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Abstract

Mobile applications can access both sensitive personal
data and the network, giving rise to threats of data leaks. App
auditing is a fundamental program analysis task to reveal
such leaks. Currently, static analysis is the de facto technique
which exhaustively examines all data flows and pinpoints
problematic ones. However, static analysis generates false
alarms for being over-estimated and requires minutes or even
hours to examine a real app. These shortcomings greatly
limit the usability of automatic app auditing.

To overcome these limitations, we design AppAudit that
relies on the synergy of static and dynamic analysis to
provide effective real-time app auditing. AppAudit embodies
a novel dynamic analysis that can simulate the execution
of part of the program and perform customized checks at
each program state. AppAudit utilizes this to prune false
positives of an efficient but over-estimating static analysis.
Overall, AppAudit makes app auditing useful for app market
operators, app developers and mobile end users, to reveal
data leaks effectively and efficiently.

We apply AppAudit to more than 1,000 known malware
and 400 real apps from various markets. Overall, AppAudit
reports comparative number of true data leaks and eliminates
all false positives, while being 8.3x faster and using 90%
less memory compared to existing approaches. AppAudit
also uncovers 30 data leaks in real apps. Our further study
reveals the common patterns behind these leaks: 1) most
leaks are caused by 3rd-party advertising modules; 2) most
data are leaked with simple unencrypted HTTP requests. We
believe AppAudit serves as an effective tool to identify data-
leaking apps and provides implications to design promising
runtime techniques against data leaks.

Keywords-approximated execution; program analysis; pri-
vacy; mobile application;

I. INTRODUCTION

In recent years, mobile devices have gained unprecedented
success and become the most popular personal consumer
electronics. Users store all kinds of personal data on these
devices, e.g., text messages, call logs, locations, and brows-
ing history. Mobile applications (or apps for short) can
deliver rich functionalities and improve services by properly
using these personal data. However, recent studies unveil
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Figure 1: AppAudit use cases. AppAudit aims to prevent
data-leaking apps from being produced, distributed and
installed.

many abuses of these data, which lead to data leaks inten-
tionally [1], [2] (e.g. for improper advertising revenue) or
unintentionally (e.g. exposing these data in plain-text over
public networks [2]).

Data leaks tamper user privacy, which drives users to
abandon apps, harming app developers as well as the app
market. To address this crucial problem, market operators
have been actively developing techniques to analyze and
identify data-leaking apps, i.e., app auditing. Static program
analysis [3], [4], [5], [6], [7] can comprehensively examine
program data flows and reveal data-leaking code paths,
which is the de facto technique for app auditing. However,
static analysis is generally inefficient (time- and memory-
consuming) and produces false alarms. Market operators
have to spend great computing power to run such analysis
and further invest human efforts to validate the results.

In this paper, we propose AppAudit, a program analysis
framework that can analyze apps efficiently (in real-time)
and effectively (report actual data leaks). Figure 1 demon-
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strates the three use cases of AppAudit. First, AppAudit
can be integrated into IDEs to check apps for developers
before release. This helps to identify problematic 3rd-party
modules, which are the main causes of data leaks [1].
Second, AppAudit can be deployed as an automatic app
auditing service at app markets. AppAudit’s high accuracy
helps market operators to wipe out human involvement in
validating analysis results and thus fully automates app au-
diting procedure. AppAudit’s high efficiency greatly reduces
the waiting time for developers to get auditing feedback
from the market after they upload apps. Third, AppAudit
can be installed on mobile devices to check apps before
installation. As Android allows users to install apps from any
market and developer, AppAudit can protect users against
data-leaking apps from untrusted sources or app markets that
lack auditing service.

To achieve these goals, AppAudit relies on the synergy
of a new dynamic analysis and a lightweight static analysis.
AppAudit works with two stages. At the first stage, App-
Audit performs an efficient but over-estimating static API
analysis to sift out suspicious functions. The static analysis
is lightweight at the cost of reporting false positives. Then
at the second stage, we propose approximated execution,
a dynamic analysis that can simulate the execution of a
program while perform customized checks at each program
state. The dynamic analysis executes each suspicious func-
tion, monitors the dissemination of sensitive data and reports
data leaks that can happen in real execution. AppAudit relies
on this analysis to prune false positives from the static stage.
Previous pure dynamic analysis [8] fail to automatically
explore code paths in depth due to the presence of un-
known values, resulting in lower code coverage and more
false negatives than static analysis. Our dynamic analysis
overcomes this shortcoming with an innovative object model
to represent unknown values and mechanisms to handle
execution with unknowns.

Our contribution is three-fold:
• We propose approximated execution, a novel dynamic

analysis that can execute part of a program while
performing customized checks on its program state at
each step. The executor can faithfully simulate actual
program execution and function with the presence of
unknowns.

• We present AppAudit, an Android app auditing tool that
can check apps effectively and efficiently. AppAudit
embodies an API analysis to select suspicious functions
and then relies on the approximated executor to prune
false positives. Our experiments show that AppAudit
achieves comparable code coverage with static analysis
and produces no false positives with significantly less
time and memory.

• We apply AppAudit to examine more than 400 free
Android apps collected from various markets. Our tool
successfully identifies 30 data leaks in these apps and
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Figure 2: AppAudit architecture and workflow.

their containing modules. We also uncover that 3rd-
party advertising libraries are the major causes of
data leaks and HTTP requests are the most prominent
leaking venue.

The rest of the paper is organized as follows. Section
II presents the design overview. Section III elaborates our
static API analysis. Section IV elaborates our innovative
execution engine for dynamic analysis. Section V evaluates
the accuracy and performance of AppAudit and presents our
findings on real free apps. Section VI introduces the related
work and Section VII concludes the paper.

II. APPAUDIT DESIGN OVERVIEW

The app auditing service intends to find code paths that
leak sensitive user data. Mobile apps nowadays grow larger
and more complicated, with many 3rd-party libraries and
thousands of functions. Static analysis can encounter scala-
bility problems for large code base, because of non-scalable
analysis structures, such as precise flow graph or heavy
analyses such as points-to analysis and symbolic execution.
As a result, static analysis is generally time-consuming,
especially with large real applications. Meanwhile, static
analysis could generate false alarms because some analyzed
code paths could never happen in real execution. These
limitations greatly confine the use cases of static analysis.

To tackle false positives and analysis efficiency, we start
with a very lightweight static API analysis and rely on
a dynamic analysis to prune its false positives, as shown
in Figure 2. The API analysis aims to sift out suspicious
functions and narrow down the analysis scope. Then App-
Audit largely depends on the dynamic analysis to execute
the bytecode of each function to confirm actual data leaks.
Multiple suspicious functions can be examined in parallel to
improve performance. Compared with pure static analysis
solutions, AppAudit only explores code paths that could
happen in real, thus generating few false positives. The
major challenge of dynamic analysis is caused by unknown
values during the analysis. When dynamic analysis meets
unknowns, it can hardly explore deeply into code paths,
which will cause false negatives. To overcome this, we
design a novel object model to represent and propagate
unknowns. We also design several execution mechanisms to
increase the depth of our analysis and avoid false negatives.
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III. EFFICIENT STATIC API ANALYSIS

The goal of the static API analysis is to find functions that
can potentially cause data leaks. Overall, static analysis is
over-estimating and AppAudit relies on a dynamic analysis
to prune its false positives. In this section, we focus on
tuning the static API analysis for improved performance.

