

Securing Multiparty Online Services via Certification of Symbolic Transactions

Eric Y. Chen
Carnegie Mellon University

Moffett Field, CA, USA
eric.chen@sv.cmu.edu

Shuo Chen, Shaz Qadeer, Rui Wang
Microsoft Research

Redmond, WA, USA
{shuochen, qadeer, ruiwan}@microsoft.com

Abstract— The prevalence of security flaws in multiparty
online services (e.g., single-sign-on, third-party payment, etc.)
calls for rigorous engineering supported by formal program
verification. However, the adoption of program verification
faces several hurdles in the real world: how to formally specify
logic properties given that protocol specifications are often
informal and vague; how to precisely model the attacker and
the runtime platform; how to deal with the unbounded set of
all potential transactions.
We introduce Certification of Symbolic Transaction (CST), an
approach to significantly lower these hurdles. CST tries to
verify a protocol-independent safety property jointly defined
over all parties, thus avoids the burden of individually
specifying every party’s property for every protocol; CST
invokes static verification at runtime, i.e., it symbolically
verifies every transaction on-the-fly, and thus (1) avoids the
burden of modeling the attacker and the runtime platform, (2)
reduces the proof obligation from considering all possible
transactions to considering only the one at hand.
We have applied CST on five commercially deployed
applications, and show that, with only tens (or 100+) of lines of
code changes per party, the original implementations are
enhanced to achieve the objective of CST. Our security
analysis shows that 12 out of 14 logic flaws reported in the
literature will be prevented by CST. We also stress-tested CST
by building a gambling system integrating four different
services, for which there is no existing protocol to follow.
Because transactions are symbolic and cacheable, CST has
near-zero amortized runtime overhead. We make the source
code of these implementations public, which are ready to be
deployed for real-world uses.

Keywords-multiparty protocol; symbolic transaction; CST;
verification; online payment; single-sign-on

I. INTRODUCTION

Modern web applications are often multiparty systems that
integrate third-party services, e.g., single sign-on (SSO),
payment, social networking, from different companies.
These applications have significant security requirements.
For example, a merchant website that integrates Amazon
Simple Pay must ensure that an item is shipped only if it has
been paid for. Similarly, an application that integrates
Facebook SSO must ensure that only a properly
authenticated user should be allowed to log into the
application. To implement secure multiparty applications,
developers typically follow protocol standards provided by
organizations such as OAuth Working Group and OpenID
Foundation or API specifications provided by companies
such as Amazon, PayPal, and Facebook. However, there is

ample evidence that deployed multiparty services are rife
with security vulnerabilities. An attacker can purchase
without paying [25][27], sign into other people’s accounts
without passwords [4][28], or get unintended authorizations
[29]. The Cloud Security Alliance cites these logic flaws in
online services as “Insecure Interfaces and APIs”, the No.4
cloud computing threat [10].

We believe that the prevalence of security flaws in
multiparty online services calls for rigorous engineering
supported by formal program verification. However, despite
being advocated by researchers for years, program
verification is rarely put in actual engineering practice. This
paper presents an approach that significantly lowers the
hurdles for real developers to apply formal verifications on
online services.

Protocol-independent security goal. The first hurdle in
verification is to understand what security goal to verify.
This is hard for developers because protocol documentation
and API specifications are, for practical considerations and
limitations, often informal, jargon-laden and incomprehen-
sive. It is unclear what exactly each party is supposed to
achieve. For example, an Amazon payment protocol was not
explicit about whether the payee’s identity was ensured by
the cashier or the merchant [27]; many Facebook’s relying
party websites did not know which piece of Facebook data
should be obtained to securely authenticate a user [29].

We realize that security is much more intuitive to be defined
as a global property (rather than per-party properties) inde-
pendent of specific protocols. For example, no matter what a
payment protocol instructs a merchant and a cashier to do
individually, the two parties should jointly ensure an
intuitive global property: for any order to be checked out
from the merchant, it must have been paid for on the cashier.
This property applies to all payment protocols. We will
show concretely that such protocol-independent properties
can be defined for various scenarios, which guard an
implementation against logic flaws in the protocol and
developers’ misunderstandings of the protocol.

Certification of Symbolic Transaction (CST). Once a
developer has the property, the next hurdle is how to verify
it. Traditional approaches perform verification offline (see
Figure 1 (upper)) and face two challenges: (1) the adversary
and the system platform need to be modeled precisely (over-
or under-permissiveness will lead to false positives or false
negatives). The modeled adversary should be able to make
arbitrary calls to the web methods on all the parties, with all

2015 IEEE Symposium on Security and Privacy

© 2015, Eric Y. Chen. Under license to IEEE.

DOI 10.1109/SP.2015.56

833

2015 IEEE Symposium on Security and Privacy

© 2015, Eric Y. Chen. Under license to IEEE.

DOI 10.1109/SP.2015.56

833

possible argument values that the adversary is able to create
or obtain. Meanwhile, the system platform should be
modeled to constrain the adversary’s arbitrariness. The
modeling demands considerable insight about the system
and the property to be verified. (2) The verifier faces a
difficult proof obligation: the logic property must not fail
even though the adversary can make an unbounded number
(i.e., an infinite loop) of arbitrary calls with arbitrary
argument values. The proof requires inductive reasoning
about an unbounded number of possible executions. In
general, a developer may need to help the verifier by
supplying loop invariants and auxiliary lemmas to establish
a proof. This is especially hard for real-world source code.

Our technique is called Certification of Symbolic
Transaction (CST). It achieves the same verification goal in
a different a manner, shown in Figure 1 (lower). It treats
every protocol execution (referred to as a multiparty
transaction from now on) as a runtime process for creating
a proof obligation for a static program verifier, which we
call the certifier. The certifier logically examines whether
the sequence of computations on all parties in this
transaction collectively ensures the global predicate.
Compared to fully static approaches, the CST approach
demands much less from developers: (1) No modeling is
needed for the adversary or the system platform, because
every transaction to be verified is produced at runtime by a
real user interacting with the actual system. (2) Since
transactions that fail to be certified are rejected, developers
are only required to make sure that every intended
transaction is logically sound. This requires the developer to
think only about the expected rather than the unexpected
scenarios.

An interesting novelty of the CST approach is the use of
static program verification at runtime, i.e., to symbolically
verify every transaction on-the-fly. In Section II, we
motivate why static verification is essential for certifying
multiparty transactions. Although program verification is
prohibitively expensive in general, CST combines static
verification and caching to ensure near-zero amortized

overhead. To the best of our knowledge, CST is the first
system to use symbolic verification during the execution of
a deployed program.

Real-world demonstration. We demonstrate that it is
practical to apply CST to real-world systems. We have
applied CST on five commercially deployed systems by
adding only tens (or 100+) lines of code per party. These
systems are based on real-world frameworks, such as PayPal
and Amazon Payments services, Microsoft LiveID single-
sign-on SDK, the OpenID framework in DotNetOpenAuth,
the OAuth template in Visual Studio ASP.NET MVC 4, and
NopCommerce software. We also challenged the CST
approach by implementing a gambling system integrating
four services, for which there is no existing protocol to
follow. All the systems and their source code are accessible
at https://sites.google.com/site/symbolictransaction/, which
is our project page. We have evaluated CST along four
dimensions:

� Security. We analyzed 14 cases of real vulnerabilities
reported in the literature. CST will foil the exploits or
avoid the vulnerabilities in 12 out of the 14 cases, the
remaining two being out-of-scope issues.

� Protocol-independence. We show that different protocols,
e.g., Amazon Simple Pay vs. PayPal Standard for
payment and OpenID vs. OAuth vs. Live Connect for
single-sign-on, can be held to the same global predicates.
More interestingly, we show several implementations that
blatantly violate the OAuth 2.0 protocol, but satisfy the
end-to-end global predicate for single-sign-on. They all
turn out to be as secure as the protocol-conformant ones.

� Performance. Because symbolic transactions are
cacheable, CST incurs only near-zero amortized runtime
overhead. Therefore, CST is suitable for real-world
deployed services.

� Programming effort. We report the lines of code that we
added or changed for every open-source package.

II. OVERVIEW OF CST

The CST approach is a unique combination of concrete
runtime execution with symbolic program verification: it
verifies each multiparty transaction at runtime but attempts
to verify it not just on the actual inputs seen in that
transaction but for all possible inputs. To understand this
aspect of the design of CST, we first need to recognize two
basic characteristics about typical multiparty services:

 (1) There is no global data storage. Different parties do not
fully trust each other despite their cooperation on specific
transactions. Consequently, each party holds its own data
structures (e.g., databases) locally without a globally-shared
storage. For example, PayPal’s payment record database is
not exposed to any merchant website, because it contains
transactions related to other merchants. Similarly, the
database of Facebook’s single-sign-on service is not

Developers, tell me
why no transaction

can violate the global
security predicate

System Platform (modeled) Traditional
approach

CST

a.com
source code

b.com
source code

c.com
source code

web
methods

The adversary (modeled)
… …

System Platform (actual)

Developers, tell me
why this transaction
satisfies the global
security predicate

web methods

a.com
source code

b.com
source code

c.com
source code

Figure 1: Traditional approach versus CST

834834

publicly shared with every relying party, because it contains
many secret strings and IDs of users of other relying parties.

