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Abstract— The prevalence of security flaws in multiparty 
online services (e.g., single-sign-on, third-party payment, etc.) 
calls for rigorous engineering supported by formal program 
verification. However, the adoption of program verification 
faces several hurdles in the real world: how to formally specify 
logic properties given that protocol specifications are often 
informal and vague; how to precisely model the attacker and 
the runtime platform; how to deal with the unbounded set of 
all potential transactions. 
We introduce Certification of Symbolic Transaction (CST), an 
approach to significantly lower these hurdles. CST tries to 
verify a protocol-independent safety property jointly defined 
over all parties, thus avoids the burden of individually 
specifying every party’s property for every protocol; CST 
invokes static verification at runtime, i.e., it symbolically 
verifies every transaction on-the-fly, and thus (1) avoids the 
burden of modeling the attacker and the runtime platform, (2) 
reduces the proof obligation from considering all possible 
transactions to considering only the one at hand.  
We have applied CST on five commercially deployed 
applications, and show that, with only tens (or 100+) of lines of 
code changes per party, the original implementations are 
enhanced to achieve the objective of CST. Our security 
analysis shows that 12 out of 14 logic flaws reported in the 
literature will be prevented by CST. We also stress-tested CST 
by building a gambling system integrating four different 
services, for which there is no existing protocol to follow. 
Because transactions are symbolic and cacheable, CST has 
near-zero amortized runtime overhead. We make the source 
code of these implementations public, which are ready to be 
deployed for real-world uses. 

Keywords-multiparty protocol; symbolic transaction; CST; 
verification; online payment; single-sign-on 

I. INTRODUCTION 

Modern web applications are often multiparty systems that 
integrate third-party services, e.g., single sign-on (SSO), 
payment, social networking, from different companies. 
These applications have significant security requirements. 
For example, a merchant website that integrates Amazon 
Simple Pay must ensure that an item is shipped only if it has 
been paid for. Similarly, an application that integrates 
Facebook SSO must ensure that only a properly 
authenticated user should be allowed to log into the 
application. To implement secure multiparty applications, 
developers typically follow protocol standards provided by 
organizations such as OAuth Working Group and OpenID 
Foundation or API specifications provided by companies 
such as Amazon, PayPal, and Facebook. However, there is 

ample evidence that deployed multiparty services are rife 
with security vulnerabilities. An attacker can purchase 
without paying [25][27], sign into other people’s accounts 
without passwords [4][28], or get unintended authorizations 
[29]. The Cloud Security Alliance cites these logic flaws in 
online services as “Insecure Interfaces and APIs”, the No.4 
cloud computing threat [10]. 

We believe that the prevalence of security flaws in 
multiparty online services calls for rigorous engineering 
supported by formal program verification. However, despite 
being advocated by researchers for years, program 
verification is rarely put in actual engineering practice. This 
paper presents an approach that significantly lowers the 
hurdles for real developers to apply formal verifications on 
online services.  

Protocol-independent security goal. The first hurdle in 
verification is to understand what security goal to verify. 
This is hard for developers because protocol documentation 
and API specifications are, for practical considerations and 
limitations, often informal, jargon-laden and incomprehen-
sive. It is unclear what exactly each party is supposed to 
achieve. For example, an Amazon payment protocol was not 
explicit about whether the payee’s identity was ensured by 
the cashier or the merchant [27]; many Facebook’s relying 
party websites did not know which piece of Facebook data 
should be obtained to securely authenticate a user [29].  

We realize that security is much more intuitive to be defined 
as a global property (rather than per-party properties) inde-
pendent of specific protocols. For example, no matter what a 
payment protocol instructs a merchant and a cashier to do 
individually, the two parties should jointly ensure an 
intuitive global property: for any order to be checked out 
from the merchant, it must have been paid for on the cashier. 
This property applies to all payment protocols. We will 
show concretely that such protocol-independent properties 
can be defined for various scenarios, which guard an 
implementation against logic flaws in the protocol and 
developers’ misunderstandings of the protocol.  