A. Call Graph Extensions

A conventional call graph models the calling relationships
between functions. A function can reach a particular API if
there exists a path from the function to the API. To leak
data, a function must be able to reach a source API that
retrieves personal data and a sink API that transmits data
out of the device. Thus, finding data leaks is equivalent
to finding one path from the function to a source API and
another to a sink API. Dynamic Java language features and
the Android programming model can result in missing paths
in a conventional call graph. Thus, AppAudit incorporates
series of call graph extensions to capture the following cases:

Java Virtual Calls and Reflection Calls. In Java, a
virtual call can have many call targets (base class methods or
derived class methods) and a reflection call can essentially
reach an arbitrary function in the program. In both cases,
the actual call target depends on the runtime calling context
which is not visible to static analysis. In our static call
graph, we assume that virtual calls can reach any matching
method from all inherited classes while a reflection call
will directly be marked suspicious. This is a simple (thus
efficient) but over-estimating heuristic. Though more precise
heuristics exist [9], AppAudit aims to postpone fine-grained
assessment to the dynamic analysis.

Static Fields as Intermediates. It is very common that
two functions exchange sensitive data via a static field. In
such cases, one function will indirectly call a source API and
the other will call a sink API. To complete this colluding
procedure, there must be a third function that calls both in
order. Thus in the call graph, this third function will be
marked suspicious and examined by the dynamic analysis.

Android Life Cycle Methods. An Android app interacts
with the system by exposing a set of life cycle methods.
When the user navigates across the app, the Android system
invokes these life cycle methods in a particular order. In
our call graph, we create a dummy node that simulates
these ordered function invocations. If the app leaks data
via life cycle methods, this dummy node will be marked
as suspicious and the dynamic analysis can examine the life
cycle methods in order.

Multi-threading. Multi-threading is a common program-
ming practice in Android apps. A common idiom is to
retrieve some data in the main thread and then spawn a
child thread to send it via the network. In a conventional
call graph, the retrieving function does not directly call the
sending function. To tackle this discontinuity, we treat the
function that registers a callback as calling the callback

Application

Library
trigger sourcesink

f1 f2

f5

f6

f4 f3 BR1

BR2

f7

Figure 3: An extended call graph. Each vertex stands for a
function. Solid lines represent traditional call relationships
and dashed lines stand for extended calls. Grey vertices are
the marked suspicious functions. BRs stand for Broadcast-
Receivers that can receive system events.

directly. In addition to standard Java multi-threading sup-
port, we also apply this technique to two Android-specific
asynchrony constructs (AsyncTask and Handler).

GUI Event Callbacks. Android apps heavily utilize all
kinds of GUI widgets. These widgets rely on various call-
back functions to respond to different user actions. We apply
the technique used in the case of multi-threading to handle
these GUI call-back functions.

Android Remote Procedure Call (RPC). Android pro-
vides a system-wise RPC mechanism to notify apps of
various system events. Apps can send messages to each other
through the same mechanism. Messages are encapsulated in
intents. Some intents might contain sensitive user data. For
example, when receiving an incoming SMS, the Android
system will generate an intent with the content of the
SMS and send it to apps of interest. An app declares a
special class called BroadcastReceiver in its manifest
file to receive intents. In our analysis framework, we treat
all BroadcastReceivers that can handle sensitive intents as
calling a dummy source API to retrieve sensitive data.

The first three cases are handled in an ad-hoc manner
when constructing the call graph. The rest three all involve
call-back functions so that we design a unified mechanism.
We define those APIs that can register call-back functions
as trigger APIs. Each trigger API can register a specific
type of callbacks. In our call graph, if a function calls
a trigger API, then this function will be treated as call-
ing all possible callback functions of that type. Table I
provides a partial list of the trigger APIs currently used
in AppAudit. For example, Context.startService()
registers a callback with the Android system to invoke
the life cycle functions of a Service class. Thus if a
function calls startService(), we treat it as calling
the onCreate() function of all classes that inherit the
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Category Trigger API Extended function calls

Android RPC
Context.startService() u.onCreate(), ∀u extends Service
Context.startActivity() u.onCreate(), ∀u extends Activity
Context.sendBroadcast() u.onReceive(), ∀u extends BroadcastReceiver
AlarmManager.setRepeating() all the three above
... and 4 more

GUI Callbacks
setOnClickListener() u.onClick(), ∀u extends OnClickListener
... and 180 more [10]

Multi-threading
Thread.start() u.run(), ∀u extends Thread
AsyncTask.execute() u.doInBackground(), ∀u extends AsyncTask
... and 14 more

Table I: Trigger APIs and extended function calls.

Service class.

B. API Usage Analysis

Checking whether a given function is suspicious is equiv-
alent to finding a path from the function to a source API and
a path to a sink API. We first build a standard call graph
from program bytecode and then extend it with dummy
functions and extra calling relationships according to above-
mentioned cases. To accelerate the construction algorithm,
we omit Android library functions except for source, sink
and trigger APIs. We want to focus on application functions
and avoid analyzing the Android runtime library. After the
extended call graph is constructed, we perform a breadth-
first search to mark all suspicious functions. For example,
with the extended call graph in Figure 3, the static API
analysis can reveal four suspicious functions (BR1, f1 and
f7, f3) while a conventional call graph can only reveal f3.

Overall, the extended call graph is an over-approximated
call graph with calling relationships that will not happen
in real execution. Consequently, our static API analysis
could mark “good” functions as suspicious in trade for
the analysis performance. While previous work [9] employs
more complicated analyses to achieve better heuristic at the
cost of performance, AppAudit takes an opposite direction
and relies on dynamic analysis to prune false positives.

IV. APPROXIMATED EXECUTION

The static API analysis is over-approximating, which
could result in false positives. We use a dynamic analysis to
confirm actual data leaks and prune false positives.

The approximated executor is a dynamic analysis that
executes the bytecode instructions of a suspicious function
and reports if sensitive data could be leaked during the
execution. The executor has a typical register set, a program
counter (pc), a call stack as its execution context. It relies
on a novel object model to represent application memory
objects. The executor has three working modes, as shown
in Figure 4. It starts with “execution (exec)” mode, where it
interprets bytecodes and performs operations. Source APIs
can generate sensitive data objects, where we mark them as
“tainted”. Tainted objects propagate with the execution and

leap

exec

checkapprox

calling sink
functions

unknown
branching

tainted data
leaked

no taint

insufficient
context

resume

known

end

Figure 4: AppAudit approximated executor state machine.

taint any object that is derived from them. Whenever the
executor encounters a sink API, it changes to “check” mode
to check the parameters for the sink API. If tainted objects
are found, the executor reports the leak and terminates
(“end” final state). Otherwise, it reverts back to the normal
execution mode. When certain bytecode instruction cannot
be executed due to unknown operands (e.g. a conditional
jump instruction with unknown condition), the executor
switches to “approximation (approx)” mode for approxi-
mations to continue the execution. If the approximations
fail, commonly due to too many unknowns or insufficient
execution contexts, the executor will terminate the execution
of current function and start executing one of its caller
function (“leap” final state). The caller function is expected
to provide a more concrete execution context to analyze the
incomplete execution.

