of the entire system is the pro-
portion of redundancy over all distinct mechanism pairs to
the maximal possible redundancy (i.e. the number of distinct
mechanism pairs). See equation 1b.

Given two mechanisms, it is either the case that the input
of one mechanism depends on the output of another, or there
is no dependence. We say that if there is a walk m; ... m; in
D, then m; depends on m,, and set I(7,j) = 1. Otherwise,
I(i,j) = 0. If I(i,j) = 1, there may be interference by m;
on the effectiveness of m;. The independence of the system
I(D) is computed similarly to its redundancy; see equation
lc.

Cost is the last property in a system, which can model a
number of different metrics such as financial or time cost of
a mechanism. We use cost to model the time of execution,
and define the cost of a system as the average difference in
time between the unsecured system and the secured system.
See equation 1d.

c)= |J c) (1a)
meM
M| | M|
=0 7
M) = E=Ta .
M| | M|
22‘6 ;I(mz,m])
=0 j#
VY (YT 1
17 .
_ T(D7jl)
PO =2 75y) (49

Figure 2 shows four principal patterns of Defense Graphs,
which are idealized structures that demonstrate the relationship
of these properties to the layout of a system.

Experiments with randomly generated network architectures
being exposed to malicious input are planned. These experi-
ments will be used to establish and support the accuracy of
the model’s predictions about a system, and reveal patterns
and anti-patterns of composition in simple systems.

REFERENCES

[1] “Defense in depth,” http://www.nsa.gov/ia/_files/support/defenseindepth.
pdf, National Security Agency.

[2] “Recommended practice: Improving industrial control systems cyberse-
curity with defense-in-depth strategies,” https://ics-cert.us-cert.gov/sites/
default/files/recommended_practices/Defense_in_Depth_Oct09.pdf, USA
Department of Homeland Security.

[3] M. Abadi and L. Lamport, “Composing specifications,” ACM Transac-
tions on Programming Languages and Systems (TOPLAS), vol. 15, no. 1,
pp. 73-132, 1993.

[4] D. P. Quigley. (2007) Re: Linux security *module* framework (was:
Lsm conversion tostatic interface). Linux Kernel Mailing List. [Online].
Available: http://Ikml.iu.edu//hypermail/linux/kernel/0710.3/0546.html

[5] “AMTSO feature settings check,” http://www.amtso.org/
feature-settings-check.html, AMTSO.

[6] J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278—
1308, 1975.

[7] E. Cohen, “Computer viruses: theory and experiments,” Computers &
security, vol. 6, no. 1, pp. 22-35, 1987.