(2) Security is a global property. As discussed in the
introduction, security is a property across different parties.
For example, “secure checkout” requires that an order on
the merchant website has a corresponding payment record
on the PayPal server. For this reason, the safety property to
be examined by CST needs to refer to data structures of
different parties. We call it an ambient predicate.

Figure 2 shows a simplified system that preserves the
essence of a realistic system. Data structures A[], B and C are
defined in the source code of three different companies,
respectively. A multiparty application attempts to maintain
the ambient predicate (C == true) iff (�i. A[i] == B) that refers
to data structures at every party. Obviously, the ambient
predicate cannot be concretely checked, because A[] and B
are not shared with c.com. An alternative approach and the
core idea of CST is to check it symbolically, i.e., to examine
whether the sequence of computations of a multiparty
transaction logically implies the ambient predicate.

CST achieves this symbolic verification using a message
field called SymT (i.e., Symbolic Transaction), attached to
every message to collect the source code executed on each
party. In general, disclosing source code to another party
may lead to intellectual property infringement or reverse-
engineering. For CST, this is not a serious concern, because
the disclosed source code only consists of a few methods
that implements the protocol that every party has agreed on.

When a transaction completes, the certifier uses the final
SymT value to synthesize a program representing the
executed source code of the entire multiparty transaction.
Symbolic verification then checks that the program satisfies
the ambient predicate. The collection of the source code and
the synthesis of the program to be verified is elaborated in
Sections III and IV.

The complexity of verifying a symbolic transaction depends
on the expressiveness of the ambient predicate and the
program fragments executed by the different parties. We
found first-order logic to be adequate for the services we
studied and use an off-the-shelf automated program verifier
based on satisfiability-modulo-theories [22] for the
verification.

In general, symbolic verification is expensive. However, for
CST, it incurs an extremely low amortized cost, even lower
than what a concrete checking would incur (which would

need network messages). The certifier achieves this
efficiency by caching the theorem proved by it about a
symbolic transaction. Since the theorem holds for all inputs,
a future identical symbolic transaction is deemed convincing
immediately regardless of the data values on which it
computes. If the source code is unchanged, this caching
results in near-zero amortized runtime overhead.
Furthermore, the caching is over all transactions generated
by all users. Most likely, developers themselves are the
users who trigger the verification, and real users enjoy the
caching.

Threat model. The threat model of CST is the web attacker
model as defined by Akhawe et al. [2]: the attacker has a
browser and his own servers, but does not control the
servers of non-attacker parties. Regarding CST specifically,
the web attacker model implies that developers of non-
attacker parties are cooperative with each other, and do not
lie about the executed source code. The network traffic in
CST is protected by HTTPS, so the attacker cannot read or
tamper with data in transit.

Informally speaking, CST focuses on “logic flaws” in a
protocol and its implementation. More formally, these are
flaws in the protocol’s symbolic model as defined by
Blanchet [8]: all cryptographic primitives, such as signing
and hashing, are considered as black-boxes and assumed to
be secure. Also, general programming bugs such as buffer
overrun, cross-site scripting and cross-site request forgery,
are orthogonal to the type of logic flaws that CST targets.
Many techniques have been proposed and deployed to
address these issues; these techniques can be used in
conjunction with CST.

III. AN EXAMPLE ILLUSTRATING CST

We now give an example about secure checkout to explain
the CST approach. We first define the ambient predicate for
the secure checkout problem. Next, we illustrate a real-
world vulnerability that, when exploited, violates the
ambient predicate. Finally, we show how CST would have
caught the error at runtime.

The basic steps in every checkout transaction are as follows:
(1) place an order on the merchant site; (2) make a payment
on the cashier site; (3) complete the order on the merchant
site. We refer to the sequence of these steps at runtime as a
multiparty transaction.

Figure 3 shows the three parties in the transaction – the
client and two servers. We assume that Cashier.com is the
cashier site, and TStore.com is the merchant site. The client
is a greedy shopper who wants to check out without making
a full payment or any payment at all. As the adversary, the
client’s behavior is arbitrary. Essentially, the “client” can be
thought of as the wild Internet that can send arbitrary HTTP
requests in any arbitrary order, even those not conforming to
Figure 3. A secure implementation must guard against such
a malicious client.

a.com
Array
AA[]

b.com
c.com

bool
C

Secret int
B

Ambient predicate:
(C == true) iff
(� i. A[i] ==B)

certifier

Source
code

Source
code Source

code

Figure 2: A simple multiparty system.

835835

There are three web methods, placeOrder, pay, and
completeOrder. Each is invoked by an HTTP request, and
returns an HTTP response. The request and response for
placeOrder are denoted placeOrder_req and placeOrder_
resp, respectively. Request and response for other methods
are named similarly.

Data structures. Every transaction involves the data
structures on the two servers: orders[] is an array to store all
orders, indexed by the identifier of each order (i.e., orderID);
mySellerID is the merchant’s identifier registered on the
cashier; payments[] is the payment records on the cashier. A
real implementation may use database tables instead of
arrays. Section V.C will explain how we convert database
operations into array accesses by defining “stub methods”.

Ambient predicate. An ambient predicate is defined over a
fixed multiparty transaction and refers to the fields of
request and response of invoked methods and the data
structures on the servers. The predicate given below defines
secure checkout (the line numbers added for easy reference).

placeOrder_req.orderID==completeOrder_req.orderID &&(1)
�i. ((2)
 Cashier.payments[i].status == “Paid” && (3)
 Cashier.payments[i].total
 ==TStore.orders[placeOrder_req.orderID].gross &&(4)
 Cashier.payments[i].payee == TStore.mySellerID && (5)

 Cashier.payments[i].orderID==placeOrder_req.orderID) (6)
The predicate holds for a particular transaction iff there is a
payment record at the cashier for the item being bought.
Note that this predicate is stated with respect to our problem
definition, not specific to any protocol for establishing it.

A. A traditional implementation
The predicate above specifies the security objective.
However, it is not locally checkable because it is about data
relations across different parties. For example, payments[] is
the cashier’s data structure, while orders[] is the merchant’s.
Therefore, it is an ambient predicate.

Protocol specifications today do not explicitly define their
ambient predicates. Instead, a protocol simply instructs each
party how to check a set of locally checkable predicates and
respond to other parties. It is hoped that the global safety
property is achieved as a result of all these local checks. As
explained in the introduction, this is problematic in reality.

Listing 1 shows a simplified example of a traditional imple-
mentation. It defines the data structures explained earlier,
and implements placeOrder(), completeOrder() and pay() to
handle https://TStore.com/placeOrder.aspx, https://TStore.
com/compleOrder.aspx and https://Cashier.com/pay.aspx.
Let’s assume the client checks out a $35 order with orderID
123. In a non-malicious scenario, the messages are as
follows (readers can walk through Listing 1 to see how the
messages are generated). For brevity, every message is
represented by enclosing data fields in angle brackets after
the message name, e.g., the first message stands for
https://TStore.com/placeOrder.aspx?orderID=123.

(1) placeOrder_req:
 placeOrder_req<orderID=123>
(2) placeOrder_resp and pay_req (a browser redirection):

pay_req<orderID=123,total=35,returnURL=https://TStore.com
/completeOrder.aspx,signature=[TStore’s signature for the
whole request]>

(3) pay_resp and completeOrder_req (a browser redirection):
completeOrder_req<orderID=123,status=Paid,signature=
[Cashier’s signature for the whole request]>

Assuming that signing and signature checking are done
correctly, readers can confirm that the message sequence
above can drive the code to Line L1, where the order is
marked Complete. However, there is a problem: the ambient

Th
e

w
ild

In

te
rn

et
Cashier.com TStore.com

(Merchant)
client

(shopper) Data:
Payments[] Data:

orders[],
mySellerIDplaceOrder_resp

Figure 3: The basic messages and data for checkout.

LISTING 1: A TRADITIONAL IMPLEMENTATION.

class Merchant {
order_record_t[] oorders;
string mmySellerID = “JohnSmith1234”;
PlaceOrderResp_PayReq pplaceOrder (PlaceOrderReq req) {

PlaceOrderResp_PayReq resp;
int orderID = req.orderID; resp.orderID = orderID;
orders[orderID].status = “Pending”;
resp.redirectionURL = “https://Cashier.com/pay.aspx”;
resp.total = orders[orderID].gross;
resp.returnURL = “https://TStore.com/completeOrder.aspx”;
sign(resp); return resp;

}
public bool ccompleteOrder(PayResp_CompleteOrderReq req){
 if (VerifySignature(req)==false) return null;

if (req.signer != “Cashier.com” || req.status != “Paid” ||
 orders[req.orderID].status != “Pending”) return false;

L1: orders[req.orderID].status = “Complete”; return true; }
}
class Cashier {
 payment_record_t[] payments;
 PayResp_CompleteOrderReq ppay(PlaceOrderResp_PayReq req){

if (VerifySignature(req)==false) return null;
i=getAvailableIndex();
payments[i].payee = req.signer;
payments[i].orderID = req.orderID;
payments[i].total = req.total;
PayResp_CompleteOrderReq resp;
resp.redirectionURL = req.returnURL;
resp.orderID = req.orderID; resp.status = “Paid”;
sign(resp); return resp; }

}

836836

predicate we care about is nowhere to be found in Listing 1.
The developers’ hope is that the local checks in these
methods have collectively ensured “security”. Is it really so?