A. Object and Taint Representation

The executor starts from the function entry with the
absence of its calling context (the values of parameters and
global variables). We design an object model to represent
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and tackle unknowns. A memory object of the application
is represented as a tuple φ(x) := 〈φT (x), φK(x), φV (x)〉.
φT (x) specifies its type, which can be Java primitive types
(e.g., int, long, char) as well as class types (e.g. String,
StringBuilder). AppAudit introduces object kind φK(x) to
distinguish known values and unknowns. φK(x) can be one
of the following cases: 1) a concrete object (CON) that is
created during the execution process, e.g. an object created
by the new instruction; 2) a prior unknown (PU), which
exists prior to the execution process and contains no known
values to the executor, e.g. a global variable; 3) a derived
unknown (DU), which was a prior unknown but is changed
during the execution process. DUs mix known values and
unknowns. For instance, a DU could have some known
fields and some unknown fields. φV (x) stores the known
value(s) of the object. For primitive types, φV (x) reflects
its known value, e.g. an integer of value 5 is represented as
φV (x) = {val 7→ 5}. If the value is unknown, φV (x) = ∅.
For class types, φV (x) stores all its known fields, e.g.
φV (x) = {field1 7→ φ(y)} representing x.field1 == y.
Unknown fields will not appear. Arrays are special objects
with indices as fields, e.g. an array of two elements is rep-
resented as φV (x) = {0 7→ φ(y), 1 7→ φ(z), length 7→ 2}.
φV (x)[field] can query a particular filed of an object x.
If the field is known, this query returns the known object.
Otherwise, this expression returns a prior unknown.

In addition to our object representation, AppAudit also
tracks taints on objects similar to dynamic taint analysis [11],
[12]. For each memory object x, we define τ(x) as its
tainting state. Each source API could generate a specific type
of taint, representing a particular type of personal data (e.g.
text message, location, etc). Taints propagate along with the
object. Any object derived from a tainted object will also be
tainted. If a sink API meets a tainted object, our executor
will report a leak. We will explain our tainting rules in details
after introducing the execution rules.

B. Basic Execution Flow

We use five examples to demonstrate the basic workflow
of the executor and the expressiveness of our object rep-
resentation. We assume that the source() API generates
a tainted integer (denoted as taint) and the sink() API
checks if its parameter is tainted. All parameters and global
variables (static class fields) are prior unknowns when the
execution starts, whose values are unknown to the executor.

1) In foo1 shown below, c is first assigned a
new concrete object with no known fields, i.e.,
〈T,Concrete, ∅〉. Then c.f is assigned and c be-
comes 〈T,Concrete, {f 7→ taint}〉. Finally, sink()
checks c.f . And since it is a taint, the executor reports
a leak.

foo1(T x, T y) {
c = new T();

c.f = source();
sink(c.f);

}

2) In foo2 shown below, x starts as a PU. Then x.f
is assigned with a concrete object (the taint), which
changes x from a prior unknown to a derived unknown
〈T,DU, {f 7→ taint}〉. A derived unknown implies
that this object was unknown (PUs) but some known
values have been assigned to it during the execution.
Therefore, when the concrete object c gets x.f , it gets
the known value (the taint) assigned to x.f before.
Finally, the executor successfully reports the leak on
sink().

foo2(T x, T y) {
x.f = source();
c = new T();
c.f = x.f;
sink(c.f);

}

3) In foo3 shown below, the condition checks if a
concrete object c is equal to a prior unknown x. By
definition, a prior unknown is created before execution
while a concrete object is created afterwards. Thus the
executor can safely evaluate the condition to be false
and no leak will be reported.

foo3(T x, T y) {
c = new T();
if (c == x)
sink(source());

}

4) In foo4 shown below, the condition compares two
prior unknowns. Since the executor does not know
if x and y refer to the same object, this condition
ends up as an unknown. The branching depends on
an unknown condition and thus the executor reverts to
the approximation mode, which will be discussed in
details later.

foo4(T x, T y) {
if (x != y)
sink(source());

}

5) In foo5 shown below, x changes to a derived un-
known with a concrete field but y is still a prior
unknown when its field is checked. Thus, the executor
also needs to revert to approximations.

foo5(T x, T y) {
x.f = source();
sink(y.f);

}
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From these examples, we illustrate how our object repre-
sentation keeps record of both known and unknown objects
and tracks their propagation to reflect the data flows of
personal data.

C. Complete Execution Rules

Table II lists the complete execution rules used in App-
Audit executor. Rule (1) to (7) have been covered by
above-mentioned examples. The rest handle other bytecode
instructions:

Function Call. Rule (8) shows that our dynamic analysis
is naturally inter-procedural. When a function call is being
made during execution, the executor will step into the
function and pass the parameters accordingly.

Arithmetic Operations. Rule (9) and rule (10) outline
how to evaluate binary and unary arithmetic expressions.
These expressions take only primitive types. Basically the
executor will compute concrete values when both operands
have concrete values. When unknowns are present, the result
will be unknown accordingly.

Comparison Operations. Rule (11) tackles compari-
son expressions. Similar to arithmetic operations, if both
operands are concrete (known), the result can be evaluated
naturally. When unknowns are present, the result is also
unknown except for one case. If one operand is a concrete
object while the other is an unknown (PU or DU), the result
is definitely evaluated to false.

Array Operations. Rule (12) and rule (13) handle array
operations, which are similar to rule (4) and rule (5).
Changing an array element can also change a prior unknown
to a derived unknown.

Branching Operations. Rule (14) and rule (15) handle
branching instructions. For conditional jumps with unknown
conditions, the executor will revert to the approximation
mode.

D. Tainting Rules

Personal data is marked as tainted, which is propagated
during execution. The taint tracking capability of AppAudit
is largely similar to the taint propagation rules used in
dynamic taint analysis [11], [8]. In our rules, rule (1) and rule
(6) set taints explicitly. Rule (9) and rule (10) taint the result
as long as one of its operands is tainted. Rule (12) taints x as
long as i is tainted. This rule handles encryption libraries that
perform substitution to encrypt data, hence tainted inputs
should lead to tainted outputs.

E. Execution Extensions and Optimizations

Our executor contains several extensions and optimiza-
tions to accelerate the execution speed while maintaining
the same instruction semantic.

Dynamic Dispatch (Reflection and Virtual Calls). Java
virtual calls and reflections are dynamically dispatched.
During execution, these call targets will be resolved.

Inlining Call-back Functions. As mentioned before, call-
back functions are widely used and hide implicit data flows.
Thus, when the executor encounters a trigger API, it will
execute the callback function being registered after the
current function is finished.

Exception Control Flow. Exceptions can affect control
flows. Some instructions and APIs can generate exceptions
(e.g. array indexing instructions and file related APIs).
Currently our executor supports only plain exceptions (no
nested exceptions). Unhandled exceptions are ignored during
execution.

