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Abstract—Modern web applications make frequent use of
third-party scripts, often in ways that allow scripts loaded
from external servers to make unrestricted changes to the
embedding page and access critical resources including private
user information. This paper introduces tools to assist site
administrators in understanding, monitoring, and restricting
the behavior of third-party scripts embedded in their site. We
developed ScriptInspector, a modified browser that can inter-
cept, record, and check third-party script accesses to critical
resources against security policies, along with a Visualizer tool
that allows users to conveniently view recorded script behaviors
and candidate policies and a PolicyGenerator tool that aids
script providers and site administrators in writing policies. Site
administrators can manually refine these policies with minimal
effort to produce policies that effectively and robustly limit
the behavior of embedded scripts. PolicyGenerator is able to
generate effective policies for all scripts embedded on 72 out of
the 100 test sites with minor human assistance. In this paper, we
present the designs of our tools, report on what we’ve learned
about script behaviors using them, evaluate the value of our
approach for website administrator.

1 INTRODUCTION

Modern web applications combine code from multiple

sources in ways that pose important security and privacy

challenges. Running as the same principal as the host, third-

party scripts enjoy full access to host resources including

sensitive user information and can make arbitrary modifica-

tions to the page. Some amount of access is necessary to

provide the desired functionality — advertising scripts need

to insert ads into the page, and analytics scripts need to read

cookies and track user’s behavior on the page. However,

opening up access to all resources to allow such limited

behavior is potentially dangerous. For example, an attacker

who compromises hosts serving the Google Analytics script

would be able to completely control more than 50% of the

top websites [23, 30].

Several prior works have demonstrated the threat ma-

licious embedded scripts pose to user security and pri-

vacy [6, 17]. Sites hosting scripts can be compromised,

enabling attackers to deploy malicious scripts on unsus-

pecting websites [13]; scripts from respectable advertising

networks may sub-contract space to increasingly less re-

spectable networks, eventually leading to malicious scripts

being included in prominent websites such as nytimes.com
and spotify.com [31]. Responsible site administrators need

a way to understand and limit the behavior of embedded

scripts, especially those coming from servers outside their

control. Without this, there is no way a site can stand behind

its privacy policy short of eliminating sensitive content

from pages that embed third-party scripts or disavowing

responsibility for anything those scripts do.

However, JavaScript’s dynamic nature makes it very hard

to reason about the behavior of embedded scripts. Prevalent

use of obfuscation and compression makes the code hard

to analyze statically. Further, window.eval, document.write,

and script element injections may introduce new executable

code on-the-fly so that dynamic analysis techniques like

symbolic execution will not work well either, especially

when JSONP/AJAX requests are used to fetch additional

code. JavaScript symbolic analysis tools (e.g. [5, 26]) of-

ten ignore calls to eval because constraint solvers cannot

efficiently and soundly solve dynamically generated code

inside eval. Recent improvements in such solvers [32] still

lack soundness and completeness and are unable to handle

typical scripts.

Contributions overview. We present and evaluate the design

of a tool chain, depicted in Figure 1, intended to help

site administrators understand and monitor the behavior of

embedded scripts. This involves capturing the behaviors

of embedded scripts precisely enough to develop effective

policies. Section 2 explains how we define policies and
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Figure 1: Overview
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presents our supported policy permissions. A policy can be

of two types — base or site-specific. A base policy for a

script is a generic policy that should cover shared behavior

of most embedding sites, while a site-specific policy is devel-

oped by site administrators to capture customized behaviors.

The primary contributions of this paper are the design and

evaluation of three closely integrated tools (highlighted as

rounded rectangles in Figure 1). These tools are available

under open source licenses at ScriptInspector.org.

ScriptInspector. ScriptInspector (Section 3) is a modified

version of the Firefox browser that is capable of intercepting

and recording API calls from third-party scripts to critical

resources, including the DOM, local storage, and network.

Given a website URL and one or more script policies, Script-

Inspector records accesses that violate the policy. When

no policies are given, all resource accesses by scripts are

recorded in the instrumented DOM. ScriptInspector is able

to attribute accesses to responsible scripts, even when the

call stack includes more than one party and when scripts

are injected into the DOM.

Visualizer. The Visualizer (Section 4) is a Firefox extension

that uses the instrumented DOM maintained by Script-

Inspector to highlight nodes accessed by third-party scripts

and help a site administrator understand script behaviors.

When given a set of permission candidates, the Visualizer

can also be used to draw the matching nodes on the

page to help site administrators develop effective policies

(Section 7.2). Section 5 reports on our experiences using

Visualizer to understand frequently-embedded scripts, and

Section 7.2 describes our experiences using it to develop

policies for popular websites.

PolicyGenerator. Since web pages embed many scripts

with complex behaviors, it would be tedious and error-

prone to attempt to develop access control policies for each

script manually. We developed PolicyGenerator to help site

administrators develop effective policies with limited human

intervention. PolicyGenerator uses information recorded by

ScriptInspector to infer candidate permissions. Site admin-

istrators can review the generated policies using Visualizer.

Section 6 explains how PolicyGenerator works and eval-

uates the quality of the policies it generates for scripts

embedded in popular websites. For 72 of the 100 tested

sites, PolicyGenerator finds effective, high-coverage policies

for all embedded scripts with minimal human effort. We

evaluate the robustness of developed policies in Section 8.

Threat model. The goal of our work is to provide site

administrators with a way to ensure the integrity of their site

and protect the privacy of their users from embedded scripts.

We are concerned with both malicious scripts provided

by deceptive script providers and corrupted scripts result-

ing from compromises of external sites hosting embedded

scripts. We focus on detecting sensitive resource leaks (such

as user email addresses and shopping cart contents) and

unintended page modifications (such as injecting advertise-

ments in unintended places), but consider attacks that exploit

system vulnerabilities such as drive-by-downloads and heap

sprays out-of-scope.

By default, we assume that scripts from different domains

are not colluding (or simultaneously compromised by the

same attacker). Access control policies for multiple domains

need to be merged and re-evaluated when a possible collu-

sion scenario is suspected.

We are concerned with large-scale compromises of web-

site users, not targeted attacks on high-value individuals. Our

focus is on a defense that is robust and capable of handling

complex scripts (so must be a dynamic analysis), and that

can be performed by a site administrator without needing

any control over clients (so assumes the site administrator

sees similar script behaviors in test browsers as clients

will locally). In particular, our techniques are not designed

to address the case where an adversary hosting a script

serves a different script to targeted users based on their IP

addresses or designs a script that only behaves maliciously

after detecting a particular browser fingerprint. We discuss

the possibilities and challenges for enforcing policies at

runtime on the client-side in Section 10.

2 POLICIES

A policy is just a set of permissions that describe the

permissible behaviors for a script. Our goal is to develop

policies that are precise enough to limit the behavior of

a script to provide a desired level of privacy and security,

without needing to generate custom policies for each page

on a site. Further, as much as possible, we want to be

able to reuse a script policy across all sites embedding that

script. The challenge is the way a script behaves depends

on the containing page and how the script is embedded,

especially in the specific DOM nodes it accesses. Our solu-

tion to this aims to make the right tradeoffs between over-

generalizing policies and requiring page-specific policies,

which we believe would place an unreasonable burden on

site administrators.

Policies are described by the following grammar:

Policy ::= Permission*

Permission ::= [NodeDescriptor:]Action[:Param*]

Action ::= LocalStorage | BrowserConfiguration |
NetworkRequest | DOMAPI

We explain different types of actions in Section 2.1 and node

descriptors in Section 2.2. Section 2.3 addresses the problem

of interference between permissions.

2.1 Resources

The main resource accessible to scripts is the web page

content, represented by the Document Object Model (DOM)

in the browser. DOM access includes all reads and modifica-

tions to the DOM tree, including node insertion and removal,
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reading its innerHTML, and setting or getting attributes.

For DOM permissions, the Action is the DOM API itself

(e.g., appendChild) and the NodeDescriptor (see Section 2.2)

specifies the set of nodes on which the action is allowed.