A real-world vulnerability. In fact, this example is based on
the real Amazon Simple Pay payment method. An
exploitable logic flaw was detailed in Section III.A.2 of
reference [27]. In the exploit, the attacker has his own seller
account Mark and server MarkStore.com, and is able to
purchase from the victim TStore by only paying to
MarkStore. Specifically, when he receives placeOrder_resp
from TStore, he discards the signature and re-signs it as
MarkStore. This message is sent to the cashier (Amazon) as
pay_req. From the cashier’s point of view, it would seem as
if the attacker was purchasing an order from MarkStore, so
Mark gets paid. However, the redirectURL points to
TStore.com, so TStore subsequently receives the
completeOrder_req signed by the cashier. TStore does not
expect the cashier to notify it about an irrelevant payment
(i.e., a payment made to Mark), and is fooled to complete
the order. NopCommerce [23], a popular e-commerce
software, is subject to this flaw.

B. The CST-enhanced implementation
CST enhances the implementation by requiring a SymT
field in each message, which contains SHA-1 hash values of
the source code of invoked methods. For example, the
source code hash of placeOrder is f8f8bd5b0fe4711a09731
f08c06c3749d240580c. For readability of this paper, we
show a hash value as a hash symbol “#” with a method
name, e.g., #placeOrder, but a real SymT does not contain
“#” or method names.

SymT is now attached to every message shown earlier
(parentheses and colons to be explained in Section IV.A,
and � to represent an empty string):
(1) placeOrder_req:
 placeOrder_req<orderID=123,SSymT=�>
(2) placeOrder_resp and pay_req (a browser redirection):

pay_req<orderID=123,total=35,returnURL=https://TStore.c
om/completeOrder.aspx,SSymT=TStore.com::#placeOrder(),
signature=[TStore’s signature for the whole request,
including the SymT field]>

(3) pay_resp and completeOrder_req (a browser redirection):
completeOrder_req<orderID=123,status=Paid,
SymT=Cashier.com::#pay(TStore.com::#placeOrder()),
signature=[Cashier’s signature for the whole request,
including the SymT field]>

It is important to note that, for a signed message, such as (2)
and (3), the SymT field is covered by the signature, so that
the attacker cannot tamper with it. More details about
signature checking will be given in Section IV.A.

When (3) arrives at TStore.com (the merchant), the last step
of computation, completeOrder(…), is invoked (see Figure
4). Thus, the final SymT of the transaction is “TStore.com:
#completeOrder(Cashier.com::#pay(TStore.com::#placeOrd
er()))”. This SymT string is given to the certifier (which runs

on TStore.com). For now, let’s ignore the cache in the figure.
When the synthesizer gets the final SymT, it synthesizes a
program, namely vProgram, which is formally verified
against the ambient predicate. If the verification succeeds,
the transaction is approved (e.g., the order is marked
Complete). Otherwise, it is rejected. The synthesis of the
program requires the certifier to recover source code texts
from their hash values. This capability relies on a “de-hash”
table, containing hash-to-source-code mappings. Anyone
can submit a source code text to the de-hash table so that its
hash value will be computed and associated with it.

A preview of security. The synthesized vProgram for the
SymT from the previous paragraph, “TStore.com:
#completeOrder(Cashier.com::#pay(TStore.com::#placeOrd
er()))”, has the following steps. First, it invokes the method
placeOrder with an arbitrary input value. Next, it invokes
the method pay with the return value of placeOrder as the
argument. Finally, it invokes the method completeOrder
with the return value of placeOrder as the argument.
Referring to Listing 1, the reader can see that the ambient
predicate is satisfied at the end of this sequence of execution.

On the other hand, if the logic flaw explained in Section
III.A is exploited, the final SymT will be TStore.com:
#completeOrder(Cashier.com::#pay(MarkStore.com::#place
Order())). The difference between this SymT and that for the
correct transaction is only that the call to method placeOrder
is performed at MarkStore.com, which, from the perspective
of TStore.com, has no reason to be trusted. In order words,
this step of computation must be considered non-
deterministic when TStore.com tries to verify the ambient
predicate. More specifically, what the synthesizer does is to
ignore this step, and begin directly with the method pay with
an arbitrary value as argument. Consequently, the
certification fails (because merely executing pay and
completeOrder on an arbitrary input is not sufficient to
satisfy the ambient predicate) and the transaction is rejected.
Note that MarkStore can even hide its presence by providing
SymT=� in placeOrder_resp. If so, the final SymT will be
TStore.com:#completeOrder(Cashier.com::#pay()). All our
discussion is still valid in this case.

IV. THE CST CERTIFIER

In this section, we describe the design and implementation
of the certifier that validates a symbolic transaction in the
CST approach. In particular, we elaborate the synthesizer,
the verifier and the cache. Overall, the certifier is a method
with three arguments and a Boolean return value:

synthesizer

de-hash
table

verifier vProgram

Certifier

co
m

pl
et

e
O

rd
er

cache

Figure 4: The certifier (on TStore.com).

837837

bool certify (string FinalSymT,
string AmbientPredicate,
string[] TrustedParties)

The arguments FinalSymT and AmbientPredicate are self-
explanatory. The argument TrustedParties is an array to
specify which parties are considered trusted for this ambient
predicate. For the example discussed earlier, the certifier (on
TStore.com) only needs to trust TStore.com and
Cashier.com, i.e., the validity of the ambient predicate
should not depend on any other party. Similarly, in the
single-sign-on scenario, the certifier on the relying party
foo.com should only trust foo.com and the identity provider
(e.g., facebook.com), but no one else. As stated earlier, the
client (browser) is always an untrusted party, involved in all
transactions. TrustedParties decides which computation
steps the certifier should take into account. Computations
performed on other parties, including the client, are ignored
in the synthesized vProgram.

A. Symbolic Transaction
The symbolic transaction, SymT, is the basis of the CST
approach. The SymT representation makes multiparty
transactions, hitherto only an informal notion in the mind of
a protocol designer, explicit in protocol messages.

SymT needs to record not only the sequence of method calls,
but also how two consecutive calls are stitched, i.e., how the
output of a call (referred to as method1 on a.com) is fed
into the input of the next call (referred to as method2 on
b.com). Specifically, the main question is why b.com should
believe that the input of method2 indeed comes from a.com.
There are only two possible reasons: (1) the input is signed
by a.com; (2) b.com itself makes a direct server-to-server
call to method1 to obtain the input for method2.

Therefore, SymT must precisely encode the stitching
scenarios. Figure 5 shows three SymT values, in which we
highlight certain symbols for discussion. In scenario A, the
output of method1 is not signed (denoted by the highlighted
single-colon), and is supplied to method2 by an unnamed
party (denoted by the highlighted parentheses). An unsigned
browser redirection is an example of scenario A. The only
difference in scenario B is that the input of method2 (i.e.,
the output of method1) is protected by a.com’s signature, so
b.com is confident that it is generated by a.com, untampered.
The signing is denoted by the double-colon “::”. In scenario
C, method1 is called from b.com using a direct server-to-
server call (e.g., a SOAP or REST API call), so b.com of
course has the confidence that the input of method2 comes
from a.com. The server-to-server call is denoted by two
pairs of double-parentheses. Another valid SymT, not
shown in Figure 5, could be b.com:#method2((a.com::
#method1((…)))), representing a server-to-server call that
returns a signed response. It is equivalent to scenario C, as
the signing is unnecessary.

Signature checking. When receiving a signed message, such
as each of the latter two messages in the protocol discussed
in Section III, the receiver must check the validity of the
signature and whether it matches the SymT string. More
specifically, the receiver needs to ensure that: (1) the SymT
field itself is covered by the signature; (2) if the SymT is
a.com::#method1(…), then the signature is indeed generated
by a.com.

Signing in CST is simple and can be piggybacked on the
existing protocol implementation: if a message in the
existing implementation is unsigned, then it remains
unsigned in the CST-enhanced implementation; if a message
is signed, CST attaches the SymT string as an argument of
the HTTP request (GET or POST) and hands the entire
message to the underlying signing layer, which signs and
sends the request.

Grammar. Grammatically, SymT is a nested sequence of
method calls specified by the production rules in Listing 2.
The rules we use in our implementation are slightly more
comprehensive; they also accommodate a method call
taking multiple arguments and a signature covering selective
fields.

(Scenario A) b.com:#method2(a.com:#method1(…))
b.coma.comunnamed party

(e.g. browser)

resp1

m
et

ho
d1

m
et

ho
d2

(Scenario B) b.com:#method2(a.com::#method1(…))

b.coma.comunnamed party
(e.g. browser)

resp1
(signed)

m
et

ho
d1

m
et

ho
d2

(Scenario C) b.com:#method2((a.com:#method1((…))))

b.coma.comunnamed party
(e.g. browser)

m
et

ho
d1

m
et

ho
d2

Legend: Double-colon – signed message
 Double parenthesis – server-to-server call

Figure 5: Stitching two method calls.

838838

LISTING 2: PRODUCTION RULES FOR SYMT

SymT � �
 | PARTY-ID : METHOD-CALL
 | PARTY-ID :: METHOD-CALL
METHOD-CALL � SRC-HASH (SymT)
 | SRC-HASH ((SymT))
PARTY-ID � a.com | b.com | amazon.com | …

Semantics. When SymT a.com:fa(b.com:fb(c.com:…)) is
attached to message M, it represents the following recursive
claim about the message (we add brackets to indicate the
scoping):

The message is M, which a.com claims is
{ the result of executing fa() on input Ma, which b.com claims is
 { the result of executing fb() on input Mb, which c.com claims is
 { … }
 }
}

If the above SymT contains double-colons and double-
parentheses, the meaning of the claim will not be changed.
However, they will affect how the synthesizer trusts each
layer of the claim, which will be explained in Section IV.B.