Library Emulation. Library functions contain large body
of instructions and lots of calls into other library functions.
The executor emulates some library functions for improved
analysis performance. To emulate a particular library func-
tion, the executor manipulates its object representations
directly to achieve the same effect of the emulated func-
tion. For example, to emulate swap(x,y), the executor
swaps the object representation directly without executing
its bytecodes. Library emulation is commonly implemented
to accelerate the calls to standard Java library functions.

Infinity Avoidance. During execution (both the exec and
approx mode), our executor can run into infinity due to
infinite loops and recursions in the application. For example,
the application can spawn a thread that uses an infinite loop
to check network updates. In real execution, this thread could
be interrupted by user exiting the application. However, in
approximated execution, this infinite loop will never end.
To ensure that our analysis can always terminate, we design
a threshold-based approximation to detect and terminate
infinities. Both avoidance mechanisms lead the executor to
the leap state when infinite loops or recursions are detected.

We introduce a counter to record how many instructions
have been executed for a particular function. If this counter
exceeds the total instruction count of the function times a
certain threshold, we will cut short the execution.

Similarly for infinite recursions, we monitor the call
stack during execution. If the depth exceeds a designated
threshold, the executor assumes a stack overflow happens
and then terminates the execution.

We obtain these two thresholds through empirical exper-
iments. First we turn on instruction tracing such that every
instruction being executed by AppAudit will be logged.
Then we gradually increase the threshold until the infinity
avoidance mechanism no longer cuts short any code paths.
Finally, we double this fix point as our final threshold to
ensure that these thresholds work for other real apps.

F. Approximation Mode

As shown in the execution rules, unknown values can
be stored, propagated and evaluated with our object model.
However, when a conditional jump instruction meets un-
known values, the executor will fail to perform control flow

904



# Instruction Execution Semantic

(1)1 x=12 φ(x)← 〈int,CON, {val 7→ 12}〉
(2)2 x=new T() φ(x)← 〈T,CON, ∅〉
(3)12 x=y φ(x)← φ(y)

(4)2 x.f=y

{
φ(x)← 〈φT (x),DU, φV (x) ∪ {f 7→ φ(y)}〉, if φK(x) = PU

φV (x)← φV (x) ∪ {f 7→ φ(y)}, otherwise

(5)2 x=y.f φ(x)← φV (y)[f ]

(6)1 x=source() φ(x)← taint

(7)1 sink(x) switch to check mode

(8)12 call fn(e0, · · ·) assign parameters according to Rule (3)

(9)1 x=y binop z

{
φ(x)← 〈φT (y),CON, κbinop(φV (y), φV (z))〉 if φK(y) = CON ∧ φK(z) = CON

φ(x)← 〈φT (y),PU, ∅〉 otherwise

(10)1 x=unop y

{
φ(x)← 〈φT (y),CON, κunop(φV (y))〉 if φK(y) = CON

φ(x)← 〈φT (y),PU, ∅〉 otherwise

(11)12 x=y cmp-op z


φ(x)← 〈Bool,CON, κcmp(φV (y), φV (z))〉 if φK(y) = φK(z) = CON

φ(x)← 〈Bool,CON, {val 7→ false}〉 if φK(y) 6= φK(z) ∧ φT (y) ∈ PRIMITIV E TY PES

φ(x)← 〈Bool,PU, ∅〉 otherwise

(12)12 x=a[i]

{
φ(x)← φV (a)[φV (i)[val]] if φK(a) = CON ∧ φK(i) = CON

φ(x)← 〈ELEMT ,DU, ∅〉 otherwise

(13)12 a[i]=x

{
φV (a)← φV (a) ∪ {φV (i)[val] 7→ φ(x)} if φK(a) = φK(i) = CON

φ(a)← 〈φT (a),DU, φV (a) ∪ {φV (i)[val] 7→ φ(x)}〉 if φK(a) 6= CON ∧ φK(i) = CON

(14) jmp-op cond,l

{
pc← κjmpop(φV (cond), pc, l) if φK(cond) = CON

switch to approx mode otherwise

(15) jmp l pc← l
1 this bytecode accepts primitive types
2 this bytecode accepts class types

Table II: The execution rules. κ is a series of evaluation functions that perform real calculation when values are known.

decision. In this case, the executor changes to approximation
mode.

Unknown Branching Approximation. The executor re-
lies on this approximation to continue when it encoun-
ters branching instructions with unknown conditions. This
approximation is designed to skip unknown loops, since
these loops cannot provide useful known information from
unknowns. Table III shows the four basic control flow
structures compiled by an Android compiler. For the three
looping structures, the branching approximation always
chooses not to take the conditional branch to skip these
loops. However, as we cannot distinguish ifs and loops,
this approximation will only explore the “then” branch for
unknown if-else structures. This bias is benign. Consider the
following program:
foo() {
T a = new T();
T b = new T();
bar(a,a);
bar(a,b);

}
bar(T x, T y) {
if (x == y)
return ;

else
sink(source());

}

In this example, bar will be executed. When executing
bar, both x and y are prior unknowns, which trigger the
approximation to guide the executor to explore only the
“then” branch and thus no leak will be reported. Due to
insufficient calling contexts, the “else” branch will not be
explored when analyzing bar.

Then according to our API analysis, foo will also be
analyzed if bar has been analyzed, as foo is a caller
of bar. When analyzing foo, the executor will analyze
bar again with two concrete calling contexts. Under the
bar(a,a) context, the condition will be evaluated to true
and no leak will be reported. Under the bar(a,b) context,
the condition will be evaluated to false and the leaking “else”
branch will be explored.

Observed from this case, the unknown branching ap-
proximation only affects a function with insufficient calling
contexts (bar). The approximation will result in fewer code
paths being explored. But then the executor will reach callers
(foo) of this function and re-analyze the unsuccessful
function (bar) with more concrete calling contexts from
its caller. If the program contains leaking paths, then at
least one of these calling contexts will be sufficient to reach
the leaking point. Thus the bias introduced before will be
amortized. If the program does not contain leaking paths,
then the approximation will skip some code paths but none
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if (<cond>) { <then> }
else { <else> }
<rest>

for (<init>;
<cond>;
<incr>) {

<body>
}
<rest>

while (<cond>) {
<body>

}
<rest>

do {
<body>

} while (<cond>);
<rest>

cond_label:
B jump, !<cond>, else
<then>
goto rest
<else>
goto rest
<rest>

<init>
cond_label:
B jump, <cond>, body
<rest>
<body>
<incr>
goto cond_label

cond_label:
B jump, <cond>, body
<rest>
<body>
goto cond_label

<body>
cond_label:
B jump, <cond>, body
<rest>

(a) if statement (b) for loop (c) while loop (d) do-while loop

Table III: Four basic control flow structures and their compiled bytecode streams.

of them will leak data. In short, the unknown branching
approximation will not miss leaking code paths.