The NodeDescriptor can be omitted to allow an API to

be called on any DOM node. The argument restriction is

also optional as some APIs may be called without any

argument. Arguments are represented as regular expressions

that match strings or nodes. A node used in an argument

is matched by its outerHTML. In certain scenarios, the site

owner may need to make sure the node in the argument

is a node that was created by a third-party script (e.g., a

node created by an advertising script to display ad content).

To enable this restriction, the [o] (stands for ‘owned’)

tag may be inserted before the argument. For example,

// DIV:RemoveChild:[o]<img src=‘pic.jpg’> allows the third-

party script to remove an image, with the restriction that the

image element must have been created by a script hosted by

that same party (not from the original host).

In addition to the DOM, scripts have access to other

critical resources. These accesses are only allowed if a per-

mission allowing the corresponding Action is included in the

policy. These permissions do not include NodeDescriptors,

since they are not associated with particular DOM nodes.

Local storage. Accesses to document.cookie require the

getCookie or setCookie permission, while all other accesses

to local storage APIs (such as the localStorage associative

array and indexedDB) require the localStorage permission.

Browser configuration. Third-party scripts may access

user-identifying browser configuration, possibly to serve

customized scripts to different user groups. However, such

information can also be used to fingerprint browsers [2]

and identify vulnerable targets. ScriptInspector ensures all

accesses to these objects require corresponding permissions.

For example, the navigator.userAgent action permission

allows a script to obtain the name and version of the client

browser.

Network. Ensuring third-party scripts only communicate

with intended domains is critical for limiting information

leakage. A script can initiate a network request many ways,

including calling document.write or related DOM insertion

APIs, setting the src attribute of a img node, submitting

a form with a carefully crafted action attribute, or send-

ing an explicit asynchronous JavaScript request (AJAX).

Regardless of the method used to access the network,

transmissions are only allowed if the policy includes the

network permission with a matching domain.

2.2 Node descriptors

A node descriptor is an optional matching mode (intro-

duced later in this section) followed by a node representa-

tion:

NodeDescriptor ::= [MatchingMode:] NodeSelector

NodeSelector ::= AbsoluteXPath | SelectorXPath |
RegexpXPath | ˆ NodeSelector

MatchingMode: ::= sub | root

Absolute XPaths. A DOM node can be specified using

an absolute XPath. For example, /HTML[1]/BODY[1]/DIV[1]/
is an absolute XPath that specifies the first DIV child of

the BODY element of the page. Absolute XPaths are often

useful for matching generic invisible tracking pixels injected

by third-party scripts.

Attribute-based selectors. Nodes can also be specified

using Selector XPaths. For example, // DIV[@class=‘ad’]
specifies the set of all DIVs that have the class name ad.

This permission is often used to capture the placeholder

node under which the third-party scripts should inject the

advertisements. Using a selector may compromise security

in that there might be other nodes on the webpage that can

be accidentally matched using the same selector. Therefore,

care has to be taken to make the selectors as restrictive as

possible to avoid matching unintended elements. We discuss

how the PolicyGenerator can assist administrators to achieve

this goal in Section 7.1. Another concern is that a third-

party script may modify the node attribute to make that node

match the selector on purpose. To prevent this, the policy

must not allow calls to modify the attributes used in selectors

(see Section 2.3).

Regular expressions. To offer more robustness and flex-

ibility, our node selector supports regular expressions in

XPaths.1 We found this necessary since many sites intro-

duce randomness in page structure and node attributes. For

example, we found that websites may embed an advertise-

ment by defining its placeholder DIV’s ID as a string that

starts with “adSize−”, followed by the size of the ad (e.g.

300x250). We use this descriptor to specify these nodes:

// DIV[@ID=‘adSize−\d∗x\d∗’].

Contextual selectors. A node may be described by another

selected node’s parent. This is especially convenient when

the accessed node does not have any identifying attribute,

but one of its children does. We support this by allowing a

caret (ˆ) to be added before a node selector to indicate how

many levels to walk up the tree when looking for a match.

For example, ˆˆ// DIV[@ID=‘adPos’] specifics the node two

levels above the DIV element whose id is adPos.
Similar to the parental context, a node can be de-

scribed as another selected node’s child node. For example,

// DIV[@ID=‘adPos’]/DIV[2] specifies the second DIV child of

the DIV element whose id is adPos.

Matching mode. Many site-specific DOM accesses happen

as a result of advertising and widget scripts injecting content

1XPaths that accept regular expressions have been proposed for XPath
3.0, but are not yet supported by any major browser.
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into the page. These scripts often follow similar access

patterns, and we define two matching modes that can be

used to adjust matching. When no mode is provided, only

nodes specified by the given node representation match.

The subtree matching mode matches all children of

nodes that are matched by the node selector. For example,

sub://DIV[@id=‘adPos’] selects all children of the DIV ele-

ment whose id is adPos. This matching mode is particularly

useful for scripts such as advertising and social widgets that

add content into the page. They often touch all children

of the placeholder node. However, the node structure inside

the injected node may be different between requests, making

it hard to describe using the strict-matching mode. In this

scenario, a policy that limits script access to a subtree is

more plausible.

Root mode covers all nodes that are ancestors to the se-

lected node. For example, root :// DIV[@id=‘adPos’] describes

all ancestor nodes of the DIV element whose id is adPos.

Listing 1 Script access pattern example

/BODY[1]/DIV[3]/DIV[4]/DIV[1]:AppendChild:...

/BODY[1]/DIV[3]/DIV[4]:GetClientWidth

/BODY[1]/DIV[3]:GetClientWidth

/BODY[1]:GetClientWidth

We use a commonly seen advertising script access pattern,

shown in Listing 1, to explain why this is useful. In this

example, the actual meaningful operation is done on the

node described in the first line, but the script accesses all of

its ancestor nodes. The APIs called on these nodes usually do

not reveal much information, e.g. GetID or GetClientWidth.

We suspect this is due to the script using a JavaScript library

helper such as jQuery. To capture this behavior pattern, the

root matching mode can be used to match all three accesses

to GetClientWidth in Listing 1, as shown here:

/BODY[1]/DIV[3]/DIV[4]/DIV[1]:AppendChild
root :/BODY[1]/DIV[3]/DIV[4]/DIV[1]:GetClientWidth

2.3 Permission interference

Attribute-based selectors open the possibility that one

permission interferes with another, undesirably extending the

collection of matched nodes and allowed APIs. For example,

suppose the following two permissions were granted:

// DIV[@class=‘tracker’]:SetId
// DIV[@id=‘adPos’]:AppendChild

The first permission allows the id attribute to be set on

any DIV node that has a certain class; the second allows

appendChild to be called on any DIV node that has a certain

id. In combination, they allow the script to set id attribute

of any DIV that has class tracker, thus gaining permission

to call appendChild on those nodes.

Manually-created policies need to be carefully examined

to exclude the use of certain attributes as selectors if policies

from the same third party allows them to be set freely. The

PolicyGenerator tool is designed to automatically avoid such

conflicts (Section 7.1).

Sometimes the site owner wants to grant third-party

scripts permission to call any API on certain nodes (e.g.,

placeholder nodes to be replaced by ads or widgets). How-

ever, enabling a wild card action that matches all DOM

APIs is dangerous due to possible interference scenarios. To

support this scenario, we created a special action denoted by

the exclamation mark to indicate all API calls except those

that may cause policy interferences.

For example, the permission, // DIV[@class=‘content’]:!,
allows the script to call any API on any DIV node

with class content, except ones that may set the class at-

tribute to prevent self-interference. Similarly, the permission,

// DIV[@id=‘adPos’]:!, allows any API on the DIV with id

adPos, except for ones that may set its id attribute. However,

when these two permissions co-exist for a script, they will

forbid API calls to both setClass and setID, to prevent self

and mutual interference. This feature proved to be extremely

helpful in our evaluation (Section 7.2).

