
Poster:An Efficient and Scalable Cyberlocker 

Traffic Tracking Method 
 

Chao Zheng
1,2,3)

, Peng Zhang
1,2)

, Shu Li
1,2)

 , Jianlong Tan
1,2)

,Qingyun Liu
1,2,3)

 

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China 
2 National Engineering Laboratory for Information Security Technologies, Beijing, China 

3 University of Chinese Academy of Sciences, Beijing, China 

{zhengchao,pengzhang,lishu,tanjianlong,liuqingyun}@iie.ac.cn 

 

I. INTRODUCTION  

Cyberlocker is an on-line internet site for storage of 
personal digital files and the surge in popularity of 
Cyberlocker traffic has been reported in literature. Gehlen et 
al.[1] found that a Cyberlocker was among the top-10 Web 
applications and constituted 5% of the total Web traffic. Maier 
et al. [2] reported that a single Cyberlocker consumed 15% of 
total Web bandwidth in a large residential network. Allot [3] 
reported that Cyberlocker traffic accounted for 19% of the 
total mobile broadband traffic. Despite their popularity, there 
has been limited work on understanding the characteristic of 
traffic flows originated from Cyberlocker. 

Generally, when a user intend to download the resource 
shared by Cyberlocker through clicking the hyperlink, browser 
will pop up a page with download button, also called entry 
point. This page will show the resource information, such as 
publisher, posting time and so on. After user clicks the 
download button, his browser will automatically send out a 
series of requests to the server to generate redirection chains 
until successfully establishing the HTTP session to download 
resource.  

In this work, we aim to design and build a system to track 
the Cyberlocker resource’s entry point in large-scale network 
traffic, called Cyberlocker traffic tracking, is crucial for 
understanding the characteristic of traffic flows originated 
from Cyberlocker. 

II. CHALLENGES 

While investigating the possibilities we identified the 
following two challenges. 

Building resource redirection chain: Tracking down 
redirection chains is difficult.[4] Using HTTP Referer field is 
simple but not always feasible, because Referer as an optional 
field of HTTP , only 17.7% HTTP sessions have this field in 
our observation of real network traffic. Meanwhile, the 
technologies such as NAT(Network Address Translation) lead 
the IP address of HTTP session cannot be as the sufficient 
evidence for accurately tracking redirection chain. 

Locate the entry point: URLs of different Cyberlocker 
services are various and changeable. Locate entry point’s URL 

in redirection chains with manually predefined templates is 
feasible, but it is a  very high cost to maintain these templates.  

For these reasons, we design a method for identifying and 
tracking the entry point from the redirection chains in large-
scale network flow without templates, named CookieID, of 
which the contributions are two-fold: (1) Scalable HTTP 
redirection chain tracking with very few HTTP fields, which is 
using less memory and indifferent to the redirections hops, 
could easily be applied on large scale network traffic. (2) 
Benefit from the non-reusable of transitional URL and the 
stability of entry point URL, few of the Cyberlocker 
redirection nodes will appeared twice or more. After merging 
same resource’s different redirection chains, we can discover 
the entry point without templates by calculating every node’s 
repeat times  efficiently.  

III. THE IMPLEMENTATION OF COOKIEID 

We designed CookieID to run on real network traffic with 
Cyberlocker entry point tracking functions which presents in 
Figure 1. It mainly contains five parts: (1) HTTP session 
header collection module prepare the URLs and cookies for (2) 
HTTP session indexing module to store them in hash tables. 
When a cyberlocker resource downloading initiated, (3) HTTP 
redirection chain tracking module build the chain of the 
resource by searching the hash tables. And the (4) Candidate 
entry point extraction module response for merge multi 
redirection chains together to locate the entry point. At last (5) 
Entry point validation module examine the result for reliability. 
In what follows, we will elaborate on the implementation of 
each module. 

Text/html

HTTP Session Head

HTTP Session

Capture

content_type 

filtering

MIME HTTP Session queue

token indexing

location indexing

Validation

URL Redirection Chains Tracking Entry Point Extraction

tokens

Resource URL

Session Indexing

A

1

A

2

A

3

A

4

A

5

A

6

B

1

B

2

B

3

B

4

B

5

C

1

C

2

C

3

C

4

C

5

C

6

Redirection Chains

Candidate Entry Point

A

1

A

2

A

3

A

4

A

5

A

6

B

1

B

2

B

4

B

5

C

1

C

2

C

5

C

6

Redirection 

chain

location hash table

token hash table

content_type 

filtering

Tracking FlowIndexing Flow

Session Capture and 

Filtering

Entry Point

 

Fig. 1. The tracking process of entry point 

The research work is supported by Strategic Priority Research Program of 
the Chinese Academy of Sciences under Grant (No.XDA06030602) and 

National Natural Science Foundation under Grant (No.61402464). 