G. Accuracy Analysis

Since our executor performs dynamic analysis, we would
like to ensure that it does not miss important (leaking) code
paths. When running in execution mode, the executor can
faithfully reproduce the actual path of the real execution.
When the executor turns to the approximation mode, it will
explore only a few possible code paths, which could lead to
false negatives. We have analyzed the side-effect of unknown
branching approximation. When the application contains
leaking paths, the executor will have a proper calling context
for executing regardless of this approximation. Thus this
approximation only misses non-leaking paths and is benign
to the overall accuracy. Our infinity avoidance relies on two
thresholds to cut short infinite loops and recursions. Both
are obtained from empirical experiments.

In addition, our executor embodies a taint analysis to track
the dissemination of personal data. Thus the correctness of
taint rules also affects the accuracy of the executor. We
identify the following cases that could affect accuracy of
a dynamic taint analysis:

Taint Sanitization. Currently, our tainting rules only add
and propagate taints but never remove them. This could
lead to inaccuracy and false positives. One typical case
is about rule (9) and rule (10) in Table II. Currently, the
result of an arithmetic operation will be tainted as long as
one operand is tainted. However some arithmetic operations
always return the same result regardless of the value of the
operands. For example, x = y ⊕ y always returns zero.
For such cases, the taint on the result should be removed.
Our current implementation does not have taint sanitization.
Nevertheless, although these cases are possible for hand-
crafted applications, the standard Android Java compiler
never generates such idioms.

Array Indexing. For an array operation x = a[i],

currently x will be tainted if i is tainted. This is because
encryption functions usually use an array to map plain-text
inputs to encrypted outputs. Thus the taints on the output
is dependent on the input. This is commonly employed
by other taint analyses [11], [8] to deal with encryption
libraries. However, if the array is zero-valued, then x will
always be zero regardless of the index i. Again, the current
propagation rule over-taints the results and could lead to
false positives.

Control Flow Dependent Taints. This is a well acknowl-
edged drawback in most taint analysis [11], [8], [13].

if (x == 1) y = 1;
else if (x == 2) y = 2;

In this case, the values of the two variables are correlated
so should be their taintness. However, by using the control
flow structures, the executor is unaware of the correlation
and always produces an untainted y. ScrubDroid [13], [14]
presents more attacking cases for a standard taint analysis.
We expect to integrate a more powerful code structure
recognition module to detect such cases in the future.

V. EVALUATION

In this section, we evaluate AppAudit in terms of its
accuracy and usability. We demonstrate the three use cases of
AppAudit, with regards to market operators, app developers
and mobile users. We also present a characterization study
about data-leaking apps, providing guidance for designing
effective data leak prevention tools.

A. Implementation

The AppAudit prototype is implemented with Java, and
reflectively loads Android SDK for API signatures. Table IV
presents the breakdown of source lines of code for different
components. We leverage dex2jar for disassembling [15]
and APKParser [16] for manifest parsing. The API analysis
accounts for a relatively small portion of the entire code
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Component Percent. Description

preprocessors 11.2% Disassembler and manifest parser
emulation 28.5% Library and device emulation

core engine 15.8% Core approximated executor
objmodel 20.2% Object representation

apianalysis 7.0% Call graph based API analysis
util 17.3% Utility

Total 100% 10,559 lines of code

Table IV: The SLOCs for different components.

base. The approximated executor is the main contributor to
the code base, which implements an Android Dalvik [17]
bytecode virtual machine.

Portability. Our current prototype is implemented in Java,
which can run on different platforms. We have an optimized
version for server configuration and an Android port with
simple GUI.

API emulation efforts. As shown in Table IV, API
emulation accounts for 28.5% of our code base. Currently
API emulation is done manually. We have emulated 54
classes and 130 functions, which are the most frequently
used in the apps in our evaluation datasets. API emulation
is a tedious task and we are exploring automated ways to
generate emulated code for all standard Java library APIs.

Device emulation. We emulate a Samsung Galaxy Nexus
(i9250) smartphone running Android 4.0.3, with WiFi and
cellular connections. The specific model number, serial, OS
version code, CPU types are dumped from a real phone.
These information are exposed to the app in the standard
Android class android.os.Build. We also emulate a
basic /proc file system to present the low-level information
about the emulated device.

Parallelized Execution of Multiple Approximated Ex-
ecution. To further improve the analysis speed on multi-
core platforms, AppAudit executes multiple (four by default)
code paths concurrently. Each code path is executed in a
separate execution context and shares no states between each
other. Thus the dynamic analysis is fully parallelizable and
the parallelism can be adjusted for different use cases.

Native code. Some Android apps can link and call into
native libraries. Currently, our executor does not execute
native code and will simply return an unknown when it
meets a native function. We expect a binary executor to
provide fine-grained data flow information about native
functions.

B. Evaluation Methodology

Our evaluation contains four parts. First we use a micro-
benchmark suite to validate the completeness of our static
API analysis. Second, we use malware samples to evaluate
the accuracy of AppAudit. In particular, we want to answer
these two questions: 1) Can our dynamic analysis guarantee
no false positives? 2) Can AppAudit provide comparable

Dataset # Samples Description

droidbench 56 A micro-benchmark [18] that stresses the
completeness of taint analysis

malware 1005 Android malware genome project [19]
freeapp 428 Popular free apps from the official market

Table V: Evaluation datasets.

code coverage as static analysis (a low false negative rate)?
Third, we use real-world apps to evaluate the usability
as well as usefulness of AppAudit. Our real app based
evaluation aims to answer the following questions: 1) What
is the analysis time and memory consumption? 2) How could
AppAudit be used in different use cases? Fourth, we present
characterization study of data-leaking apps uncovered by
AppAudit. We aim to show the common properties among
these apps so as to provide guidance for designing effective
prevention tools.

Evaluation datasets. Table V summarizes the datasets
used in our evaluation.

1) DroidBench [18] dataset. DroidBench contains a suite
of hand-crafted Android applications that exploit vari-
ous features of the language and programming model
to bypass taint analysis. We use DroidBench to vali-
date the completeness of our static API analysis.

2) Malware dataset. Our malware dataset contains 1,005
samples from the Android malware genome dataset.
We select the ones related to data leaking based on
extensive reference of studies from mobile security
companies and labs [20], [21], [22], [23], [24], [25],
[26]. Malware samples have well understood mali-
cious behavior [19], which serves as a good accuracy
index for data leak detection tools.

3) Free app dataset. Real apps are normally much larger
and more complicated than malware. Thus, we choose
these samples to evaluate the analysis performance
and usefulness of program analysis tools. Our initial
sampling began around March 2013 when half of the
dataset were collected. We notice some user feedbacks
about data leaks online. So we collect newer versions
of these apps around January 2014 to outline how
developers respond to these reported data leaks. Col-
lected apps comprise not only top free apps but also
newly uploaded apps during that sampling time period.

Evaluation candidates. We compare AppAudit with two
state-of-the-art pure static analysis tools.

FlowDroid [4] leverages a precise flow graph to find
leaking data flows. FlowDroid achieves high precision by
accurately modeling the runtime behavior of Android appli-
cations with a flow graph. On the contrary, AppAudit largely
relies on executing bytecode to reproduce and confirm leaks
in real execution. FlowDroid is open-source and thus we
can compare the results of both across all three evaluation
datasets.
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AppIntent [3] is a static analysis based on symbolic
execution. Its main goal is to prune false positives and
optimizes the performance of symbolic execution. AppAudit
also leverages a dynamic analysis to reduce false positives,
which naturally becomes a competitive approach for the
same purpose. AppIntent is not publicly available and we
only have its results on the malware dataset.