3 INSPECTING SCRIPT BEHAVIOR

ScriptInspector is a tool for inspecting the behavior of

scripts, focused on monitoring how they manipulate re-

sources and detecting violations of the permissions we

defined in Section 2. Next, we explain how ScriptInspector

records third-party script behavior. Section 3.2 discusses

how the records are checked against policies or output to

logs for admin’s inspection.

3.1 Recording accesses

ScriptInspector is implemented by modifying Firefox to

add hooks to JavaScript API calls. ScriptInspector records

all API calls made by scripts that involve any of the

critical resources mentioned in Section 2.1. Modifications

are primarily made in the DOM-JS binding section, and

approximately 2000 lines of code were added. The modified

browser retains the same functionality as a normal browser,

with the addition of access recording capability.

DOM access recording. We modified Firefox’s C++ im-

plementations of relevant DOM APIs such as insertBefore,

setAttribute and document.write to record DOM accesses.

Complete mediation is ensured as Firefox uses a code

generator to generate the C++ implementation according to

the defined interfaces, and our modifications are inserted to

the code generator, rather than individual implementations.

ScriptInspector augments each DOM node with a hidden

field to record accesses to that node. For each access,

the caller identity as well as the API name and optional

arguments are recorded in this hidden field. Thus, function

call information is preserved with the node for the node’s
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lifetime. We discuss necessary steps to address node removal

events in Section 3.2.

Recording other actions. For non-DOM resources, we also

add hooks to their C++ implementations. Since these calls

are not tied to a particular node, the caller records are stored

in the hidden field on the document object of the page.

Script-injected nodes. To support the [o] tag (Section 2.1),

ScriptInspector tracks the ownership of a node by aug-

menting node-creation APIs such as document.write and

document.createElement. If a third-party script creates a

node and inserts it into the document, we record the respon-

sible party as that node’s owner. This feature is especially

useful since the host can simply ignore accesses to third-

party owned nodes and ensure its own nodes are not used

in any arguments.

Attribution. Correctly attributing actions to scripts is impor-

tant, since policies are applied based on the domain hosting

the script. To obtain the identity of the caller, ScriptInspector

leverages existing error handling mechanisms implemented

in Firefox. Firefox’s JavaScript engine, SpiderMonkey, pro-

vides a convenient API to obtain the current call stack.

It contains information about the script’s origin and line

number, which are all we need to attribute the accesses.

Additionally, a site administrator can provide ScriptInspector

with a list of whitelist domains. When a call takes place,

ScriptInspector records all third party domains on the stack,

except for host domain and whitelisted domains.

The call stack information is sufficient to correctly at-

tribute most introduced dynamic inline code (e.g., through

eval or document.write), but falls short when an inline event

handler is registered to an object and is later triggered.

ScriptInspector currently cannot handle this scenario and we

rely on future Mozilla patches to fix this issue.

3.2 Checking policies

To check recorded accesses against a given policy, Script-

Inspector introduces the checkPolicy function. When this

function is called, ScriptInspector walks the DOM tree,

collects all DOM accesses and other accesses stored in

the document node, and checks them against the policy.

The violating accesses can be used for visualization by the

Visualizer (Section 4) or as input to PolicyGenerator to use

in automatic policy generation (Section 6). A log file is

also produces for site administrators to inspect manually

(an example log file with violations serialized to absolute

XPaths is shown in Listing 1).

As opposed to the straightforward design of recording

and serializing violations as the accesses happen, our design

only records them at access time, but collects and serializes

the access records when the page unloads. The additional

complexity here may be counter-intuitive; however, such a

delay is important for improving the robustness of DOM

permissions. For example, a third-party script may obtain the

height of a node before the host script sets its id to ‘adPos’.

In this case, the permission // DIV[@id=‘adPos’]:GetHeight
cannot cover this access if the policy is checked immedi-

ately, since its id is yet to be set to ‘adPos’. Due to the

nondeterministic execution order of scripts, checking policy

when the access happens is not a good choice.

However, this leaves opportunities to evade mediation

if a script reads content of a node and later removes

that node. To eliminate this leak, we tweak the APIs that

directly (e.g. removeChild) or implicitly (e.g. setInnerHTML)

remove DOM nodes: ScriptInspector automatically performs

checkPolicy on the to-be-removed nodes and stores the

violations into the hidden field of its owner document before

they are actually removed.

4 VISUALIZATION

To visualize the access violations and permission candi-

dates, we built Visualizer, a ScriptInspector extension that

takes the instrumented DOM and accesses as input, offers

a convenient user interface (shown in Figure 2) to display

the page content that is read or modified by the third party.

We envision Visualizer being used by concerned site admin-

istrators who hope to gain insight as to how the embedded

scripts interact their websites. With this goal in mind, we

next describe using Visualizer from the perspective of a site

administrator seeking to understand the behaviors of scripts

on her site. We present some interesting discoveries from our

experiments visualizing script behaviors in Section 5. The

Visualizer may also be used to visualize the node collections

that are matched by a permission. This can be used together

with the PolicyGenerator to help administrators make their

decisions (see Section 7.1).

Figure 2 is a screenshot of visualized accesses at foxnews.
com. The left sidebar displays the domains of all third-party

scripts embedded on the page (googleadservices.com and

googlesyndication.com shown in the screenshot), and the site

administrator may click a domain (googlesyndication.com in

this example) to expand it and highlight the nodes access by

scripts from that domain.

Visualizer classifies DOM accesses into three subcate-

gories — getContentRecords (reading the content of a node,

e.g. getInnerHTML), setterRecords (modifying the attribute

or content of the node), and getterRecords (reading proper-

ties of a node other than the content itself). These categories

help administrators quickly locate the accesses of interest.

Uses may click on these categories to further expand them

into individual accesses.

Users may hover over each entry to highlight the accessed

node on the right side. They may also click on a category

to see all nodes that were accessed that way (enclosed by

double blue border and covered in a faint blue overlay in

the screenshot). For accesses to nodes that any third-party

owns (See Section 2.1), the entry is displayed in green and
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enclosed by a dashed border. In Figure 2, the scripts form

googlesyndication.com, representing one of Google Ad net-

works, accessed non-content properties of its own inserted

ads on foxnews.com. Upon seeing this, the administrator may

proceed to make decisions to approve embedding Google

Ads on their site.

5 FINDINGS

We used ScriptInspector and Visualizer to examine the top

200-ranked US websites from Alexa.com. Assuming the role

as their administrators, we aim to understand how resources

are accessed by embedded scripts. We created accounts

at these sites and logged into them if possible. We also

attempted some typical user actions on these sites, such as

adding merchandise into cart for e-commerce websites, and

visiting user profile pages for sites that support login.

Browser properties. Almost all of the tested third-party

scripts access a number of generic properties of the browser

including the navigator, screen object, and some properties

of root DOM nodes such as the document and body element.

Although this information information could also be used

for fingerprinting browsers [2], we consider this behavior

reasonable for most scripts since they determine what con-

tent to serve based on the browser’s vendor and version

(navigator.userAgent), and user’s screen size (screen.height
or body.clientHeight).

Network. Another unsurprising but concerning fact is that

most scripts we observed send out network requests, at least

to their own host servers. Quite a few advertising scripts

(e.g., googleadservices.com, moatads.com) also send re-

quests to many other destinations (mostly affiliate networks).

Modifying page content. Advertising scripts and social

widget scripts often modify the container page by injecting

or replacing placeholders with content in the page, as seen

in Figure 2. In addition, multiple tracking scripts insert

3P Owned ([o]) nodes Displaying nodes 

Figure 2: Visualizer interface

Figure 3: Script reading EddieBauer’s shopping cart

tracking pixels and scripts from other tracking companies,

and advertising scripts may inject other scripts from affiliate

programs. However, it is hard for us to determine if such

modifications violate the site administrator’s expectations.