HTTP Session Header Collection Module: This module 
parses HTTP network traffic, and filter out two kinds of HTTP 
session header. 1) Possible cyberlocker redirect session which 
content type of HTTP session is text/html and the cookie field 
exists; 2) Possible cyberlocker download session which 
content type of HTTP session is multimedia, such as video/x-

ms-wmv. The two kinds session’s URL，cookie and time 

stamp is cached. Due to the download resource is a TCP flow 
in network traffic, we adopt a simple algorithm to streaming 
compute a 64 bit resource ID to represent the download 
resource, where the algorithm only performs calculation on the 
first 10% sampling resources. In our experiment, the generated 
resource ID’s collision rate of different download resources is 
no more than 0.4%. It’s a valuable trade-off between 
performance and uniqueness. 

HTTP Session Header Indexing Module: This module split 
every possible cyberlocker redirect session’s cookie into 
tokens by semicolon, and then caches each token and its URL 
as key and value in token hash table. A token may point to one 
more URLs during indexing. 

URL Redirection Chain Tracking Module: Firstly, it find 
possible cyberlocker download session’s cookie in location 
hash table. Secondly, it search token hash table with every 
token in the cookie and traverse pointed URLs. During  
traverse nodes in singly linked lists, we build some doubly 
linked lists to calculate appeared frequency of these URLs. 
Candidate redirection node are the ones which appeared 
frequency exceed a certain threshold. Finally, after sorting 
these nodes by time stamp, we got a redirection chain of a 
specifically Cyberlocker resource, e.g. 1-2-4-8 in figure 2. 

token 1 token 2 token 3 token 4 token 5 ...Token Hash Table

1

2

4

8

2

4

5

8

1

2

4

8

2

4

8

2

3

9

10

27 43

...

1

2

4

8

Cookie

Entry Point

 

Fig. 2. URL redirection chain tracking process 

Candidate Entry Point Extraction Module: This module is 
responsible for merging all URL redirection chains identified 
by same resource ID, and calculating the frequency of each 
node in the redirection chains, the most frequent node is 
extracted as a candidate entry point. If two or more nodes in 
the chains have same frequency, the URL nearest the 
downloaded resource will be select as the candidate entry 
point. 

Entry Point Validation Module: This module is responsible 
for comparing the MD5 of the resource downloaded from 
candidate entry point with that from MIME HTTP head 
session, and determining the real entry point. If two resource’s 

MD5s are same, the entry point is determined, otherwise the 
candidate is dropped. 

IV. EXPERIMENTS 

We evaluate the effectiveness and scalability of CookieID 
with four evaluation measures: precision, recall, search time 
and scalability. The precision is calculated as the correct 
number of found entry points divided by the total number of 
all found entry points. The recall is calculated as the number 
of the correctly found entry points divided by the total number 
of all entry points. The search time is calculated as the time 
spending on finding the entry point. The scalability is 
calculated as the number of found entry points per unit time. 
Firstly, we collect 500 shared video resource hyperlinks by 
exploiting Baidu Cyberlocker search engine. Then, we 
exploited LoadRunner [5] to simulate users to click these 
hyperlinks to collect the URL redirection chains, respectively. 
Finally, we tested CookieID method and List method on the 
created dataset. Figure 3 shows the results. As shown in 
Figure 2(a) and (b), in terms of precision, CookieID is slightly 
lower than List method. And in terms of recall, CookieID is 
slightly higher than List method. In addition, as shown in 
Figure 2(c), the search time of CookieID is significantly faster 
than List method. Meanwhile, from Figure 2(d), we can see 
that the number of found entry points per unit time of 
CookieID remains linear growth, while List decreases, which 
means that CookieID has good scalability. 

 
Fig. 3. The performance and scalability evaluation 

REFERENCES 

[1] V.Gehlen, A. Finamore, M. Mellia, and M. Munafo, “Uncovering the 
Big Players of the Web,” in Proc. Traffic Monitoring and Analysis 
Workshop, Vienna, Austria, March 2012 

[2] G. Maier, A. Feldmann, V. Paxson, and M. Allman, “On Dominant 
Characteristics of Residential Broadband Internet Traffic” in Proc ACM 
SIGCOMM Internet Measurement Conference, Chicago, USA, 
November 2009. 

[3] Allot Communications, “Mobile Trends: Global Mobile Broadband 
Traffic Report,” White Paper, 2010, 
http://www.allot.com/mobiletrends.html 

[4] Z Li, S Alrwais, XF Wang,"Hunting the red fox online: Understanding 
and detection of mass redirect-script injections,"2014 IEEE Symposium 
on Security and Privacy, San Jose, CA 

[5] B Patel, P Jay, S Rushabh. "A Review Paper on Comparison of SQL 
Performance Analyzer Tools: Apache JMeter and HP LoadRunner." 
(2014)

 

http://www.allot.com/mobiletrends.html