Certification of Symbolic Transaction (CST). Once a 
developer has the property, the next hurdle is how to verify 
it. Traditional approaches perform verification offline (see 
Figure 1 (upper)) and face two challenges: (1) the adversary 
and the system platform need to be modeled precisely (over- 
or under-permissiveness will lead to false positives or false 
negatives). The modeled adversary should be able to make 
arbitrary calls to the web methods on all the parties, with all 
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possible argument values that the adversary is able to create 
or obtain. Meanwhile, the system platform should be 
modeled to constrain the adversary’s arbitrariness. The 
modeling demands considerable insight about the system 
and the property to be verified. (2) The verifier faces a 
difficult proof obligation: the logic property must not fail 
even though the adversary can make an unbounded number 
(i.e., an infinite loop) of arbitrary calls with arbitrary 
argument values. The proof requires inductive reasoning 
about an unbounded number of possible executions. In 
general, a developer may need to help the verifier by 
supplying loop invariants and auxiliary lemmas to establish 
a proof. This is especially hard for real-world source code. 

Our technique is called Certification of Symbolic 
Transaction (CST). It achieves the same verification goal in 
a different a manner, shown in Figure 1 (lower). It treats 
every protocol execution (referred to as a multiparty 
transaction from now on) as a runtime process for creating 
a proof obligation for a static program verifier, which we 
call the certifier. The certifier logically examines whether 
the sequence of computations on all parties in this 
transaction collectively ensures the global predicate. 
Compared to fully static approaches, the CST approach 
demands much less from developers: (1) No modeling is 
needed for the adversary or the system platform, because 
every transaction to be verified is produced at runtime by a 
real user interacting with the actual system. (2) Since 
transactions that fail to be certified are rejected, developers 
are only required to make sure that every intended 
transaction is logically sound. This requires the developer to 
think only about the expected rather than the unexpected 
scenarios. 

An interesting novelty of the CST approach is the use of 
static program verification at runtime, i.e., to symbolically 
verify every transaction on-the-fly. In Section II, we 
motivate why static verification is essential for certifying 
multiparty transactions. Although program verification is 
prohibitively expensive in general, CST combines static 
verification and caching to ensure near-zero amortized 

overhead. To the best of our knowledge, CST is the first 
system to use symbolic verification during the execution of 
a deployed program. 

Real-world demonstration. We demonstrate that it is 
practical to apply CST to real-world systems. We have 
applied CST on five commercially deployed systems by 
adding only tens (or 100+) lines of code per party. These 
systems are based on real-world frameworks, such as PayPal 
and Amazon Payments services, Microsoft LiveID single-
sign-on SDK, the OpenID framework in DotNetOpenAuth, 
the OAuth template in Visual Studio ASP.NET MVC 4, and 
NopCommerce software. We also challenged the CST 
approach by implementing a gambling system integrating 
four services, for which there is no existing protocol to 
follow. All the systems and their source code are accessible 
at https://sites.google.com/site/symbolictransaction/, which 
is our project page. We have evaluated CST along four 
dimensions: 

� Security. We analyzed 14 cases of real vulnerabilities 
reported in the literature. CST will foil the exploits or 
avoid the vulnerabilities in 12 out of the 14 cases, the 
remaining two being out-of-scope issues.  

� Protocol-independence. We show that different protocols, 
e.g., Amazon Simple Pay vs. PayPal Standard for 
payment and OpenID vs. OAuth vs. Live Connect for 
single-sign-on, can be held to the same global predicates. 
More interestingly, we show several implementations that 
blatantly violate the OAuth 2.0 protocol, but satisfy the 
end-to-end global predicate for single-sign-on. They all 
turn out to be as secure as the protocol-conformant ones.  

� Performance. Because symbolic transactions are 
cacheable, CST incurs only near-zero amortized runtime 
overhead.  Therefore, CST is suitable for real-world 
deployed services. 

� Programming effort. We report the lines of code that we 
added or changed for every open-source package. 

II. OVERVIEW OF CST  

The CST approach is a unique combination of concrete 
runtime execution with symbolic program verification:   it 
verifies each multiparty transaction at runtime but attempts 
to verify it not just on the actual inputs seen in that 
transaction but for all possible inputs. To understand this 
aspect of the design of CST, we first need to recognize two 
basic characteristics about typical multiparty services: 

 (1) There is no global data storage. Different parties do not 
fully trust each other despite their cooperation on specific 
transactions. Consequently, each party holds its own data 
structures (e.g., databases) locally without a globally-shared 
storage. For example, PayPal’s payment record database is 
not exposed to any merchant website, because it contains 
transactions related to other merchants. Similarly, the 
database of Facebook’s single-sign-on service is not 
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publicly shared with every relying party, because it contains 
many secret strings and IDs of users of other relying parties.  