Reading page content. Finding scripts that read specific

page content was less common, but we did observe this

for several scripts. The content read ranges from a specific

element to the full document. Reading page content may

compromise user privacy. Visualizer alerts the site adminis-

trators to scripts that read page content by presenting them

in a different category, especially when network access also

happens in the same session.

Scripts from adroll.com read the DOM element that dis-

plays the SKU number of online merchandises on certain

e-commerce pages. We initially discovered this when using

Visualizer on newegg.com, but later found similar behaviors

on dx.com and bhphotovideo.com. We manually examined

Adroll’s script after using deobfuscation and code beautifiers,

and found out that it indeed contains case-switch statements

to handle many particular e-commerce site layouts.

According to Adroll’s company website, the script is

used for ad-“retargeting” purposes. This means the company

learns the user’s purchasing interests from shopping sites

that embed the script, and then displays relevant advertise-

ments to the user on other sites, hoping for a better conver-

sion rate. It seems likely that in this case Newegg agreed

to embed the adroll.com scripts, however, its users have no

idea their detailed interactions with newegg.com are being

tracked by an external service. Newegg’s privacy policy

states vaguely that it may employ third-party companies to

perform functions on their behalf and the third parties have

limited access to user’s personal information, but nothing

that suggests user’s shopping actions are immediately re-

vealed to third parties.

Similar behaviors were observed on other e-commerce

sites (e.g., autozone.com, eddiebauer.com) involving other

third-party service providers (e.g., monetate.com, certona.
com, tiqcdn.com). For example, a script from monetate.com
that is embedded by EddieBauer’s site accesses and trans-

855855



Figure 4: Script sending out EddieBauer’s shopping cart

information

mits user’s shopping cart information (Figure 3). Figure 4

shows a captured form submission request in Fiddler [16]

that was initiated by a script from monetate.com, with

red box highlighting the cart information, and blue box

highlighting the product page.

In another case, crwdctnrl.net scripts read user inputs on

some sites. On ask.com, the script reads the main text input

box used by users to submit questions. On weather.com, it

reads the text input in which the user enters their zip code

or address to request local weather. The script subsequently

sends traffic back to its own server, although we are not able

to confirm that the traffic leaks the user input.

Many scripts occasionally read certain properties from a

particular node type, for example, scorecardresearch.com
scripts read all images’ outerHTML on allrecipes.com. Since

allrecipes.com’s user login information is included as an

attribute of user’s login avatar, comScore (the company

who operates scorecardresearch.com) may obtain user’s

information through the image accesses. Other commonly

accessed tag/attribute pairs include getting the href attribute

of all a elements or the content attribute of all meta elements.

Either of these may contain sensitive information.

The most concerning scenario comes from the sites that

embed krxd.net scripts, which consistently read all content

of the embedding host page. This includes all values of all

text nodes, and innerHTML of all elements. We have also

observed that scripts from this domain send requests to at

least 25 different domains, requesting additional scripts and

tracking pixels. We find this behavior appalling, and cannot

fathom the reasons behind it by looking at its description on

Krux’s company website.

6 DEVELOPING BASE POLICIES

The base policy for each script is a policy intended to

be used across all sites that embed that script. Obtaining

a script’s base policy only requires a one-time effort, with

perhaps additional work required to update the policy when

the script is modified significantly. Hence, it is not necessary

to automate developing base policies. In deployment, the

base policies could be centrally maintained and distributed,

either by the script’s service provider (perhaps motivated to

disclose its behavior to earn the trust of potential integra-

tors), or by a trusted security service.

In this section, we report on our experience using the logs

generated by ScriptInspector to develop base policies for 25

popular third-party scripts. The PolicyGenerator and Visual-

izer are often not needed to develop base policies (especially

for the script’s author who should already understand its

expected behavior), as the base policy often does not contain

specific DOM accesses.

6.1 Evaluation method

We manually developed policies for 25 selected scripts.

The manual effort required to develop these policies limits

the number of scripts we can examine. However, the scripts

we examined are the most popular ones among their respec-

tive categories, and our experience from Section 5 indicates

that their behavior is a good representation of extant third-

party scripts.

To select the 25 scripts, we first took the 1000 highest-

ranked websites from alexa.com and visited their homepages

repeatedly over a week, crawling pages to collect embedded

scripts. We extracted all third-party scripts seen in this pro-

cess, and sorted them based on the number of occurrences.

We took the top 25 on the list and manually visited 100 sites

which embed each script, sampled randomly from the 1000

sites on the alexa.com list.2

Of those 100 sites, 77 include user registration and login

functionality. For each of these, we manually created a test

account and logged in to the website to mimic a typical

user’s experience. After user sessions are prepared, we

first visit each site’s homepage, follow links to navigate to

several subpages, and call document.checkPolicy to output an

access report. We repeat this process until no new accesses

are seen in five consecutive requests. We then manually

extract the most commonly observed accesses to form the

base policy. Our overall goal in writing base policies is to

allow all behaviors that an integrator is likely to encounter

without over-generalizing. The base policy should contain

mostly special API accesses and generic DOM accesses to

the root elements of the page (document, body and head).

However, if certain DOM accesses with fixed patterns are

seen consistently, they are also included in the base policy.

6.2 Base policy examples

For clearer presentation, we discuss base policies orga-

nized by grouping scripts into four categories: analytics,

advertising, social widgets, and web development.

Analytics. Analytics scripts are typically transparent to the

site visitors and do not affect the functionality or visual out-

put of the embedding webpage. Their base policies include

a fixed group of sensitive APIs such as setting and reading

document.cookie, but not any specific DOM accesses.

2In selecting the container sites, we excluded inappropriate sites includ-
ing those which the embedded scripts do not access anything, trivial sites
that have few subpages and content, sites with objectionable content (e.g.,
porn), and foreign language sites for which we were unable to register and
login. The full list is available at ScriptInspector.org/sites.
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Policy 1 Google Analytics Base Policy

/HTML[1]/BODY[1]:GetId; /HTML[1]/BODY[1]:ClientHeight;
/HTML[1]/BODY[1]:ClientWidth; /HTML[1]:ClientHeight;
/HTML[1]:ClientWidth;

navigator.javaEnabled, navigator.language,
navigator.plugins; navigator.cookieEnabled;
navigator.userAgent; screen.height; screen.width;
screen.colorDepth
GetCookie; SetCookie

NetworkSend:doubleclick.net; NetworkSend:google.com;
NetworkSend:google−analytics.com

/HTML[1]/HEAD[1]>InsertBefore:\[o\]
<script[ˆ<>]∗></script>

As the most frequently embedded script by far, Google

Analytics exhibits a very stable behavior pattern described

by Policy 1. Other than the final permission, all its accesses

can be categorized into three categories: 1) Generic DOM

access: reading the size of the body element; 2) special

property access: testing the browser’s configuration, read-

ing and writing cookies; and 3) network access: sending

information back to Google Analytics servers via setting the

src property of an image element. This reassures the site

owner that the Google analytics script is not accessing site-

specific information or making content changes to the site.

The final permission is needed because the Google Analytics

script inserts dynamically-loaded scripts into the page. The

\[o\] limits the insertions to nodes owned by the script. The

parameter is a regular expression that specifies the element

type inserted must be a script. Note that the network policies

still apply, restricting the domain hosting the dynamically-

loaded script. Also, recall that this same base policy still

applies to any scripts from the same domain due to our

access attribution implementation, so dynamically loading

scripts does not provide extra capabilities.

Another popular embedded script, Quantcast analytics,

exhibits similar behavior with the addition of reading the

content attribute of all meta elements. Common practice

suggests using these attributes to mark keywords for the

document, so Quantcast is likely collecting these keywords.

In sites that embed Chartbeat analytics, the src attributes

of all script elements on the page are read by Chartbeat,

along with href and rel attributes of link elements. This is

a somewhat surprising, yet common behavior that was also

observed for several other scripts. Chartbeat also maintains

a heartbeat message protocol with the backend server and

multiple request-response pairs are observed per session.