It is worth emphasizing that SymT must not be interpreted
as follows:

a.com claims that { the message is M,
 which is the result of a.com executing fa() on input Ma,
 which is the result of b.com executing fb() on input Mb,
 which is the result of c.com executing … }

This interpretation is wrong because a.com is not able to
make a claim about the whole sequence of calls. The correct
interpretation is a recursive claim, in which each party only
makes a claim about one call.

B. Synthesizer
Think of SymT as an onion potentially rotten inside – each
layer is a claim, which, if untrusted, implies that everything
inside is bogus. Thus, the synthesizer needs to identify the
outer-most layer where the trust cannot be established, and
discard it with everything inside. Specifically, the
synthesizer examines the SymT string from left to right. It
looks for the first call which is:

(1) performed at an untrusted party (i.e., PARTY-ID �
TrustedParties), or

(2) not tamper-proof (i.e., when the pattern “(PARTY-
ID:METHOD-CALL)” is matched, such as in Scenario A).

If such a call is found, it is discarded and replaced with the
empty string �. The resulting SymT, basically a hollow
onion, is trusted. The vProgram can be directly generated
from it without any further considerations regarding trust. It
takes arbitrary input values.

Listing 3 shows the synthesized program corresponding to
the SymT TStore.com:#completeOrder(Cashier.com::#pay(
TStore.com::#placeOrder())). The method to be verified is
the static method main(). The local variables of this method,
such as placeOrder_req, pay_req, etc., and the global

objects, such as TStore and MyCashier, are initialized with
non-deterministic values; this initialization is not shown in
the figure. Since all method calls happen at trusted parties
and no method call is an instance of Scenario A, lines L1-L6
compose all the method calls. Lines L7 and L8 are reached
only if the order is completed. These lines assert that the
ambient predicate holds on the preceding computation. On
the other hand, the SymT for the attack from Section III.A is
“TStore.com:#completeOrder(Cashier.com::#pay(MarkStore
 .com::#placeOrder()))”. In this SymT, the computation of
MarkStore.com::#placeOrder() is at an untrusted party and is
therefore replaced by �, causing lines L1 and L2 to be
dropped, so the assertions will fail. Similarly, if the first step
was (TStore.com:#placeOrder()), which is not tamper-proof,
it would result in the same vProgram without lines L1 and
L2. Appendix B illustrates the synthesis steps graphically.

In addition to the method main(), the complete vProgram
also includes the aforementioned constructors and web
methods, which are hashed and stored in the certifier’s de-
hash table.

C. Verifier
We demonstrated CST on systems implemented using
ASP.NET and C#. The focus on .NET is only because we
want to use an off-the-shelf program verifier for .NET. The

LISTING 3: THE VPROGRAM SYNTHESIZED FROM SYMT.

class vvProgram {
//* The constructors of Merchant and Cashier construct objectts

 wwith non-deterministic initial states */
 static Merchant TStore=new Merchant();
 static Cashier MyCashier=new Cashier();
 static void mmain() {

/* The program for a normal transaction will contain L1 and L2.
The program for the attack described in Section III.A will not
contain L1 and L2. */

L1: placeOrder_resp=TStore.placeOrder(placeOrder_req);
L2: pay_req = placeOrder_resp;
L3: pay_resp = MyCashier.pay(pay_req);
L4: completeOrder_req = pay_resp;
L5: bool completeOrder_resp=
 TStore.completeOrder(completeOrder_req);
L6: if (!completeOrder_resp) return;
L7: Contract.Assert(placeOrder_req.orderID==
 completeOrder_req.orderID);
L8: Contract.Assert(
 Contract.Exists(0,MyCashier.payments.Length, i =>
 MyCashier.payments[i].status == "Paid" &&
 MyCashier.payments[i].total ==
 TStore.orders[completeOrder_req.orderID].gross &&
 MyCashier.payments[i].payee ==
 TStore.mySellerID &&
 MyCashier.payments[i].orderID==
 completeOrder_req.orderID)
);
 }
}

839839

CST technique is equally applicable to any programming
language. Figure 6 shows the tool chain. The program
generated by the synthesis tool is compiled by the C#
compiler of Visual Studio. The output is an executable file
of .NET byte code. ByteCodeTranslator (BCT) [5] is a tool
to translate a .NET byte code program into a Boogie
program. Boogie is an intermediate verification language [9].
We use the Corral system [16] as the verifier. In addition to
the input Boogie program, the Corral verifier expects a non-
negative number to establish a bound for the unfolding of
loops and recursion in the program. Corral outputs exactly
one of three results: the program is verified, or the program
is verified with respect to the bound, or the program is
falsified. In the final case, Corral also presents a
counterexample witnessing the error in the program. Our
certifier certifies a transaction only if Corral returns the first
output, i.e., the transaction is verified without a bound.

Ambient predicates, like lines L7 and L8 in Listing 3, are
specified using the Contract class [20] defined in C#
System.Diagnostics.Contracts namespace.

D. Cache
Program verification is expensive (e.g., 10 - 30 seconds to
verify a transaction in our cases). It is impractical to do it for
every transaction. Caching is therefore essential in CST:
when the verification is done, the certifier caches the result
(i.e., true/false) with the triple FinalSymT, AmbientPredicate
and TrustedParties. Any future call to the certifier by any
user will return the result directly if it matches a cached
triple.

E. Putting it all together
A one-sentence summary of CST’s safety guarantee is that
each certified transaction is assured to satisfy the ambient
predicate regardless of the value of the current state of the
multiparty system. This assurance comes from three
elements in the CST design, which fulfill different but
complementary goals:

(1) SymT construction. The SymT construction is to
passively record the computations. It faithfully states
important basic facts, such as whether a message is a
redirection or direct server-to-server call, and whether a
message is signed (if so, who signs it).

(2) vProgram synthesis. The synthesis is to recover the
computations based on the SymT string. As explained
earlier, the SymT string can be thought of as an onion. The
untrusted inner core is discarded, so the remaining hollow
onion represents the truth about the computations in the
transaction.

(3) vProgram verification. It symbolically checks whether
the sequence of recovered computations is sufficient to
ensure the ambient predicate. This is done by an off-the-
shelf verification tool chain.

F. Important practical considerations
Ambient predicate and replay attack. The three elements
above only ensure that the transaction satisfies the ambient
predicate. Whether this is sufficient to ensure security
depends on the definition of the ambient predicate. As an
example, we consider the possibility of replay attacks on the
example discussed in Section III. If the clause
Cashier.payments[i].orderID==placeOrder_req.orderID was
missing from the ambient predicate, CST would not guard
against a replay attack that makes only one payment but
checks out multiple orders with the identical total price from
the same merchant. Obviously, this attack will have serious
consequences.

Typically, a protocol designed to be resilient to replay
attacks contains some sort of sequence number (or nonce).
To prove that resilience to replay attacks is indeed achieved,
the ambient predicate should check the sequence number (or
nonce) to make sure that each transaction is honored only
once, i.e., it is void when replayed. The orderID clause
above serves this purpose. It ensures that there is a one-one
mapping between the payment ID and the order ID, thereby
ensuring that the payment is for the order being checked out.

Revoking the effect of a rejected transaction. CST checks
the safety property at the last moment before a transaction is
completed. Hence, a rejected transaction may have changed
the state on the involved parties, e.g., a payment is made but
the final checkout step is rejected. Undoing these effects for
a rejected transaction requires an explicit revocation
procedure.

Even without CST, a protocol may abort an on-going
transaction at any step for a variety of reasons.
Consequently, a real-world system already requires a
mechanism handle such situations, e.g., payment dispute,
automatic revocation, etc. A transaction rejected by CST’s
certifier is not fundamentally different from those rejected
by other conditions. The developer does not need to perform
any special handling for CST and only needs to add the CST
check as a conjunct to the existing rejection conditions.

V. APPLYING CST IN THE REAL WORLD

We have applied CST to enhance various systems that serve
practical purposes. Unlike proof-of-concept prototypes,
these systems contain realistic source code and data
structures written by actual developers. We view it as an
accomplishment that all our enhanced systems are ready for
commercial deployments. For example, people can install
our CST-enhanced NopCommerce to run their stores: a
customer can choose items, check out orders, and specify
shipping and payment methods, etc; payments are made on

vProgram
(C#) C#

compiler

ByteCode
Translator

(BCT)
Corral

.NET
Byte
Code

Boogie
Code

Figure 6: The verifier.

840840

the real Amazon and PayPal servers. People can also use our
Live Connect SDK to enable single-sign-on on their
websites. Functionality-wise and performance-wise, our
systems are indistinguishable from the original ones. These
systems are all publicly accessible. Their URLs, source code,
as well as instructions and videos of demos, are given in
https://sites.google.com/site/symbolictransaction/ [32].

A. Categories of the enhanced systems
We have worked on three categories of systems so far:

Payment/checkout. NopCommerce [23] is a widely used
open-source e-commerce application. It was one of the
focused systems in previous security studies [27][30].
NopCommerce accepts many third-party payments. We
decided to enhance its payment modules for Amazon
Simple Pay and PayPal Standard. The former is essentially
what we described in Section III.A, and latter is shown in
Figure 7. They are significantly different in that Amazon
Simple Pay is based on signed redirection messages,
whereas the PayPal Standard mechanism relies on a direct
server-to-server call, namely the PDT (Payment Data
Transfer) query, for securely communicating the payment
details.