C. Completeness of Static API Analysis

AppAudit adopts a two-stage design where the static API
analysis will narrow down the analysis scope for the dy-
namic analysis. So the static stage should completely include
all possible data leaks. We use DroidBench to evaluate
the completeness of our static API analysis. FlowDroid is
the only previous approach compared in this analysis since
AppIntent is not available to test on this benchmark.

DroidBench contains 65 test cases in total. We exclude 9
unsupported cases and use the rest 56 for our completeness
evaluation. Four excluded cases are related to control flow
dependent taints (see Section IV-G). This problem is itself
an interesting and hard research topic, which is currently
not supported by FlowDroid [4] (the state-of-the-art static
analysis) and AppAudit. Three excluded cases are because
AppAudit does not treat password input widgets as source
APIs so far. Two excluded cases declare GUI callbacks via
XML files, which is not fully supported by AppAudit.

Among the remaining 56 DroidBench tests, AppAudit
produces no false positives and two false negatives. As a
comparison, FlowDroid has four false positives and two
false negatives. Overall, AppAudit achieves fewer false
positives and as few false negatives as FlowDroid. AppAudit
eliminates all false positives with its dynamic analysis. The
dynamic analysis only executes possible code paths and
thus false positives caused by impossible code paths will
be pruned. The two false negative cases of AppAudit both
leak data when particular user inputs happen in a particular
order. AppAudit fails to report these leaks because it cannot
model infinite possibility of user input orderings. Previous
work [3] argues that some particular ordering of user inputs
might imply user awareness of the data leak, which indicates
that a detection tool should not report such leaks.

D. Detection Accuracy

Our malware dataset contains 23 malware families, cov-
ering a wide range of malicious data-stealing behavior.

We compare AppAudit with both AppIntent and Flow-
Droid. We do not consider existing dynamic analysis like
TaintDroid [8] for accuracy comparison because 1) existing
dynamic analysis requires user inputs and can hardly be
automated; 2) static analysis can achieve better code path
coverage than existing dynamic analysis.

We also compare AppAudit with a collection of com-
mercial solutions, including off-the-shelf anti-virus software
and the Google Application Verification Service (AppVerify)
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Figure 5: The overall true positives on Android malware
genome dataset (99.3%).

Malware family TP+TN FP FN Sample #

AnserverBot 187 0 0 187
Badnews 2 0 0 2
BeanBot 1 0 7 8
BgServ 9 0 0 9

DroidDreamLight 46 0 0 46
DroidKungFu1 34 0 0 34
DroidKungFu2 30 0 0 30
DroidKungFu3 309 0 0 309
DroidKungFu4 96 0 0 96

Endofday 1 0 0 1
Geinimi 69 0 0 69

GGTracker 1 0 0 1
GingerMaster 4 0 0 4
GoldDream 47 0 0 47
jSMSHider 16 0 0 16

KMin 52 0 0 52
DroidKungfuSapp 3 0 0 3

LoveTrap 1 0 0 1
NickyBot 1 0 0 1

Pjapps 58 0 0 58
Plankton 11 0 0 11

RogueSPPush 9 0 0 9
SndApps 10 0 0 10
Spitmo 1 0 0 1

Total 998 0 7 1005

TP: True Positive, TN: True Negative;
FP: False Positive, FN: False Negative

Table VI: The breakdown of detection accuracy on Android
malware genome dataset.

shipped with Android 4.2 [27]. The results of commercial
anti-malware are obtained from VirusTotal [28], a website
that scans submitted mobile apps with latest mobile anti-
virus solutions. In terms of AppVerify, we reference the
results from an existing study [27].

Overall Detection Accuracy. Figure 5 shows the com-
parison of overall detection accuracy (true positives plus true
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negatives) among all analysis tools and anti-virus solutions.
AppAudit outperforms two state-of-the-art static analysis
tools and a number of commercial solutions with a detection
accuracy of 99.3%. AppIntent overkills some cases with its
pruning mechanism. FlowDroid fails on 6 samples due to
memory exhaustion. Table VI provides a breakdown for false
positive and negative cases for AppAudit.

False Positives. Overall, AppAudit achieves no false
positives while FlowDroid reports one false positive from
DroidDreamLight samples. We inspect this case to un-
derstand the reason. Generally, DroidDreamLight samples
collect personal data and then send them to a list of remote
servers. These samples decrypt a configuration string with
a hard-coded DES key to obtain a list of target servers.
However, the particular case has a malformed configuration
string and thus no target servers will be obtained and no
data leaks will actually happen. The decryption contains
lots of substitutions with array operations, which stresses
static analysis to correctly model them. With our dynamic
analysis, AppAudit can faithfully perform the complete
decryption and obtain the decrypted string. Consequently,
AppAudit validates that the leaking code snippet in this case
is actually dead code due to the malformed configuration and
successfully prunes this false positive case.

False Negatives. AppAudit reports seven false negative
cases on the malware dataset, all from the BeanBot family.
Our manual de-compilation and check reveal that BeanBot
retrieves personal data and then sends a text message to a
cellular number for the service code of the carrier. Once
it receives the response text message, it will leak the user
data [29], [30]. This shows a typical case where the sending
behavior is dependent on external inputs. Since AppAudit
cannot predict the content of the incoming text message, it
cannot firmly report this case as a data leak.

This false negative scenario outlines the major difference
between static and dynamic analysis in handling data leaks
that depend on external inputs. Such a situation shows that
a leak will be triggered given some external inputs (input-
sensitive leaks). Dynamic analysis would tend not to report
this as a leak, because the analysis cannot firmly ensure
that the leaking path will be visited. On the contrary, static
analysis tends to treat the path as leaking as long as it finds
one possible input that could lead to a leak. Under such
circumstances, both analyses are guessing if the leaking path
will be visited (dead code or not) based on unknown external
inputs.

A better indicator for this situation is to determine whether
this data leak is user-intended or not [3]. If the input is
a user input, then probably the user agrees to let the app
send the data and thus such input-sensitive leaks should
not be labeled as actual leaks. If the input is a message
from an untrusted source (like the case with BeanBot),
then such input-sensitive leaks are more likely to be actual
leaks. Modeling such inputs would be an interesting future
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Figure 6: The average analysis time per app for AppAudit
and two static analysis tools. Note that FlowDroid only
finishes 61% of the samples (due to OutOfMemory excep-
tions and 10-minute timeout). Its average time only includes
successful cases.

direction for AppAudit.

E. Usability

Real Android applications are generally much larger and
more complicated than malware. To examine the practicality
of various app auditing tools, we conduct an experiment to
compare the analysis time as well as memory consumption
for existing tools and AppAudit. Our performance exper-
iment runs on a desktop PC equipped with a quad-core
3.4GHz i7-3770 processor and 8G memory, running 64-bit
CentOS 7 and Oracle Java 7.