All the major analytics scripts appear to have sufficiently

limited behaviors that containing sites will not need site-

specific policies. Base policies can cover all observed be-

haviors without including any permissions that allow access

to obviously sensitive resources and content-changing APIs.

Advertisements. Google offers the most widely used adver-

Policy 2 Google Adsense Base Policy Excerpt

(permissions similar to those in Policy 1 are omitted)

//: GetAttribute :data−ad−container; //: GetId

// DIV[@id=‘div−gpt−ad−.∗’]:!

/HTML[1]/BODY[1]:document.write:
<img src=‘googleadservices.com’/>

tising service through AdSense and DoubleClick. Policy 2 is

an excerpt of the policy for googleadservices.com, whose

behaviors are representative of most advertising scripts.

The AdSense script accesses several browser properties

similar to the analytics scripts, but also injects advertise-

ments into the page and often inserts a hidden empty frame

or tiny image pixel for bootstrapping or tracking purposes.

The tracking pixels are always injected into the body or

document element, and the last permission in Policy 2 allows

such behavior.

The node where the actual advertisements are injected,

however, varies from site to site. As a result, the base

policy only covers the most popular use, described by the

// DIV[@id=‘div−gpt−ad−.∗’]:! permission. This allows any

APIs to be called on a node whose id starts with div-
gpt-ad-, except those that may modify attribute names in

node descriptors of itself and any other permissions that

belong to the same script. Behaviors of other ways of

integrating AdSense need to be covered by site-specific

policies (Section 7).

Scripts from moatads.com, rubiconproject.com, adroll.
com and adnxs.com all exhibit similar behaviors to Google

advertising scripts. In addition, the moatads.com scripts

occasionally read the src attribute of all script and img
elements. This behavior is dangerous and could result in

information leakage. Since it is observed on many containing

sites, however, we add it to the base policy despite the

fact that it may only happen once in many visits. Scripts

from betrad.com also access localStorage APIs, presum-

ably adding an extra tracking approach should the user reject

or delete their cookie.

Compared to analytics scripts, the advertising scripts

exhibit behaviors that vary substantially across sites. Hence,

additional site-specific permissions are often necessary to

accurately describe their behavior. The base policies for

ad scripts also include more permissions, such as reading

attributes of all nodes with a certain tag name and appending

ad contents and tracking pixels to the body element.

Social widgets. Social widget scripts behave similarly to

advertising scripts. As an example, Policy 3 shows the base

policy for twitter.com scripts which includes permissions

for getting and setting twitter-specific attributes, accessing

content size, injecting content, and replacing placeholders

of the page. As we see in Section 7, social widget scripts

often require site-specific policies.
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Policy 3 Twitter Base Policy Excerpt

//: GetAttribute :data−.∗; //: SetAttribute :data−twttr−.∗;
//: ReplaceChild:[o]

<iframe data−twttr−rendered=‘true’></iframe>
<a class=‘ twitter−share−button’></a>

sub :ˆ//A[@class=‘twitter−share−button’]:GetAttribute:height

Web development. Finally, we consider web development

scripts such as web A/B testing scripts from optimizely.com
and the jQuery library hosted on googleapis.com. Due to

their broad purpose, the behavior of these scripts differs

significantly from those in the previous three categories.

For example, the optimizely.com script modifies all “com-

ment” buttons on guardian.com, inserts a style element on

magento.com, but did not access any part of the DOM on

techcrunch.com. What these scripts do is depends a great

deal on how the site owners use them.

Effective base policies cannot be developed for these

scripts — their behavior varies too much across sites and

even across requests on the same site. Web developers using

these scripts would need to develop a custom policy for

them, based on understanding what the script should do

given their intended use.

7 DEVELOPING SITE-SPECIFIC POLICIES

Site-specific policies are needed for scripts that require

different permissions depending on how they are embedded.

To aid site administrators in developing appropriate site-

specific policies, we developed the PolicyGenerator tool to

partially automate the process. The PolicyGenerator gener-

ates permission candidates based on violations to existing

policies reported by ScriptInspector. The site administrator

can use Visualizer to examine the candidate permissions

and either select appropriate permissions to include in the

script’s policy or decide not to embed the script if it requires

excessive access. Section 7.1 introduces the PolicyGenerator

tool and Section 7.2 reports on our experience using it.

7.1 PolicyGenerator

With the base policies in place, the site-specific per-

missions typically need to allow access to specific DOM

elements such as placeholders for advertisements. Our key

observation behind the PolicyGenerator is that although

absolute properties of these nodes vary across different pages

and requests, good selector patterns can often be found

that hold site-wide, due to consistencies within the web

application design. For example, the DOM representations

of the access nodes often have some common property such

as sharing a class which other elements on the same page

do not have.

For example, consider these two CSS selectorsdescribing

advertisements observed on two requests to mtv.com:

div#adPos300x250
div#adPos728x90

These ad containers have different ids, but their id always

starts with the string ‘adPos’, followed by a pair of height

and width parameters. Patterns like these are straightforward

for site administrators to understand and can be inferred

automatically from access reports.
To use PolicyGenerator, the user starts ScriptInspector

with the PolicyGenerator extension. ScriptInspector is con-

figured to load base policies from a file to provide the initial

base policy for the scripts. The user visits the page of inter-

est, and then clicks on the PolicyGenerator extension button

to start the process. PolicyGenerator generates permission

candidates, which are presented to the user using Visualizer.

The user can then select permissions to add to the site-

specific policy for the script. The user can continue visiting

additional pages from the site, invoking PolicyGenerator,

and refining policies based on automated suggestions.
When the user invokes PolicyGenerator, it obtains a list

of violating records from the instrumented DOM by calling

document.checkPolicy. It initially generates a set of simple

tag permission candidates which match DOM accesses only

by their node name, API name, and arguments, but not by

attribute-value pairs. This searches for simple permissions

like // DIV:getID. These candidates are selected by counting

the number of accesses to each node name and comparing

it to the total number of occurrences of that tag in the

document. If the ratio reaches a threshold (customizable

by the user; the default is 25% which we have found

works well), a tag permission is proposed for that API call.

Accesses that match this permission are removed from the

set of violating accesses for the next phase.
Finding good permission candidates that involve complex

DOM selectors is more challenging, but important to do well

since these are the permissions that would be hardest for a

site administrator to derive without assistance. In Section 5,

we observed that most accesses by a third-party script can

be divided into two categories: those that happen on “nodes

of interest”, and those that can be covered by adding root,

parent or sub prefix to the nodes of interest. The node of

interest often has content modification APIs called upon

them (e.g., appendChild, setInnerHTML), or is the deepest

node accessed along the same path with other accessed

nodes. For example, the first node listed in Listing 1 would

be a node of interest because it’s the deepest node accessed.
Following this observation, the next step is for Policy-

Generator to develop a set of selector patterns using at-

tribute names for all nodes of interest, excluding those that

could interfere with current permissions (as described in

Section 2.3). Then, it produces an attribute-value pair pattern

candidates for each node of interest. Our implementation

uses heuristics to synthesize four types of patterns for each

attribute name candidate: matches exactly, matches all, starts
with, and ends with. For the latter two pattern types the gen-
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erator calculates the strictest restriction without sacrificing

the number of accesses it matches, and then selects the best

pattern type that matches the most violations out of the four.

After a best pattern and pattern type has been determined

for each attribute name, the generator sorts them by the

number of matched violations of each attribute name’s best

pattern, but excludes those which also accidentally match

any untouched nodes.

We provide an option to allow the generator to accept

a pattern if it matches some untouched nodes below a

threshold ratio. An example of where this is useful occurs

with advertising scripts that do not fill not all advertisement

spaces in one response, but instead leaves some untouched

for later use. The decision regarding whether to accept over-

matched patterns is left to the developer, but it is important

that such patterns are clearly presented by Visualizer.

The best qualifying permission is then added to the set

of permission candidates that will be presented to the user,

and all accesses matching that permission are removed. The

process repeats until there are no nodes of interest left.