Single-sign-on (SSO). We worked on the implementations
of three different SSO protocols: (i) the OpenID-2.0-based
SSO [24] in the DotNetOpenAuth framework [12]; (ii) the
OAuth-2.0-based SSO [15] in Microsoft Visual Studio
ASP.NET MVC 4 web application template that uses
Facebook’s OAuth service [13]; (iii) Live Connect SDK
[19], which heavily influenced the OpenID Connect
specification [26]. (Note that the terminology may cause a
little confusion. OpenID Connect is a protocol, drafted by
the OpenID Foundation, to use OAuth 2.0 for SSO. It was
published very recently. Live Connect SDK predates the
OpenID Connect specification, so the SDK refers to its SSO
mechanism as OAuth 2.0, rather than OpenID Connect.)
The message diagram of the OAuth-2.0-based SSO is
shown in Figure 8. The ones for OpenID 2.0 and Live
Connect are given in Appendix A.

Gambling. People are familiar with the above two categories,
because standards organizations and major companies have
provided protocol specifications or API documentations. We
decided to use CST to build a gambling system. The goal is
two-fold: (1) we do not have any existing gambling protocol
to conform to, so building this system is an end-to-end
exercise of the protocol-independent thinking process; (2)
previous scenarios only involve two trusted services. We
want to challenge the CST approach by involving more
parties. The gambling system we built consists of four
independent services for betting, payment, authorization and
coin-tossing (see Figure 9).

B. Ambient predicates
Despite the significant differences among these systems and
their adopted protocols, we specify the same ambient
predicate for each category.

Payment/checkout. Our enhanced implementations for
Amazon Simple Pay and PayPal Standard ensure the same
ambient predicate as we presented in the example in Section
III. It is to ensure that when the merchant is about to check
out an order, there exists a payment record in the cashier
that matches this order.

SSO. Figure 10 gives our protocol-independent definition of
the SSO security goal. In every SSO system, there are a
client, an identity provider (IdP) and a relying party (RP).
The client holds a piece of BrowserSecret, which is shared
with the identity provider, but not the relying party. The
relying party has at least two constants: My_Realm is its
identifier known to the identity provider; My_Hostname is
its network-addressable name. Variable Session_UID is the
session variable to be set upon a successful sign-on.

An SSO transaction starts with a request from the client to
the identity provider, namely auth_req, containing the

TStore.comPayPal.com
(Cashier)

client

In
te

rn
et

completeOrder_req <tx>

placeOrder_resp <orderID,total,returnURL, etc.>
pay_req <orderID,total,

returnURL, etc.>

completeOrder_resp <status>

Check accountID
against payee

Check
PDT data

Figure 7: PayPal Standard.

Relying Party (RP)Identity provider (IdP)client
auth_req <sessionID,
AppID, redirect_uri>

In
te

rn
et

Check redirect_uri
AppID, AppSecret

Accept
user_ID

Figure 8: SSO based on OAuth-2.0.

Cashier Gambling siteToken manager
(OAuth service)

Coin tosser

(5)
write_back.aspx

Figure 9: The gambling system.

841841

BrowserSecret and the Realm of the relying party that the
client wants to sign in. The identity provider then retrieves
an object called ID_Claim using the pair
(BrowserSecret,Realm). ID_Claim contains at least two fields:
User_ID is the identifier of the user that this claim is about;
Redir_dest indicates the destination of the redirection
message (i.e., the website that signIn_req is sent to). The
retrieval is based on a two-key dictionary called IdpAuth,
defined as follows in C#:

Dictionary<string, Dictionary<string, ID_Claim>> IdpAuth;
Note that how IdpAuth entries are established is not what
SSO concerns about. The identity provider can identify the
client as “Alice” for any reason (e.g., through password or
SSL client certificate), thus creates an IdpAuth entry. An
SSO protocol is to prove to the relying party the existence
of the entry, i.e., the fact that the identity provider believes
the client is Alice.

An SSO transaction must satisfy the ambient predicate:

IdPAuth[auth_req.BrowserSecret][My_Realm].Redir_dest
 == My_Hostname && (1)
IdPAuth[auth_req.BrowserSecret][My_Realm].User_ID
 == Session_UID (2)

The first clause asserts that the identity provider passes the
ID_Claim to this relying party, not to any other website
(which could then use the ID_Claim to sign into this relying
party illegally). The second clause asserts that the user ID to
be associated with the session (i.e., Session_UID) is the one
in the aforementioned ID_Claim.

Gambling. The ambient predicate for the gambling system is
given below. Clauses (2)-(4) ensures that a proper payment
has been made for the bet (identified by final_req.betID);
Clauses (5) - (8) ensures that the bet is valid and matches
the tossing result of the coin-tosser.

GamblingSite.bets[final_req.betID].status==“Pending” && (1)
� i. (
 Cashier.payments[i].total ==
 GamblingSite.bets[final_req.betID].amount && (2)
 Cashier.payments[i].orderID == final_req.betID && (3)
 Cashier.payments[i].payee==GamblingSite.MySellerID) && (4)
� x. (

TokenMgr.records[x].payee==GamblingSite.MySellerID && (5)

TokenMgr.records[x].betID == final_req.betID && (6)

 TokenMgr.records[x].EffectiveResult != “untossed” && (7)
 GamblingSite.bets[final_req.betID].guess
 ==TokenMgr.records[x].EffectiveResult) (8)

As mentioned earlier, a motivation for building this
gambling system is to challenge the CST approach with
substantial complexity. In this case, the final SymT of a
normal transaction contains 4 parties and 7 hash values:

GamblingSite.com:#redeem(CoinTosser.com::#post_toss((Toke
nMgr.com:#write_back((CoinTosser.com:#toss(TokenMgr.com::
#issueToken(amazon.com::#pay(GamblingSite.com::#bet()))))))))

The synthesized vProgram has more than 300 lines of C#
code, which the certifier is able to verify.
C. Programming
Every verification technology applied to real-world systems
needs the effort of abstraction. The abstraction is often done
through factoring and stubbing. This subsection explains
what they mean in the CST programming. For concreteness,
the description incorporates our experience of enhancing the
Live Connect SDK, although the general ideas apply to our
experiences of enhancing other systems.

(1) Factoring. CST requires the core computations to be
factored out in order to be logically verified. Typical non-
core computations include methods for parsing, composing
and HTTP-encoding/decoding for messages. These non-core
computations contain complicated string (byte-array)
operations. Currently Corral and Boogie have only limited
capability for reasoning about string operations: assignment,
equality comparison and string-indexed dictionary are
supported, but concatenation, tokenization, character
operations, etc. are not.

Figure 11 shows the call-graph of callback.aspx in the Live
Connect SDK, which handles a redirection from the LiveID
server. In this 3-dimensional drawing, the methods are
placed on an unshaded level and a shaded level. The shaded
level consists of the core methods that we factor out. The
unshaded level serves as the interface between the core logic
and the underlying platform. For example, Page_Load
parses HTTP arguments. RequestAccessToken_raw is a
method we create so that the string operation for
constructing an HTTP request can be separate from the core
method RequestAccessToken. The constructor of class JWT
(i.e., JsonWebToken) performs Base64 decoding and
signature validation, which are byte-array operations.

It is not a requirement that all complicated string (byte-array)
operations are moved out from the core methods. For
example, a core method can still construct a string for the

User_ID,
Realm,

Redir_dest

User_ID,
Realm,

Redir_dest

xyz

Identity provider
(IdP)

Relying party
(RP)

User_ID,
Redir_dest

BrowserSecret:

Constants:
My_Realm,
My_Hostname

Var:
Session_UID

(BrowserSecret, Realm)

IdPAuth[][]

Figure 10: A protocol-independent definition of single-sign-on.

Page_Load method of callback.aspx

RequestAccessToken
ByVerifier

RequestAccessToken
ByRefreshToken

HandleToken
Response

Request
AccessToken

ReadUserInfo
FromAuthToken

SaveRefresh
Token

ReadRefresh
Token

RequestAccess
Token_raw

JWT constructor
stub

JWT
constructor

Underlying System Platform
Figure 11: Factoring and stubbing in callback.aspx.

842842

logging/debugging purpose, as long as it does not affect the
validity of the ambient predicate. Our experience on existing
implementations of real-world service frameworks is that
they are already architected similarly to Figure 11 so that
lower-level methods parse HTTP requests into well-
structured objects and assemble HTTP responses using
these objects, while upper-level modules implement core
computations on these objects. The core computations
usually deal with basic types (e.g., integers and Booleans),
structs and arrays of basic types, as well as string
assignments and equality comparisons. Corral/Boogie can
effectively reason about all these programming constructs.