(2) Security is a global property. As discussed in the 
introduction, security is a property across different parties. 
For example, “secure checkout” requires that an order on 
the merchant website has a corresponding payment record 
on the PayPal server. For this reason, the safety property to 
be examined by CST needs to refer to data structures of 
different parties. We call it an ambient predicate.  

Figure 2 shows a simplified system that preserves the 
essence of a realistic system. Data structures A[], B and C are 
defined in the source code of three different companies, 
respectively. A multiparty application attempts to maintain 
the ambient predicate (C == true) iff (�i. A[i] == B) that refers 
to data structures at every party. Obviously, the ambient 
predicate cannot be concretely checked, because A[] and B 
are not shared with c.com. An alternative approach and the 
core idea of CST is to check it symbolically, i.e., to examine 
whether the sequence of computations of a multiparty 
transaction logically implies the ambient predicate.   

CST achieves this symbolic verification using a message 
field called SymT (i.e., Symbolic Transaction), attached to 
every message to collect the source code executed on each 
party. In general, disclosing source code to another party 
may lead to intellectual property infringement or reverse-
engineering. For CST, this is not a serious concern, because 
the disclosed source code only consists of a few methods 
that implements the protocol that every party has agreed on. 

When a transaction completes, the certifier uses the final 
SymT value to synthesize a program representing the 
executed source code of the entire multiparty transaction. 
Symbolic verification then checks that the program satisfies 
the ambient predicate. The collection of the source code and 
the synthesis of the program to be verified is elaborated in 
Sections III and IV.  

The complexity of verifying a symbolic transaction depends 
on the expressiveness of the ambient predicate and the 
program fragments executed by the different parties.  We 
found first-order logic to be adequate for the services we 
studied and use an off-the-shelf automated program verifier 
based on satisfiability-modulo-theories [22] for the 
verification. 

In general, symbolic verification is expensive. However, for 
CST, it incurs an extremely low amortized cost, even lower 
than what a concrete checking would incur (which would 

need network messages). The certifier achieves this 
efficiency by caching the theorem proved by it about a 
symbolic transaction.  Since the theorem holds for all inputs, 
a future identical symbolic transaction is deemed convincing 
immediately regardless of the data values on which it 
computes. If the source code is unchanged, this caching 
results in near-zero amortized runtime overhead. 
Furthermore, the caching is over all transactions generated 
by all users. Most likely, developers themselves are the 
users who trigger the verification, and real users enjoy the 
caching.  

Threat model. The threat model of CST is the web attacker 
model as defined by Akhawe et al. [2]: the attacker has a 
browser and his own servers, but does not control the 
servers of non-attacker parties. Regarding CST specifically, 
the web attacker model implies that developers of non-
attacker parties are cooperative with each other, and do not 
lie about the executed source code. The network traffic in 
CST is protected by HTTPS, so the attacker cannot read or 
tamper with data in transit.  

Informally speaking, CST focuses on “logic flaws” in a 
protocol and its implementation. More formally, these are 
flaws in the protocol’s symbolic model as defined by 
Blanchet [8]: all cryptographic primitives, such as signing 
and hashing, are considered as black-boxes and assumed to 
be secure. Also, general programming bugs such as buffer 
overrun, cross-site scripting and cross-site request forgery, 
are orthogonal to the type of logic flaws that CST targets. 
Many techniques have been proposed and deployed to 
address these issues; these techniques can be used in 
conjunction with CST. 

III. AN EXAMPLE ILLUSTRATING CST 

We now give an example about secure checkout to explain 
the CST approach. We first define the ambient predicate for 
the secure checkout problem. Next, we illustrate a real-
world vulnerability that, when exploited, violates the 
ambient predicate. Finally, we show how CST would have 
caught the error at runtime.   

The basic steps in every checkout transaction are as follows: 
(1) place an order on the merchant site; (2) make a payment 
on the cashier site; (3) complete the order on the merchant 
site. We refer to the sequence of these steps at runtime as a 
multiparty transaction. 

Figure 3 shows the three parties in the transaction – the 
client and two servers. We assume that Cashier.com is the 
cashier site, and TStore.com is the merchant site. The client 
is a greedy shopper who wants to check out without making 
a full payment or any payment at all. As the adversary, the 
client’s behavior is arbitrary. Essentially, the “client” can be 
thought of as the wild Internet that can send arbitrary HTTP 
requests in any arbitrary order, even those not conforming to 
Figure 3.  A secure implementation must guard against such 
a malicious client. 
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Secret int
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certifier
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Figure 2: A simple multiparty system. 
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There are three web methods, placeOrder, pay, and 
completeOrder. Each is invoked by an HTTP request, and 
returns an HTTP response. The request and response for 
placeOrder are denoted placeOrder_req and placeOrder_ 
resp, respectively. Request and response for other methods 
are named similarly. 