Analysis Time. Figure 6 compares the average analysis
time per app of the three candidate program analysis tools
when examining real apps. Since AppIntent is not publicly
available, we only reference its results for malware samples.
FlowDroid and AppAudit both have two working modes.
The single mode reports only one data leak and the full mode
reports all data leaks. We choose to report the analysis time
with single mode, which is the most efficient mode for both
tools.

As shown, AppAudit performs much faster than static
analysis tools. Specifically, AppAudit performs 8.3x faster
than FlowDroid, the best-performing static analysis so far.
With long analysis time, static tools are generally not ac-
ceptable for mobile users. Meanwhile, longer analysis time
requires market operators to spend more resources to run the
analysis.

To further improve AppAudit performance, we measure
the breakdown of AppAudit analysis time. The breakdown
shows that around 30% to 40% of the analysis time is spent
on disassembling. We are planning to adopt a multi-threaded
implementation to accelerate this phase. Meanwhile, we also
discover that some functions are executed repeatedly during
the dynamic analysis and return value caching could be a
direction for optimization as well.
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Requirements Market operators Developers Mobile users
Platform server desktop mobile device

Analysis time days minutes real-time
Memory < 100G < 16G < 1G

Result granularity brief/complete complete brief

Table VII: App auditing use cases and requirements.

Memory Consumption. Memory footprint is also an im-
portant constraint of program analysis tools when examining
complicated and large real applications. AppIntent requires
32GB and FlowDroid needs about 2GB to 4GB memory by
default. Static analysis tools generally require large memory
because they need to accommodate huge data structures
(such as flow graphs and symbolic representation). The
space complexity of these data structures is proportional to
the size of the application code base. This constraint makes
static analysis memory-consuming for analyzing large real
apps.

On the contrary, dynamic analysis is more memory effi-
cient. AppAudit only requires a heap size of 256MB, which
can run on mobile devices, PCs and servers. According to
our measurement, the peak memory consumption AppAudit
is only 10% of FlowDroid in most tested cases. In our
implementation, we apply several optimizations to control
the overall memory consumption of AppAudit. First, we
trigger a manual garbage collection after the API analysis
to keep minimum analysis data structures in memory after
the static stage (e.g. bytecode of the app, its class hierar-
chy). These analysis structures take around 2MB to 20MB
memory space according to our measurement. Second, when
executing the target app, the memory consumed by the
executor is proportional to memory consumption of the
target app. When some memory objects are no longer needed
by the target app, AppAudit will also dereference them such
that they will be automatically garbage collected by the JVM
hosting AppAudit.

Use cases and requirements. We discuss the use cases
of app auditing and elaborate the requirements imposed on
the auditing tool for each case. Table VII summarizes the
three cases and their requirements. We obtain the memory
constraints with regards to the memory capacity of the
individual platform that runs app auditing.

First, app market operators demand an app auditing tool to
identify data-leaking apps uploaded to the market. Usually,
this use case demands low false positive and false negative
rates but do not have strict requirements for the time,
memory and result granularity, since the analysis commonly
runs on powerful cluster servers. AppAudit outstands for
this case for its high detection accuracy and low resource
consumption, which ensures detection quality while greatly
saves the resource investment for automatic app auditing.

The second use case of app auditing is to allow app
developers to check their apps before publishing. In this
case, developers demand the tool to report all possible

data leak problems within the capability of a development
machine, such as a desktop PC. AppAudit and FlowDroid
can both report all data leaks found in an app. When working
in the full mode, both tools require more time than the
single mode shown in Figure 6. Our measurements show that
AppAudit runs 4.7x to 7.8x slower for individual apps while
FlowDroid encounters more OutOfMemory exceptions and
observes similar slowdowns. Nevertheless, AppAudit still
manages to finish analysis within one minute and stands
for a competitive choice for this use case.

The final use case is to run auditing tools on mobile
devices and help users to avoid installing data-leaking apps.
In this case, the analysis has strict memory and time con-
straint. However, it is only expected to provide brief auditing
results, sometimes just whether the app will leak data or not.
Figure 6 shows the analysis time on a desktop PC, which
shows that AppAudit is the only tool that can fulfill this
task on mobile devices. Other tools require memory that
is unrealistic even for high-end devices nowadays. We port
AppAudit to Android and run it to check apps installed on an
LG Nexus 5 smartphone. This device is a late-2013 model
with a quad-core 2.3GHz CPU and 2GB RAM. We then
experiment the analysis time again with the mobile version
of AppAudit. The results show a 1.5x to 2.3x slowdown as
compared to Figure 6.

F. Characterization of Data Leaks in Real Apps

AppAudit uncovers 30 data leaks in 400 real apps we
collected. For all detected data leaks, we manually confirm
them by decompiling related apps and examine the leaking
code paths. Based on the reported cases by AppAudit, we
can easily characterize data leaks in terms of the leaking
component (simply the class name), the leaking sources and
venues. Table VIII summarizes our characterization results.
In this table, we crawl number of downloads to highlight the
number of affected users. We also crawl the privacy policy
of these leaking apps to clarify if data leaks are made clear
to users. Our characterization results show the following
interesting findings:

Finding 1: Most data leaks are caused by 3rd-party
advertising libraries. From Table VIII, we found that 28
out of the 30 (93.3%) detected data leaks are caused by 3rd-
party advertising libraries. As previous research [31], [1], [2]
has pointed out, 3rd-party advertising modules aggressively
request application permissions to access various personal
data. If an advertising library leaks data, it can potential
affect lots of apps.

Meanwhile, hackers have started to exploit advertising
libraries to spy on users [32]. We believe that privilege
separation [33], [34], [35] and fine-grained privilege control
will help to prevent the threats caused by these problematic
libraries. From the perspective of app developers, AppAudit
can help check their apps before publishing to the market,
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Name Component Source Venue Privacy Policy Installs (M for millions)

Texas Poker v4.0.1 App Location HTTP GET × 10M-50M
Word Search v1.14 Mobfox Location, IMEI HTTP GET app,lib 0.5M-1M

Speedtest v2.09 Mobfox Location, IMEI HTTP GET app,lib 10M-50M
Brightest Flashlight v2.3.3 MDotm, Mobclix IMEI, IMSI HTTP GET app,lib 50M-100M

Weather Underground v2.1.2 App, Mobclix Location, IMEI HTTP GET app,lib 1M-5M
Fruit Ninja (2 samples) Mobclix IMEI HTTP GET app,lib 100M-500M

Angry Birds (14 samples) Jumptap IMSI HTTP GET app,lib 300M-900M
Bad Piggies (3 samples) Jumptap IMSI HTTP GET app,lib 10M-50M

Tap Tap Revenge v4.3.3 v4.4.5 Tapjoy IMEI HTTPS GET × 0.1M
Logo Quiz v8.8 Tapjoy IMEI HTTPS GET × 10M-50M

Trial Extreme v1.28 & v2.83 Tapjoy IMEI HTTPS GET × 5M-10M
Big Win Basketball v2.0.4 Tapjoy IMEI HTTPS GET app,lib 5M-10M

Solitaire v2.1.5 Tapjoy IMEI HTTPS GET app,lib 50M-100M
Talking Tom 2 v2.0.3 Tapjoy IMEI HTTPS GET app,lib 100M-500M

Table VIII: Free apps that spread certain personal information identified by AppAudit. For the “Privacy Policy” column, a
“lib” means that the privacy policy does not cover the kind of data spread by advertising libraries.