(2) Stubbing. The core methods call many other methods,
which will not be included in the vProgram for verification.
In other words, these methods are treated as unimplemented,
from the certifier’s standpoint. For Corral/Boogie, the
default semantics of an unimplemented method is that it
returns a non-deterministic value, but does not modify any
program state (i.e., the body is a no-op). This works in most
cases, because most of these methods are not essential to the
verification. However, there are a few situations in which
the semantics of these methods matter, so developers need
to define their semantics as stubs. In the Live Connect SDK,
we provided a stub method as shown in Figure 11. The
source code is below.

static JsonWebToken JWT_Constructor_stub (OAuthToken token)
{ JsonWebToken jwt;
 havoc(jwt); //to assign jwt a non-deterministic value
 Contract.Assume(jwt == token.jwt && jwt != null);
 return jwt;
}

The reason to provide JWT_Constructor_stub is to replace
the Base64 decoding and signature validation operations in
the JWT constructor with the logic most essential to the
verification. Specifically, the logic is that a new JWT object
equals to the jwt member of the input argument token, i.e.,
jwt!=null && jwt== token.jwt.

Another situation for providing a stub is to model a database
operation. In real-world systems, persistent data (e.g., the
payment records) are often stored in and queried from a
database by INSERT and SELECT. Corral/Boogie does not
have built-in support for these operations. Developers need
to wrap these operations in C# methods, and define stubs
that are logically equivalent to database operations but use
C# data structures like array, set, list, etc.

(3) Mapping from variable names in ambient predicate to
those in implementation. Every verification technique needs
to map variable names in specification to that in source code,
and so does CST. The ambient predicates defined above use
generic names for message fields and variables.
Unfortunately, they are named differently across protocol
documentation and implementations. In our programming,
we had to adapt the ambient predicates to the terminologies
of these implementations. For example, the BrowserSecret

in our definition is called MSPAuth in Live Connect; the
Realm in our definition is called AppID in Facebook OAuth
and openid.realm in OpenID 2.0.

D. Deployment
The deployment path we envision is that, first, major service
providers, e.g., Facebook and Amazon, attach the SymT
field in their messages; then, relying websites gradually opt-
in to take advantage of CST. Note that CST has the
advantage of incremental deployment: without any
modification, a CST-unaware relying website (i.e., a relying
party or merchant website) will just work normally with a
CST-enhanced service provider, as SymT is treated as a
superfluous field.

Even before the service providers actually deploy the
enhancement, CST can be used to secure real-world
transactions. This is exactly what we did for all the
aforementioned open-source packages (except for
DotNetOpenAuth), which do not contain the service
provider code. For each of these services, we built a
“wrapper service”, which serves as a relay in order to attach
the SymT field. An example is shown in Figure 12, the
dashed-line redirection is implemented as two solid-line
ones with the wrapper service as the trampoline. A server-
to-server call is similarly implemented. Hence, all
transactions certified on our relying websites are processed
by the actual service providers for real. Of course, a caveat
is that the attached source code hash is only our best effort
approximation for the logic behind these web methods.

VI. EVALUATION

We evaluated the CST approach on security, protocol-
independence, performance, and programming effort.

A. Security
We studied 14 real-world vulnerabilities (listed in Table I),
which we believe are a representative sample set in this
problem space – this set includes all the cases reported in
the literature [25][27][28][29] that allows an attacker to
either check out an order without a proper payment or sign
into a victim user’s account through SSO, excluding the
cases due to generic web programming flaws like cross-site
scripting, cross-site request forgery (CSRF) and session
fixation. We show next that 12 out of the 14 cases would be
addressed by CST. The other two are out-of-scope issues.

Amazon Wrapper
(to attach SymT that
represents Amazon
server’s logic)

NopCommerce
(open-source package
with our added and
changed code)

Amazon server
(no source code
available)

Figure 12: An example wrapper service.

843843

Cases for which CST is effective. Attacks for cases #1, #2
and #11 can be launched against the systems that we built
using CST – NopCommerce with PayPal Standard,
NopCommerce with Amazon Simple Pay and OAuth-2.0-
based SSO. We confirmed that the attacks result in
vPrograms not satisfying the ambient predicates.

Case #7 is about a relying party that uses the email address
(email) field, rather than the claimed_id field, as the user’s
identifier. The reported vulnerability is because the
signIn_req.email field can be excluded from the signature
coverage by the malicious user, so that it bears an arbitrary
value supplied by the client. We intentionally introduced
this vulnerability to our OpenID 2.0 implementation on
DotNetOpenAuth. When the attack is launched, the
resulting vProgram fails to verify clause (2) in the ambient
predicate, because Session_UID is taken from the
signIn_req.email field, which is non-deterministic in the
vProgram.

Cases #3-#5 are about Interspire, which is another merchant
software providing similar functionalities as NopCommerce.
We have not applied CST on Interspire. However, based on
the nature of the attacks, it is clear that they fall nicely into
the scope of CST:

� Case #3 is an attack in which the attacker starts two
independent transactions – one is expensive, the other is
cheap. The attacker only performs the PayPal payment step
in the cheap transaction, but not in the expensive transaction.
At a particular stage, the merchant takes a signed orderID as
the input argument. It is at this stage where the attacker
supplies the signed orderID of the expensive transaction into
the HTTP session of the cheap transaction, so the expensive
order is checked out although only the cheap order is paid.
This attack will be defeated by CST, because the orderID is
always attached with the SymT, and signed together. When
the attacker swaps the orderID of the expensive transaction
into the cheap transaction, the SymT of the transaction has
to be swapped in as well. The SymT clearly indicates that
no payment step has been performed, so the ambient
predicate will fail to verify.
� Case #4 is a vulnerability because the merchant may take
the orderID from the client’s cookie that is not signed.
According to our definition, any unsigned value supplied by
the client is non-deterministic. Having a non-deterministic
orderID, the vProgram fails verify.
� Case #5 is because the payment total is calculated based
on the shopping cart at the checkout time, but the order
being checked out is generated based on the shopping cart
after the payment is made. The ambient predicate will not
verify in this case, because the shopping cart is a runtime
object, querying its property at two time points are
semantically two method calls, corresponding to two
different symbolic values. The equality would not be estab-
lished in the verification.

Case #9 is about JanRain SSO service. The attack is to set
the redirection destination (i.e., Redir_dest) to the attacker’s
website when the (victim) user tries to sign into a (victim)
website. The JanRain server correctly checks the redirection
destination, but the most important step in the attack is that
the client can swap in an unchecked URL as the redirection
destination after the checking. If CST was applied, the
unchecked URL would be an arbitrary value (i.e., the
attached SymT would not indicate any logic constraint
imposed on this URL), so the clause in the ambient
predicate about the redirection destination would fail.

Similar to case #7, case #10 is about a relying party that
intends to use the email field as user ID. However, the
developer mistakenly uses an arbitrary non-email field as
the email field, due to a misunderstanding of the OpenID
2.0 protocol. CST would prevent the flaw because the
IdPAuth dictionary on the identity provider would not even
contain this arbitrary field.

Cases #12-#14 include every exploitable flaw reported in
[25]. In case #12, the attacker replaces the payee account ID
with his own PayPal account ID, and checks out an order
from the victim store by paying himself. Cases #13 and #14
are similar to case #3, in which the attacker places two
orders in two sessions, and supplies a message obtained
from the session of the cheaper order into the session of the
more expensive order. We have explained that these are
precisely the type of logic flaws that CST would prevent.

TABLE I: REAL-WORLD CASES STUDIED IN OUR SECURITY ANALYSIS

No. Attack Target system CST
effectiveness

#1 Section III.A.1
of [27]

NopCommerce with PayPal
Standard

Yes

#2 Section III.A.2
of [27]

NopCommerce with Amazon
Simple Pay

Yes

#3 Section III.B.1
of [27]

Interspire with PayPal Express Yes

#4 Section III.B.2
of [27]

Interspire with PayPal Standard Yes

#5 Section III.B.3
of [27]

Interspire with Google Checkout Yes

#6 Section III.C of
[27]

Websites using Amazon Payments No

#7 Section 4.1 of
[28]

Websites using Google ID Yes

#8 Section 4.2 of
[28]

Websites using Facebook Connect No

#9 Section 4.3 of
[28]

Websites using JanRain sign-on Yes

#10 Section 4.5 of
[28]

Websites using Google ID Yes

#11 Section 2 of
[29]

Websites using OAuth implicit
flow for SSO

Yes

#12 Section IV.A.1
of [25]

osCommerce, CS-Cart and
AbanteCart using PayPal Standard

Yes

#13 Section IV.A.2
of [25]

OpenCart and TomatoCart using
PayPal Express

Yes

#14 Section IV.A.3
of [25]

TomatoCart using PayPal Express Yes

844844

Cases that are not addressed by CST. CST relies on every
party to correctly verify signatures. Case #6 is a
vulnerability in signature verification. It is out of scope of
CST. The root cause of case #8 is a client-side cross domain
issue. Specifically, it is due to a special Adobe Flash
communication mode that does not conform to the same-
origin policy. This causes secret data from the IdP to be
obtained by a malicious webpage on the victim user’s
browser. CST does not address security flaws in the
underlying platform.

B. Protocol independence
The fact that we check the same ambient predicates for
systems adopting considerably different protocols shows the
protocol independence of their security goals. To make the
point even stronger, we built implementations that blatantly
violate protocols but are nevertheless secure. Three of them
are shown in Figure 13.

Implementation (A) does not conform to the OAuth 2.0
protocol (shown earlier in Figure 8) for two reasons:

� First, the protocol requires token_req to contain the field
AppSecret, which is a secret the identity provider assigned

to every relying party at the registration time. We realized
that the purpose of AppSecret is to prevent another website
from impersonating the relying party to access the identity
provider, which seemed unrelated to SSO. We removed
AppSecret, and the ambient predicate still held, suggesting
that AppSecret is indeed unnecessary in SSO. Note that we
do not claim that AppSecret is useless in general in the
OAuth protocol (in fact, we now understand precisely where
it is useful).