Data structures. Every transaction involves the data 
structures on the two servers: orders[] is an array to store all 
orders, indexed by the identifier of each order (i.e., orderID); 
mySellerID is the merchant’s identifier registered on the 
cashier; payments[] is the payment records on the cashier. A 
real implementation may use database tables instead of 
arrays. Section V.C will explain how we convert database 
operations into array accesses by defining “stub methods”. 

Ambient predicate. An ambient predicate is defined over a 
fixed multiparty transaction and refers to the fields of 
request and response of invoked methods and the data 
structures on the servers. The predicate given below defines 
secure checkout (the line numbers added for easy reference). 

placeOrder_req.orderID==completeOrder_req.orderID &&(1)  
�i. (                                           (2)  
    Cashier.payments[i].status == “Paid” &&              (3)  
    Cashier.payments[i].total  
            ==TStore.orders[placeOrder_req.orderID].gross &&(4)          
    Cashier.payments[i].payee == TStore.mySellerID &&      (5)             

                                 

      Cashier.payments[i].orderID==placeOrder_req.orderID) (6) 
The predicate holds for a particular transaction iff there is a 
payment record at the cashier for the item being bought.  
Note that this predicate is stated with respect to our problem 
definition, not specific to any protocol for establishing it. 

A. A traditional implementation  
The predicate above specifies the security objective. 
However, it is not locally checkable because it is about data 
relations across different parties. For example, payments[] is 
the cashier’s data structure, while orders[] is the merchant’s. 
Therefore, it is an ambient predicate. 

Protocol specifications today do not explicitly define their 
ambient predicates. Instead, a protocol simply instructs each 
party how to check a set of locally checkable predicates and 
respond to other parties. It is hoped that the global safety 
property is achieved as a result of all these local checks. As 
explained in the introduction, this is problematic in reality.  

Listing 1 shows a simplified example of a traditional imple-
mentation. It defines the data structures explained earlier, 
and implements placeOrder(), completeOrder() and pay() to 
handle https://TStore.com/placeOrder.aspx, https://TStore. 
com/compleOrder.aspx and https://Cashier.com/pay.aspx. 
Let’s assume the client checks out a $35 order with orderID 
123. In a non-malicious scenario, the messages are as 
follows (readers can walk through Listing 1 to see how the 
messages are generated). For brevity, every message is 
represented by enclosing data fields in angle brackets after 
the message name, e.g., the first message stands for 
https://TStore.com/placeOrder.aspx?orderID=123. 

(1) placeOrder_req: 
      placeOrder_req<orderID=123> 
(2) placeOrder_resp and pay_req (a browser redirection): 

pay_req<orderID=123,total=35,returnURL=https://TStore.com
/completeOrder.aspx,signature=[TStore’s signature for the 
whole request]> 

(3) pay_resp and completeOrder_req (a browser redirection): 
completeOrder_req<orderID=123,status=Paid,signature= 
[Cashier’s signature for the whole request]> 

Assuming that signing and signature checking are done 
correctly, readers can confirm that the message sequence 
above can drive the code to Line L1, where the order is 
marked Complete. However, there is a problem: the ambient 
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Figure 3: The basic messages and data for checkout. 

LISTING 1: A TRADITIONAL IMPLEMENTATION. 

class Merchant   { 
order_record_t[] oorders;  
string mmySellerID = “JohnSmith1234”;    
PlaceOrderResp_PayReq   pplaceOrder (PlaceOrderReq req)   { 

PlaceOrderResp_PayReq resp; 
int orderID = req.orderID;    resp.orderID = orderID; 
orders[orderID].status = “Pending”;   
resp.redirectionURL = “https://Cashier.com/pay.aspx”; 
resp.total = orders[orderID].gross;   
resp.returnURL = “https://TStore.com/completeOrder.aspx”; 
sign(resp); return resp; 

} 
public bool ccompleteOrder(PayResp_CompleteOrderReq req){  
     if (VerifySignature(req)==false) return null; 

if (req.signer != “Cashier.com” ||  req.status != “Paid” || 
          orders[req.orderID].status != “Pending”)  return false; 