If any violating accesses remain after all nodes of interest

have been removed, PolicyGenerator examines if the remain-

ing unmatched violations involve either a parent, ancestor,

or descendent of any node of interest. If so, a corresponding

parent, root, or sub permission is proposed.

It is ultimately up to the developer’s discretion to accept,

reject, or tweak the generated permissions. To ease this pro-

cess, the policy candidates can be viewed using Visualizer.

The presentation is similar to what is described in Section 4,

and developers may click on individual permissions to view

the nodes they cover.

In the next section, we see that although the initial guessed

permissions are not always perfect, only minor tweaks are

needed to reach effective site-specific policies for most

scripts and sites. This manual approval process is important

for developing good policies, but also valuable since our

goal is not to produce policies that completely describe

the behaviors of all scripts on the site, but to help site

administrators identify scripts that are exhibiting undesirable

behaviors on their site.

7.2 Adjusting permission candidates

We want to understand how much work is required to

develop effective site-specific policies for a typical website

using our tools, assuming base policies are provided for

all scripts on the site. In this section, we describe manual

efforts involved in using PolicyGenerator on typical sites and

show some examples of site-specific policies. We defer the

discussion of quantitative results to Section 8.

To evaluate the PolicyGenerator from a site administra-

tor’s point of view, we first set up a crawler robot that visits

a new set of 100 test sites using ScriptInspector. The goal

of the robot is to simulate regular users’ browsing actions

to explore site-specific behavior of embedded scripts. Given

the URL of a test site, the robot first visits that URL using

the ScriptInspector, and waits for 30 seconds after the page

has finished loading (or times out after 60 seconds). Then,

it navigates to a randomly selected link on the page whose

target has the same domain as the test site. We chose not

to navigate the robot away from each page right after it

completes loading because certain third-party scripts may

not start to execute after the page has loaded. Upon page

unloading, the robot calls document.checkPolicy to log the

violating traces.

The robot repeats the navigation until it has successfully

navigated five times for that test site, before moving on to

the next. If the robot cannot find a link on the current page

(or if the browser crashes), it goes back to the homepage

and resumes from there. The scan explores each site five

levels deep to simulate user browsing behavior. Finally, after

the robot successfully navigated 5 times for all 100 sites, it

restarts the whole process from the first site.

Whenever ScriptInspector outputs a violation to existing

policies on a site, further visits to that site are postponed until

we manually examine the violation using PolicyGenerator

and add necessary permissions to the policy. This is to

prevent similar violations being recorded multiple times.

We ran the evaluation from 28 December 2014 to 6 Febru-

ary 2015, a total of 40 days. For each site, the experiment

contains two stages: an initial stage to train a reasonably

stable model, and a testing stage to estimate how many

violations would be reported if the policy were deployed.

We initially define the training phase to last until after

ScriptInspector completes 100 requests to that site without

recording a single alarm (we show how this threshold can

be tuned in Section 8.2).

Permission adjustment examples. Depending on the com-

plexity of the site, generating and tweaking the policy for

one site may take from a few minutes up to half an hour

based on our experience. The cost varies due to factors such

as the number and complexity of scripts the site embeds, and

how much pages differ across the site (for example, in where

they place advertisements). The results here are based on the

first author’s experience, who, as creator of PolicyGenerator

and Visualizer, is intimately familiar with their operation. A

developer using PolicyGenerator for the first time will need

more time to become familiar with the tool, but we expect

the tool would not be difficult for a fairly experienced web

developer to learn to use.

We evaluate the effort required for each manual permis-

sion by considering three of the most common ways auto-

generated permissions needed to be manually changed. The

first example, taken from mtv.com’s policy for doubleclick.
net, is a result of auto-generated permission over-fitting the

accesses on this particular request:

// DIV[@id=‘adPos300x250’]

It includes overly-specific size properties, and was fixed by
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manually replacing them with a regular expression pattern:

// DIV[@id=‘adPos\d∗x\d∗’]

The other way to relax over-fitting permissions is to

increase the matching threshold PolicyGenerator uses to

eliminate permissions. This threshold controls the number of

nodes that may be matched by a generated node descriptor

but are not accessed by the third-party script. Adjusting this

threshold is often enough to eliminate further manual effort.

For example, these are the three permission candidates

proposed for foxnews.com by PolicyGenerator, with match-

ing threshold set to default value 1 which does not allow any

additional node matches:

// DIV[@id=‘trending−292x30’]
// DIV[@id=‘board1−970x66’]
// DIV[@id=‘frame2−300x100’]
// DIV[@id=‘stocksearch−292x30’]

The PolicyGenerator did not yield the more elegant and

representative permission,

// DIV[@class=‘ad’]

because another node that has class ‘ad’ is not accessed.

After the threshold is raised to 2 (i.e. the selector is allowed

to match at most twice the number of accessed nodes), this

better permission is proposed.

However, increasing the threshold may adversely cause

PolicyGenerator to generate very broad permissions. For

example, if all the advertisement content are injected into

borderless DIV frames, // DIV[@frameborder=‘0’] could be a

potential permission candidate, but a rather meaningless one

that may match other nodes containing sensitive information.

To avoid this issue, PolicyGenerator normally gives more

weight to attributes like class and id, and propose them

more often; however, if an overly broad permission is indeed

proposed, the administrator may need to ignore the candidate

and look into the DOM structure and find identifiers from

its parents or children to produce a better permission such

as // DIV[@class=‘ad’].
After changes are made to a permission, Visualizer will

highlight the node collections matching the adjusted per-

mission. The site administrator can examine the highlighted

nodes and determine if the permission should be used.

Another common scenario that requires manual attention

is when the PolicyGenerator over-emphasizes particular at-

tributes. For example, all cnet.com ad placeholders have an

attribute named data−ad, which makes it a good descrip-

tor to use for site-specific permissions. However, because

PolicyGenerator favors id and class attributes over others, it

generates complex and meaningless policies across different

pages using id and class as selector attribute names.

Site-specific policy examples. Here we show a few exam-

ples of site-specific policies to illustrate the integrity and

privacy properties that can be expressed.

Ticketmaster.com is a ticket-selling website. Policy 4

Policy 4 Site-specific policy for ticketmaster.com

(The getSize action is a special DOM permission, it includes APIs related

to size and position information such as getClientHeight and getScrollWidth.)

−googleadservices.com & doubleclick.net−
// DIV[@class=‘gpt−ad−container’]:AppendChild
// DIV[@class=‘gpt−ad−container’]:getSize

−facebook.net−
Send:ticketmaster.com

shows the site-specific policy extensions that were needed

for three scripts embedded on this site, one for Facebook

and the other two for Google ad services. The Facebook

permission allows its script to send network requests back to

the host domain, ticketmaster.com. Although this behavior

may be safe and intended by the site administrator, a site-

specific policy is required because this behavior is not part

of the script’s base policy.

The site-specific permissions for googleadservices.com
and doubleclick.net scripts are based on the same node

descriptor: // DIV[@class=‘gpt−ad−container’]. This permis-

sion entry is necessary because it is specific to the web-

site and different from the most popular implementation

// DIV[@id=‘div−gpt−ad−.∗’] covered in the base policy. The

two permissions together give scripts from the Google ad

sites permission to write to the matching nodes, as well as

to read their size information. Other than this, the embedded

scripts are not allowed to read or write any content, offering

strong privacy and integrity for ticketmaster.com.

However, not all permissions match accessed nodes per-

fectly. For example, we added this site-specific Google ad

permission for theverge.com:

// DIV[@class=‘dfp ad’]:document.write

This entry matches a total of ten nodes in the homepage,

but only four nodes are actually accessed on the page. This

means the selector over-matches six additional nodes. After

a closer examination of the these nodes, we confirmed that

none of them contain any sensitive content and four are

adjacent to nodes that contain the advertisement.