� Second, the protocol requires the identity provider to
check redirect_uri. In implementation (A), the identity
provider does not perform the check. Instead, it returns
redirect_uri in me_resp, so that the relying party can check
it. The ambient predicate still hold in this case.

Implementation (B) even more blatantly violates the
protocol, because it gets rid of code, but uses token for the
client to authenticate into RP.com. According to a previous
study, using token to authenticate is a pervasive and serious
vulnerability [29]. Recently, the OAuth 2.0 specification has
been augmented to explicitly forbid this kind of token usage
(see section 10.16 of RFC 6749). However, we realized that
this usage is vulnerable only because, if the relying party
accepts a token rather than a code for authentication, the
steps token_req and token_resp will be skipped. The
relying party directly calls me_req:(token), so the checking
of redirect_uri and AppID required by the ambient predicate
is missing. If me_req took additional arguments redirect_uri
and AppID, and the identity provider performed the checking,
as in implementation (B), then security would still be
achieved.

Suppose the identity provider insists not to check anything,
is the implementation doomed flawed? Not necessarily. The
checking can be performed by the relying party, like in
implementation (C).

Summary. We can see that all these implementations are just
different ways of sharing the responsibility of performing all
necessary checks. The OAuth 2.0 protocol describes one
particular way, but not the only way. Of course, we
understand that protocol conformance not only affects
security, but also modularity, deployability, interoperability,
etc. We do not suggest implementers disregard protocols,
but only argue that security can (and should) be ensured
independently, because understanding “who should do what,
and why” about each protocol specification can be very
subtle.

C. Performance
A significant strength of CST is its near-zero runtime
overhead. Table II provides the measurement results,
obtained from a server with a 2.10 GHz CPU and a 3.5 GB
RAM, running Windows Server 2008. The numbers fall into
two categories: per transaction cost and one-time cost. The
time spent on synthesizing and verifying a vProgram
belongs to the one-time cost, because the caching amortizes

Relying Party
(RP.com)

Identity provider
(IdP)

client
auth_req <sessionID,
AppID, redirect_uri>

In
te

rn
et

Check AppID

Check
redirect_uri,
then accept

user_ID

(A)

Relying party
(RP.com)

Identity provider
(IdP)

client
auth_req <sessionID,
AppID, redirect_uri>

In
te

rn
et

Check AppID and
redirect_uri

Accept
user_ID

(B)

Relying party
(RP.com)

Identity provider
(IdP)

client
auth_req <sessionID,
AppID, redirect_uri>

In
te

rn
et

Check nothing

Check AppID
and

redirect_uri,
then accept

user_ID

(C)

Figure 13: Protocol-violating yet secure implementations.

845845

the cost over all transactions on all users. In fact, developers
themselves are most likely the users who actually pay for
the cost during testing.

Per-transaction cost. For a non-certifier party, the only
runtime overhead is to produce the SymT. The source code
hash is a pre-computed constant for a given version, so the
only overhead is a string concatenation. Also note that CST
incurs no additional signing operation, i.e., any unsigned
message in the original implementation will remain
unsigned in the CST-enhanced implementation. For the
certifier, the only per-transaction overhead is the cache
lookup for the SymT. Obviously, the runtime overheads for
both a non-certifier party and the certifier should be
extremely small. We nevertheless did the actual measure-
ments to confirm that, for every system we implemented,
the per-transaction runtime overhead is too small to report.

The SymT field incurs traffic overhead for protocol
messages. We measured the average traffic overhead per
SymT field (shown as Bytes/SymT). Our implementations
use SHA-1 (160 bits), RSA (384 bits) and UTF-8 for
hashing, encryption and encoding.

One-time cost. The synthesis cost is measured for two
situations – when the de-hash table is stored locally or on
another server. The first one mainly indicates the
computational time of the synthesis algorithm, which is
within 5 milliseconds in each of our case. The second
situation may be more beneficial in practice because it
offloads the de-hash table to another server. Although the
synthesis time is longer, since it is a one-time cost, it should
not be a performance concern in practice.

The last column in Table II corresponds to the real heavy-
lifting step in CST. It consists of C# compilation into .NET
byte code, byte-code translation into Boogie code and
verification of Boogie code. The time reflects the significant
logic complexity for verifying a transaction consisting of
realistic methods. In contrast, today, this significant logic
reasoning is never conducted, and correctness is taken on
faith.

D. Programming effort
Table III shows the lines of code (LoC) we added or
changed in each open-source project, excluding comment

and white lines. The certifier is the same across all projects.
It consists of 347 LoC. The LoC numbers in the unshaded
cells are a good measurement of the effort for factoring and
stubbing. The amount of code is fairly small, under 200 LoC
for each party, indicating that the original developers had
architected the code well so that it was amenable for the
CST enhancement. The shaded cells correspond to our
wrapper code for the real API providers, and factoring and
stubbing do not apply for them.

TABLE III: LINES OF CODE THAT WE ADDED OR CHANGED IN THE

OPEN-SOURCE PACKAGES (COMMENT AND WHITE LINES EXCLUDED)

 Shared
methods

The relying
website

The API-provider

Live Connect SDK 0 48 100
(wrapper)

OpenID 2.0 on
DotNetOpenAuth

104 59 182

Facebook SSO using
ASP.NET MVC 4

0 119 411
(wrapper)

NopCommerce with
Amazon Simple Pay

0 71 375
(wrapper)

NopCommerce with
PayPal Standard

0 71 239
(wrapper)

VII. RELATED WORK

There is a rich body of literature about verifying security
protocols themselves, which we do not discuss here due to
the space constraint. Research is also conducted to address
issues in protocol implementations. Existing approaches can
be categorized as either top-down or bottom-up. The top-
down approaches focus on generating or verifying
implementations based on formal specifications of protocols.
For example, Bhargavan et al. [6] verified a number of
reference implementations of the InfoCard protocol. In their
work, the protocol and the security specifications are written
in high-level languages F# and WSDL. Bhargavan and
Corin et al. [7][11] developed a compiler that can synthesize
a protocol implementation from a high-level F# specifica-
tion of multiparty transactions. The bottom-up approaches
try to extract protocols from actual systems. Aizatulin et al.
[1] proposed to use symbolic execution to convert a protocol
implementation in C into its high-level model in the applied
pi calculus. Bai et al. developed a technique to extract SSO
protocols from HTTP messages of network traces [4]. The

TABLE II. PERFORMANCE OVERHEAD – PER TRANSACTION AND ONE-TIME COSTS.

 Per-transaction cost One-time cost
Runtime
overhead

Average traffic
overhead

Program synthesis
using a local de-

hash server

Program synthesis
using a remote de-

hash server

compilation, byte-
code translation and

verification
Live Connect SDK � 0ms 106 B/SymT 3ms 568ms 18758ms
OpenID 2.0 on DotNetOpenAuth � 0ms 119 B/SymT 5ms 409ms 15380ms
Facebook SSO using ASP.NET MVC 4 � 0ms 120 B/SymT 5ms 408ms 12090ms
NopCommerce with Amazon Simple Pay � 0ms 78 B/SymT 2ms 450ms 15444ms
NopCommerce with PayPal Standard � 0ms 105 B/SymT 8ms 190ms 10990ms
Coin tossing gambling � 0ms 205 B/SymT 3ms 945ms 32477ms

846846

uniqueness of CST is that it performs static verification at
runtime, which converts the harder obligation of verifying a
system into that of verifying intended transactions.

Proof carrying code (PCC) [21] is a technology for a code
consumer (e.g., an OS kernel) to examine whether the code
from an untrusted producer (e.g., a kernel extension from a
third-party company) is accompanied by a logic proof of
desired safety properties. CST and PCC target different
problems. CST does not have the “proof carrying” aspect of
PCC, but interestingly has a “code carrying” aspect that
enables the verification.

Our work has connections with logic-based access control.
Research on access control logic focus on expressiveness,
decidability and theorem-proving efficiency of different
logic frameworks. Lampson et al. defined a decidable logic
based on the “speaks for” relation [17]. Appel and Felten
found that many access control scenarios need higher-order
logic, which is more expressive, but usually undecidable.
They proposed proof-carrying authentication (PCA) [3],
motivated by the idea of PCC, to shift the proof obligation
to requestors. Code-carrying authorization (CCA) [18] is a
follow-up of PCA. CCA allows requestors to provide
fragments of the reference monitor’s code (in form of the
spi calculus), rather than proofs as in PCA. Our work is
different from prior work on access control logic in two
ways: (1) The certifier in a CST system is not a reference
monitor; rather the computation being certified by the
certifier is akin to a reference monitor; (2) The notion of
proof in a CST system is partitioned into reasoning about
trust (in the synthesizer) and logical correctness (in the
program verifier), enabling the use of off-the-shelf program
verifiers. On the other hand, proof systems for access-
control are monolithic and based on custom axioms and
inference rules about trust and authority, which makes it
difficult to use off-the-shelf verifiers.

Connections can also be drawn between CST and secure
multiparty computation [31] and verifiable computation [14]
in applied cryptography. However, the goal are very
different from CST. Secure multiparty computation is to
enable parties to jointly compute a function over secret data
held by individual parties. Verifiable computation enables a
weaker device to securely outsource computations to
untrusted servers.