Figure 7: The venues of data leaking.

which could effectively detect data leaks beforehand and
avoid accidentally using data-leaking 3rd-party modules.

Finding 2: HTTP requests are the most prominent
leaking venues. Figure 7 presents the leaking venues for
all data-leaking cases in malware and free app datasets.
HTTP(s) transmission turns out to be the most popular venue
to leak data, since HTTP servers can be easily configured.
This suggests that mobile application confinement tools [36],
[34], [37], [38], [39] can focus on HTTP traffic to effectively
confine data leaks.

Nevertheless, eight reported free apps transmit personal
information in plain-text forms (HTTP GET requests). Con-
sequently, some important personal information (locations
and identity) can be easily obtained by traffic sniffing in the
public. To make things worse, some of these report apps
do not have a clear privacy policy statement, which makes
users unaware of the potential risks.

Finding 3: Tracking is universal. Figure 8 presents the
breakdown of leaked data found in the malware and free app
datasets. We discover that the IMEI number and phone num-
ber is the most commonly leaked information. The phone
number is commonly sent by malware for follow-up SMS

Figure 8: The types of leaked data.

phishing. IMEI serves as the phone identity and is widely
used to track user for targeted advertising. Nowadays, each
free app is bundled with a couple of advertising libraries [1]
and the user interacts with a number of apps. IMEIs to
mobile devices is what cookies are to web browsers. Cookies
are bound to individual websites, i.e. one website cannot
access the cookies of another. However, IMEI tracking is
not bound to individual apps but to individual advertising
libraries. Thus, if two apps use the same advertising library,
the advertiser can accurately track user’s transition from one
app to another. If the data transmission between the library
and server is unencrypted, the trace can be acquired and used
to predict user habits and launch social engineering attacks.

Finding 4: Apps and advertising libraries are gaining
awareness of user privacy. We find that, apps (Word Search
and Speedtest) are gaining awareness of privacy by removing
problematic advertising libraries. We believe that AppAudit,
when integrated with IDEs, could well assist developers for
this purpose. On the other hand, we discover advertising
libraries are gaining privacy awareness as well. For example,
a newer version of the Tapjoy advertising library hashes
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IMEI before sending it to the advertising server. Given that
hashing is cryptographically hard to invert, hashing effec-
tively avoids leaking plain-text IMEIs. The newer versions
of Trail Extreme and Big Win Basketball benefit from this
simple hashing and no long leak data because of Tapjoy.
These advancements witness the improved awareness of user
privacy for both apps and advertising libraries.

VI. RELATED WORK

In this section, we introduce the related work about
analyzing mobile applications. The related approaches can
be divided into two categories. Static analysis produces
analysis results by statically analyzing various files asso-
ciated with the application. Dynamic analysis runs with
the application in real devices and reports problems when
they happen. The synergy of static and dynamic analysis
is exploited by AppAudit as well as by existing work for
various purposes [40].

A. Static Analysis

We discuss existing techniques in terms of their analysis
granularities.

Permission-based analysis. Android defines permissions
for an application to access various resources and system
services. Every application is required to declare the per-
missions it uses in its manifest file. Permissions can serve
as an approximation of application behavior, which has
been leveraged to identify malicious apps [41]. Kirin [42]
checks application permission usage with a set of security
policies. However, permission analysis cannot distinguish if
the application is abusing permissions. For example, having
the access to personal information and network capability
may not lead to the conclusion that the application will
leak personal information via the network. As a result,
permission-based analysis normally faces high false positive
when used to analyze personal information leakage [43].

API analysis. To complement permission analysis, exist-
ing approaches have made an attempt to analyze the API
usage of applications. Stowaway [31] extracts the APIs
used by an application and checks if the app is over-
demanding permissions. RiskRanker [43] uses API analysis
to quickly identify applications that have higher security and
privacy risks. API analysis refines the analysis granularity of
permission-based analysis. However, API analysis does not
consider the information flows within the application, which
fails to justify privacy leakage with detailed code path.

Dataflow analysis. Dataflow analysis is a classic program
analysis, used for information flow validation and data
reachability test. PiOS [5] performs reachability dataflow
analysis on iOS apps to identify potential privacy leaks. Con-
tentScope [6] applies dataflow analysis to detect unwanted
information leakage from personal information databases to
third-party Android applications. In general, dataflow anal-
ysis can provide more accurate and informative results than

previous analysis. However, dataflow analysis can encounter
difficulties due to the wide use of GUI and event-driven
programming paradigms in mobile apps [3].

Symbolic Execution. Symbolic execution is an alternative
code analysis to finding information leakage. Symbolic
execution faces the fundamental challenge of path explosion,
especially with event-driven GUI programs. AppIntent [3]
aims to reduce the number of paths to be executed based on
Android intent propagation rules to improve performance of
symbolic execution. Nevertheless, AppIntent still requires
minutes to hours to examine an app.

B. Dynamic Analysis

Dynamic analysis is implanted into the mobile operating
systems and monitors applications at runtime. TaintDroid [8]
applies dynamic taint analysis to various components of
Android OS, which tracks sensitive information flow and
reports to the user when sensitive information leaves the
device. AppFence [44] retrofits the Android OS to provide
fake sensitive information to the applications upon user’s
requests. VetDroid [7] dynamically records the permission
usage of untrusted applications, which is then analyzed
offline to reveal malicious behavior.

Compared with static analysis, dynamic analysis only
reports suspicious behavior that occurs at runtime. This
feature avoid false alarms and is appealing to the end user.
However, for other use cases (market-level vetting, detailed
code analysis), dynamic analysis can be limited by low code
coverage.

C. Compiler Techniques

The approximations in AppAudit are largely inspired by
analysis techniques used in just-in-time compilers. Many of
the design decisions in our execution engine is inspired by
improvements to symbolic execution, e.g. prefix symbolic
execution engine [45], directed symbolic execution [46].
Also our object representation is inspired by [47].

VII. CONCLUSION

Mobile devices carry abundant personal information. Pro-
gram analysis can effectively reveal data leaks in apps and
protect user privacy. App auditing has three major use cases.
First, app market operators require automatic tools to detect
and remove data-leaking apps. Second, app developers need
to perform self-check before publishing apps. Third, mobile
users expect to know if an app is leaking data before
installation.

In this paper, we design AppAudit, an efficient analysis
framework that can deliver high detection accuracy with
significantly less time and memory. AppAudit comprises
a static API analysis that can effectively narrow down
analysis scope and an innovative dynamic analysis which
could efficiently execute application bytecode to prune false
positive and confirm data leaks.
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According to our experiments on read-world malware
and apps, AppAudit achieves a 99.3% true positive rate
(comparable to static analysis) and no false positives. Most
importantly AppAudit performs 8.3x faster than the state-of-
the-art static analysis tools, which makes it the only solution
viable for important use cases of app auditing.
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