Finally, we are not able to obtain meaningful and ro-

bust site-specific policies for two sites (forbes.com and

buzzfeed.com), as their advertisement integration lacks

generalizable node selector patterns. In addition, omtrdc.net
scripts seem to be reading and writing all nodes on certain

pages on lowes.com. In the above cases, whitelisting the

problematic script domain as trusted seems to be the best

solution. This prevents the frequent violations for these

scripts, but enables ScriptInspector to restrict the behavior

of other scripts in the page.

2The getSize action is a special DOM permission, it includes APIs related
to size and position information such as getClientHeight and getScrollWidth.
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8 POLICY EVALUATION

In this section, we analyze experimentally how many

site-specific permissions are required for each site, their

distribution in third-party domains, the length of the optimal

training phase (for the deployment scenario described on the

right side of Figure 1), and the robustness of trained policies.

Although our results reveal that producing good policies can

be challenging, they provide reasons to be optimistic that the

effort required to produce robust policies is reasonable for

nearly all websites.

8.1 Policy size

Of the 100 sites tested, 72 sites needed at least one

site-specific permission. Table I shows the number of sites

requiring at least one site-specific permission for particular

script domains (scripts embedded in fewer than ten sites not

included in the table). The table is sorted by the fraction

of sites embedding scripts from a given domain that needed

site-specific permissions. For example, of the 61 sites from

our sample that embed doubleclick.net, we found 48 of

them needed site-specific permissions, while 13 of sites only

needed the generic base policy.

Many sites need site-specific permissions for the advertis-

ing scripts (doubleclick.net, googleadservices.com). This

is not surprising since they are injecting advertisements into

different locations of the page for different sites. Only those

serving as beacons for Google Ad networks (tracking user’s
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twitter.com 41 36 88%

googleadservices.com 72 57 79%

doubleclick.net 61 48 79%

moatads.com 16 7 44%

2mdn.net 17 6 35%

betrad.com 16 5 31%

facebook.net 66 20 30%

doubleverify.com 11 2 18%

adroll.com 14 2 14%

rubiconproject.com 10 1 10%

chartbeat.com 17 1 6%

google-analytics.com 83 4 5%

scorecardresearch.com 40 1 3%

newrelic.com 32 0 0%

quantserve.com 25 0 0%

criteo.com 17 0 0%

Total (24 domains) 580 207 36%

Table I: Scripts needing site-specific permissions.

browsing history as opposed to injecting advertisements) or

those which embed the scripts using the conventions covered

by the base policy do not need site-specific permissions.

Similarly, social widgets (70% for twitter.com and 32%

for facebook.net) also require a high number of site-

specific permissions. The reason that Twitter’s number is

significantly higher than Facebook’s is partly because Face-

book’s content insertion behavior can be covered by the base

policy // DIV[@id=’fb−root’]>!, while most content insertion

behaviors of Twitter are more flexible and cannot be covered

by a simple base policy.

On the contrary, analytics scripts rarely require site-

specific policies. Google Analytics is embedded by 83 of

the 100 test sites, but only four sites needed site-specific

permissions. None of the 25 sites embedding QuantServe

Analytics required any site-specific permissions. The low

fraction of sites needing specific permissions for analytics

scripts is consistent with our observations in Section 5.

The overall number of permissions needed is manage-

able per site. We count permissions based on their DOM

node representation (for permissions involving DOM ac-

cess), but not the API called or arguments used. So

// DIV[@id=‘a’]:GetAttribute and // DIV[@id=‘a’]:SetAttribute
would be counted as one site-specific permission, but

// DIV[@id=‘b’] and // DIV[@id=‘a’] would count as two.

A total of 436 total site-specific permissions are added

for all 100 sites, so each of the 72 sites that needed at least

one permission needed an average of 6.1 permissions. The

largest number was for mlb.com which embeds many adver-

tisements and needed 26 site-specific permissions, followed

by 14 for businessweek.com and people.com.

Very few individual script domains required more than

two permissions on average for embedding sites. The highest

was 4.16 permissions per embedding site for 2mdn.net
scripts (embedded on 17 sites). Other frequently used scripts

requiring more than two permissions per embedding site in-

clude moatads.com, doubleclick.net, krxd.net, facebook.
net, serving-sys.com, and googleadservices.com. Their

site-specific policies consist of mostly read and write ac-

cesses to designated ad or social content placeholders, with

few additional size and location queries for surrounding

elements.

The number of site-specific permissions per site gives

some sense of the manual effort required, but the amount of

effort also depends on how close the permissions generated

by PolicyGenerator are to the desired permissions. Of the

436 total site-specific permissions needed across all tested

sites, 78 (18%) were created manually from scratch. Only 28

of the 100 sites needed any manually-created permissions,

and only ten sites required more than one. Based on this,

we believe the human effort required is low enough to be

reasonable for deployment by major sites.
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8.2 Policy robustness

Since the policies are developed based on the script

behaviors observed for a small number of requests on a few

of the site’s pages, there is a risk that the scripts exhibit

different behaviors on different requests and generate too

many false alarms to be useful in practice. To understand

this, we study the policy convergence speed and alarm rates.

We also selected some suspicious alarms and discuss them in

Section 8.3. Section 8.4 considers several violation scenarios

due to major updates in host sites or third-party scripts.

Figure 5 show all the alarms ScriptInspector reported in

the experiment. Each site corresponds to a vertical coordi-

nate in the figure, and they are sorted according to the total

number of requests executed (due to different ending stage

of training phase and stoppage time between reported alarm

and manual inspection, the number of requests done averages

to 434 per site but varies from 246 to 579). The horizontal

axis represents the sequence number of requests, and alarms

are marked along this axis to show when they occurred. The

majority of alarms are issued at the beginning of the training

phase. The total number of alarms ScriptInspector reported

for all 100 sites is 301 over 40 days, making the average less

than three alarms per site per month. The highest number

of alarms is the 11 alarms reported from mlb.com. Of the

100 test sites, 28 issued no alarms at all, which means they

do not need site-specific policies. Policies of more than half

(57) of the 100 sites converge within two policy revisions,

and 83 sites converge within six policy revisions.

Training phase duration. A longer-lasting training phase

observes more behavior but also requires more time and

effort. Figure 6 shows the relationship between training

phase duration and alarm rates. Setting the training phase

to conclude after executing 177 requests without an alarm

will yield 10% of the total alarms. This number is 20%

for 114 requests, and 70% for 80 requests. Based on this,

we conclude that ScriptInspector has observed most relevant

behavior after 200 alarm-free requests and suggest using this

for the convergence threshold after which a learned policy

would be transitions to deployment.

Reasons for alarms. We manually examined all the alarms.
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Figure 6: Training phase duration vs. Alarm rates

Violations can be roughly classified into two general cat-

egories, with a few exceptional cases. The most common

reason for a violating record (173 out of 301) is that a

new type of advertisement shows up which was not seen

in previous requests. For example, skyscraper (long and

vertical) ads are only shown on a specific part of the site,

whereas other parts show a banner (long and horizontal) ad.

The second category is because of social network widgets

(93 out of 301). A common scenario is that news sites

serve articles from different sources which do not necessarily

share the same coding pattern and content layout. This could

result in scripts from twitter.com injecting Twitter feeds

into containers with different attributes. Occasionally, the

violation is a result of apparently suspicious behavior or a

major script update, discussed in the next two sections.

8.3 Suspicious violations

In the robustness experiment, we found that on rare

occasions the Facebook scripts load other ad networks and

analytics scripts, which raised massive numbers of alerts.

In some sites such as staples.com and dailymotion.com,

Facebook scripts access the exact same information as

did krxd.net and enlighten.com, essentially reading the

entire page content. In other cases, Facebook scripts read

the action attribute of all forms on the host page (e.g.,

goodreads.com, hostgator.com). This behavior is only

visible during certain periods of time, and we observed this

access on multiple websites only at the start of the experi-

ment as well as 18 days after. In extremely rare occasions

(tutsplus.com and drupal.org), ScriptInspector caught that

Facebook scripts read the value of user’s user name and

password input on the host page, which is disturbing. We

are not sure if this is intended by the site owners, and suspect

they are unaware of this behavior.