VIII. FINAL REMARKS

We show that CST is a practical approach for real
developers to utilize program verification technologies to
guard against logic flaws.

CST represents a paradigm shift for developers. Program-
ming is less about conforming to a protocol, but more about
explicating the computations in order to establish an end-to-
end global safety property. From the security standpoint,
protocols become advisory rather than mandatory. What is
truly mandatory is the ambient predicates independent of
these protocols.

Looking forward, we believe that the CST approach will get
benefits by involving a broader community of protocol
committees and API-providing companies. Today, the
security goals are vague and confusing: protocols use
different terminologies for same concepts; the global
security goals are often implicit or buried in the step-by-step
instructions of individual protocols. A valuable effort we
envision is that the community agree on common
terminologies and draft a “meta-specification” to formally
define ambient predicates for each class of protocols, which
will enable developers to do verification with little
arbitrariness. As shown in the paper, this appears to be
achievable in reality.

ACKNOWLEDGMENT

We thank our shepherd Mike Hicks and anonymous
reviewers for insightful feedbacks and suggestions for
improving the paper. We also thank Martín Abadi, Tom Ball,
John Douceur, Úlfar Erlingsson, Cormac Herley, Jaeyeon
Jung, Jay Lorch, Madan Musuvathi, Ed Nightingale, Prateek
Saxena, Nik Swamy, Helen Wang and Lidong Zhou for
commenting on an earlier version of this paper, Akash Lal
and Mike Barnett for help on Corral and BCT, Rich Draves,
Yuri Gurevich, Jon Howell, Mike Jones, and Yi-Min Wang
for discussing the ideas. Eric Chen was supported in part by
the Microsoft Research internship program.

REFERENCES

[1] M. Aizatulin, A. D. Gordon, and J. Jurjens. Extracting and
Verifying Cryptographic Models from C Protocol Code by
Symbolic Execution. ACM CCS, pages 331–340, 2011.

[2] Devdatta Akhawe, Adam Barth, Peifung E. Lam, John
Mitchell, and Dawn Song. Towards a Formal Foundation of
Web Security. Proceedings of the 23rd IEEE Computer
Security Foundations Symposium, 2010

[3] Andrew Appel and Edward Felten. Proof-Carrying
Authentication. ACM CCS 1999.

[4] Guangdong Bai, Jike Lei, Guozhu Meng, Sai Sathyanarayan
Venkatraman, Prateek Saxena, Jun Sun, Yang Liu, and Jin
Song Dong. AUTHSCAN: Automatic Extraction of Web
Authentication Protocols from Implementations. NDSS 2013.

[5] Michael Barnett and Shaz Qadeer. "BCT: A translator from
MSIL to Boogie." Seventh Workshop on Bytecode Semantics,
Verification, Analysis and Transformation, 2012.

[6] Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon,
Nikhil Swamy. “Verified implementations of the information
card federated identity-management protocol,” ACM
Symposium on Information, Computer and Communications
Security (ASIACCS), 2008.

[7] Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Denielou,
Cedric Fournet, James J. Leifer. "Cryptographic Protocol
Synthesis and Verification for Multiparty Sessions". IEEE
Computer Security Foundations Symposium, 2009

[8] Bruno Blanchet. Security Protocol Verification: Symbolic and
Computational Models. In First Conference on Principles of
Security and Trust (POST'12) (Pierpaolo Degano, Joshua
Guttman, eds.), Springer Verlag, volume 7215, 2012

847847

[9] Boogie: An Intermediate Verification Language.
http://research.microsoft.com/en-us/projects/boogie/

[10] Cloud Security Alliance. "The Notorious Nine – Cloud
Computing Top Threats in 2013".
https://downloads.cloudsecurityalliance.org/initiatives/top_thr
eats/The_Notorious_Nine_Cloud_Computing_Top_Threats_i
n_2013.pdf

[11] Ricardo Corin, Pierre-Malo Denielou, Cedric Fournet,
Karthikeyan Bhargavan, James Leifer. "Secure
Implementations for Typed Session Abstractions". IEEE
Computer Security Foundations Symposium (CSF), 2007

[12] DotNetOpenAuth. http://dotnetopenauth.net
[13] Tom FitzMacken. Using OAuth Providers with MVC 4.

http://www.asp.net/mvc/tutorials/security/using-oauth-
providers-with-mvc

[14] Rosario Gennaro, Craig Gentry, and Bryan Parno. "Non-
Interactive Verifiable Computing: Outsourcing Computation
to Untrusted Workers". CRYPTO 2010.

[15] Dick Hardt. "The OAuth 2.0 Authorization Framework (RFC
6749)". http://tools.ietf.org/html/rfc6749

[16] Akash Lal, Shaz Qadeer and Shuvendu Lahiri. "A Solver for
Reachability Modulo Theories". Computer Aided Verification,
2012

[17] B. Lampson, M Abadi, M. Burrows, and E. Wobber.
Authentication in distributed systems, theory and practice.
ACM Trans. Comp. Sys. 10, 4, Nov. 1992.

[18] Sergio Maffeis, Martin Abadi, Cedric Fournet, and Andrew D.
Gordon. Code-Carrying Authorization. ESORICS 2008.

[19] Microsoft. ASP.NET Sample for Live Connect OAuth SSO.
https://github.com/liveservices/LiveSDK/tree/master/Samples
/Asp.net

[20] Microsoft Corporation. MSDN article - Contract Class.
http://msdn.microsoft.com/en-us/library/dd264808(v=vs.110)
.aspx

[21] George C. Necula and Peter Lee. Safe kernel extensions
without run-time checking. USENIX Symposium on
Operating Systems Design and Implementation, 1996

[22] Nieuwenhuis, R.; Oliveras, A.; Tinelli, C. (2006), "Solving
SAT and SAT Modulo Theories: From an Abstract Davis-
Putnam-Logemann-Loveland Procedure to DPLL(T)", Journal
of the ACM 53 (6), pp. 937–977.

[23] NopCommerce. http://www.nopcommerce.com/
[24] OpenID Foundation. "OpenID Authentication 2.0 - Final".

http://openid.net/specs/openid-authentication-2_0.html
[25] Giancarlo Pellegrino and Davide Balzarotti. “Toward Black-

Box Detection of Logic Flaws in Web Applications.”
Network and Distributed System Security (NDSS)
Symposium, 2014

[26] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, E. Jay.
"OpenID Connect Standard 1.0 - draft 21".
http://openid.net/specs/openid-connect-standard-1_0.html

[27] Rui Wang, Shuo Chen, XiaoFeng Wang, and Shaz Qadeer.
How to Shop for Free Online – Security Analysis of Cashier-
as-a-Service Based Web Stores. IEEE Symposium on Security
and Privacy, 2011.

[28] Rui Wang, Shuo Chen, XiaoFeng Wang. Signing Me onto
Your Accounts through Facebook and Google: a Traffic-
Guided Security Study of Commercially Deployed Single-
Sign-On Web Services. IEEE Symposium on Security and
Privacy, 2012.

[29] Rui Wang, Yuchen Zhou, Shuo Chen, Shaz Qadeer, David
Evans, Yuri Gurevich. Explicating SDKs: Uncovering

Assumptions Underlying Secure Authentication and
Authorization. USENIX Security, 2013.

[30] Luyi Xing, Yangyi Chen, XiaoFeng Wang, and Shuo Chen,
InteGuard: Toward Automatic Protection of Third-Party Web
Service Integrations, in Network & Distributed System
Security Symposium (NDSS), February 2013

[31] Andrew Chi-Chih Yao: Protocols for Secure Computations
(Extended Abstract). FOCS 1982

[32] A collection of online services enhanced by CST.
https://sites.google.com/site/symbolictransaction/

848848

Appendix A: OpenID-2.0 SSO and Live Connect SSO

OpenID 2.0

Relying party (RP)Identity provider (IdP)client

In
te

rn
et

Check
signature,
return_to.

Accept
claimed_id

Check realm
against

return_to

signIn_req <claimed_id,
return_to, signed, signature>

Live Connect
Relying Party (RP)Identity provider (IdP)client

auth_req <sessionID,
AppID, redirect_uri>

In
te

rn
et

Check redirect_uri
AppID, AppSecret Check JWT,

accept
JWT.user_ID

Appendix B: An example of the synthesizer discarding an untrusted call
(Note that the single colon with the placeOrder call)

 FinalSymT=

TStore.com:#completeOrder(
 Cashier.com::#pay(
 TStore.com::#placeOrder()

)
)

Meaning:
The message is M, which TStore.com claims is
{ the result of executing completeOrder() on input Ma, which Cashier.com claims is
 { the result of executing pay() on input Mb, which TStore.com claims is
 { the result of executing placeOrder() on input Mc, which is
 { arbitrary }
 }
 }
}

TrustedParties= (
 TStore.com, Cashier.com
)

Single-colon enclosed by a pair of single parentheses

FinalSymT=
TStore.com:#completeOrder(
 Cashier.com::#pay(

)
)

Meaning:
The message is M, which TStore.com claims is
{ the result of executing completeOrder() on input Ma, which Cashier.com claims is
 { the result of executing pay() on input Mb, which is
 {
 arbitrary
 }
 }
}

�

AmbientPredicate=
 The one shown in Section III. The synthesized vProgram

will fail to be verified.

849849