We have also seen Google advertising scripts read the en-

tire page contents by calling documentElement.innerHTML.

This behavior was only observed once, and only on nfl.com.

This could be a bug in an advertising script, or it could

indicate that Google advertising is crawling the page content

and indexing it for future contextual targeting.

8.4 Impact of major updates

Throughout the course of our evaluation, we saw ma-

jor changes to three third-party scripts which resulted in

multiple duplicate alarms reported across most sites embed-

ding them. Particularly, facebook.net scripts began reading

properties (e.g. href, rel) of all link elements on the page

since 30 December 2014, and doubleverify.com scripts

showed similar behavior changes since 5 February 2015.

Additionally, krxd.net scripts began injecting an invisible

DIV element into all pages embedding it since 26 January

2015. We handled these violations by updating their base

policies since the new behaviors are not site-specific. These

cases show that while major third-party scripts changes may
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Figure 5: Policy convergence vs. number of revisions

require updates to policy, they only occur rarely and trivial

changes to base policy are often enough to cover the new

behavior.

It is harder to determine whether a page went through

major changes over our experiment. However, we did see

this for two sites, theblaze.com, which added an advertising

slot on their frontpage, and inc.com, which redesigned its

general user interface. For both cases, we added an addi-

tional advertising container permission to their site-specific

policies. It can be annoying to the developers to approve new

permissions when a major site update happens, however,

we do not expect policy-breaking changes frequently for

most sites. Further, we argue that it may be useful to site

administrators to learn when a change impacts the behaviors

of scripts significantly enough to require a policy change.

9 RELATED WORK

The risks of embedded web scripts have been clear for

some time, and many different solutions have been proposed.

We highlight the most relevant previous work here.

Client-side script protections. Many solutions have been

proposed that involve client-side protections that limit what

embedded scripts can do and change how they interact

with page resources. Browser-Enforced Embedded Policies

(BEEP) [15] and Content Security Policy (CSP 1.0, 1.1) [29]

use a whitelist approach to restrict the source of the dynam-

ically loaded scripts. Compared to these works, our work

supports fine-grained access control policies at the level of

actions on individual DOM nodes.

MashupOS [27] proposed several new attributes and

tags for isolation. It offers more flexible security policies

than the same-origin policy (SOP). OMash [7] introduces

private/public member functions for different scripts. ES-

CUDO [14] migrates the concept of OS protection rings

to limit scripts’ permissions, JCShadow [24] uses multiple

execution contexts to isolate JavaScript execution. Tree-

house [12] uses HTML5 web workers to isolate execution

context and virtualizes host DOM via a hypervisor-like

interface to enforce access control policy. JSand [4] isolates

Secure ECMAScript (SES) execution by wrapping resource

accesses using the new Harmony Proxy API. Adjail [19]

places advertising scripts in a shadow page, and forwards

the displaying content and user events back and forth to

the main page. Our work has a different goal: we focus on

understanding and monitoring of script behavior, rather than

on isolating and enforcing security policies in the browser.

Script transformations. Several previous works provide

mechanisms for incorporating policies into scripts. Con-

Script [21] uses aspect-oriented programming to weave

generic policy checking advice with API calls of interest.

Similar to ConScript, WebJail [3] also leverages aspect-

oriented programming methods to enforce access control

policy, but is designed specifically for mashup applications.

Phung et al. [25] wrap JavaScript built-in functions with

mediation code before executing third-party scripts. AD-

Safe [8] and Caja [22] mediate access by rewriting the

third-party scripts. The appeal of these solutions is that

no browser modifications are needed to enforce policies.

Rewriting-based solutions, however, may fail to preserve

the original program’s semantics. It is also challenging

to implement JavaScript rewriters in a way that cannot

be circumvented [20]. We implemented ScriptInspector by

modifying a browser instead of using rewriting because

it provides higher confidence of complete mediation and

makes it convenient to attribute dynamically introduced

code. However, our policies are independent of our Script-

Inspector implementation and could be enforced client-side

using script rewriting.

Policy generation. Compared to access mediation and script

isolation mechanisms, automated policy generation has not

been deeply studied yet. ConScript [21] suggested auto-

generating policies, but did not evaluate policy generation.

Mash-IF [18] provides a GUI tool to let developers mark
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sensitive information on the page, and uses information

flow tracking techniques to restrict data leakage. Compared

to Mash-IF, PolicyGenerator auto-suggests public elements

instead of sensitive information, and shows that the in-

accuracies of performing taint tracking on JavaScript can

be avoided by using simple yet robust policies focused

on resource access. Zhou et al. developed a method for

automatically identifying nodes with sensitive content in

the DOM, but found it could not accurately distinguish

sensitive nodes for many sites [33]. This paper is the first to

demonstrate that automated tools can help generate robust

policies for popular third-party scripts.

Script behavior visualization. Several tools present script

behaviors in a user-understandable way. Wang et al. [28] use

a browser-based interface to explore relationships between

requests and discover vulnerabilities. Popular browser exten-

sions like Ghostery [10] and Abine [1] help users and site

administrators understand what third-party services exist on

the current page. A recent Chrome developer tool [9] informs

a user what resource a Chrome extension is accessing on the

page, albeit at coarse granularity. The success of these tools

supports our hope that Visualizer and PolicyGenerator can

be of great value to web developers in understanding scripts

and developing policies.

10 DEPLOYMENT

In this section, we discuss some possible deployment

scenarios. So far, we have focused on the scenario where

a site administrator wants to understand the behaviors of

embedded scripts on a web site to protect clients from

privacy compromises by malicious or compromised scripts

and ensure the integrity of the site from unintended modi-

fications. The tools we developed could be used in several

other ways, discussed below.

Access visualization. Visualizer can be used by either

an interested web developer or sophisticated user. After

examining the accessed resources, a developer can make an

informed decision to choose the service provider that most

respects site integrity and user privacy. A sophisticated user

may use extensions like noscript [11] to block third-party

scripts with suspicious behaviors revealed by Visualizer.

Policy generation service. A third-party service provider or

dedicated security service could develop base policies for

commonly-used scripts. A cooperating third-party service

provider may make site-specific policy generation part of

the implementation process. For example, policies can be

inferred by analyzing the implementation code. In a less

ideal scenario, the policy generation service could provide

a description of how to generate a site-specific policy for

the script based on properties of the embedding site. Site

administrators would then use that description to manually

generate their own site-specific policies.

Access monitoring. After a policy has been generated, we

envision two ways a site administrator can monitor future

accesses. An easy-to-adopt approach is to continue running

ScriptInspector with the policies on simulated sessions. An

alternative approach is to sample real world traffic using a

reverse proxy and forward sampled requests to run in Script-

Inspector with user credentials. The second approach gives

higher confidence that the integrity and privacy properties

are not violated in real sessions, but risks interfering with the

normal behavior of the site if repeating requests alters server

state. For both cases, the site administrator would examine

alerts and respond by either changing policies or altering the

site to remove misbehaving scripts. More security-focused

sites could automate this process to automatically remove

scripts that generate alarms.

Policy enforcement. Our prototype ScriptInspector is not

intended to be used by end users to enforce the policies at

runtime mainly due to its high runtime overhead. The key

reason is that each DOM API access requires at least one

stack computation and node removal APIs require walking

the subtree and compute access violations. However, some

policies may be enforced by other browser security mech-

anisms, for example, scripts from a particular domain can

be blacklisted by content security policy, which is currently

supported by major browsers. We envision a future, though,

where a more expressive analog to CSP is adopted by popu-

lar browsers and servers can provide headers with restrictive

policies for embedded scripts that would be enforced by

browsers at runtime. This would offer the best protection,

ensuring that the actual behavior of the dynamically-loaded

script on client’s browser does not behave in ways that

violate the server’s script policy.

AVAILABILITY

ScriptInspector, Visualizer, and PolicyGenerator, as well

as all of the policies we developed, are available under an

open source license from http://ScriptInspector.org.
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