L1:    orders[req.orderID].status = “Complete”; return true;    } 
} 
class Cashier  { 
   payment_record_t[] payments;  
   PayResp_CompleteOrderReq ppay(PlaceOrderResp_PayReq req){ 

if (VerifySignature(req)==false) return null; 
i=getAvailableIndex(); 
payments[i].payee = req.signer; 
payments[i].orderID = req.orderID; 
payments[i].total = req.total; 
PayResp_CompleteOrderReq resp; 
resp.redirectionURL = req.returnURL; 
resp.orderID = req.orderID;   resp.status = “Paid”;  
sign(resp);   return resp;   } 

} 
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predicate we care about is nowhere to be found in Listing 1. 
The developers’ hope is that the local checks in these 
methods have collectively ensured “security”. Is it really so? 

A real-world vulnerability. In fact, this example is based on 
the real Amazon Simple Pay payment method. An 
exploitable logic flaw was detailed in Section III.A.2 of 
reference [27]. In the exploit, the attacker has his own seller 
account Mark and server MarkStore.com, and is able to 
purchase from the victim TStore by only paying to 
MarkStore. Specifically, when he receives placeOrder_resp 
from TStore, he discards the signature and re-signs it as 
MarkStore. This message is sent to the cashier (Amazon) as 
pay_req. From the cashier’s point of view, it would seem as 
if the attacker was purchasing an order from MarkStore, so 
Mark gets paid. However, the redirectURL points to 
TStore.com, so TStore subsequently receives the 
completeOrder_req signed by the cashier. TStore does not 
expect the cashier to notify it about an irrelevant payment 
(i.e., a payment made to Mark), and is fooled to complete 
the order. NopCommerce [23], a popular e-commerce 
software, is subject to this flaw.   

B. The CST-enhanced implementation  
CST enhances the implementation by requiring a SymT 
field in each message, which contains SHA-1 hash values of 
the source code of invoked methods. For example, the 
source code hash of placeOrder is f8f8bd5b0fe4711a09731 
f08c06c3749d240580c. For readability of this paper, we 
show a hash value as a hash symbol “#” with a method 
name, e.g., #placeOrder, but a real SymT does not contain 
“#” or method names.  

SymT is now attached to every message shown earlier 
(parentheses and colons to be explained in Section IV.A, 
and �  to represent an empty string): 
(1) placeOrder_req: 
      placeOrder_req<orderID=123,SSymT=�> 
(2) placeOrder_resp and pay_req (a browser redirection): 

pay_req<orderID=123,total=35,returnURL=https://TStore.c 
om/completeOrder.aspx,SSymT=TStore.com::#placeOrder(), 
signature=[TStore’s signature for the whole request, 
including the SymT field]> 

(3) pay_resp and completeOrder_req (a browser redirection): 
completeOrder_req<orderID=123,status=Paid, 
SymT=Cashier.com::#pay(TStore.com::#placeOrder()), 
signature=[Cashier’s signature for the whole request, 
including the SymT field]> 

It is important to note that, for a signed message, such as (2) 
and (3), the SymT field is covered by the signature, so that 
the attacker cannot tamper with it. More details about 
signature checking will be given in Section IV.A. 

When (3) arrives at TStore.com (the merchant), the last step 
of computation, completeOrder(…), is invoked (see Figure 
4). Thus, the final SymT of the transaction is “TStore.com: 
#completeOrder(Cashier.com::#pay(TStore.com::#placeOrd
er()))”. This SymT string is given to the certifier (which runs 

on TStore.com). For now, let’s ignore the cache in the figure. 
When the synthesizer gets the final SymT, it synthesizes a 
program, namely vProgram, which is formally verified 
against the ambient predicate. If the verification succeeds, 
the transaction is approved (e.g., the order is marked 
Complete). Otherwise, it is rejected. The synthesis of the 
program requires the certifier to recover source code texts 
from their hash values. This capability relies on a “de-hash” 
table, containing hash-to-source-code mappings. Anyone 
can submit a source code text to the de-hash table so that its 
hash value will be computed and associated with it.   

A preview of security. The synthesized vProgram for the 
SymT from the previous paragraph, “TStore.com: 
#completeOrder(Cashier.com::#pay(TStore.com::#placeOrd
er()))”, has the following steps.  First, it invokes the method 
placeOrder with an arbitrary input value.  Next, it invokes 
the method pay with the return value of placeOrder as the 
argument. Finally, it invokes the method completeOrder 
with the return value of placeOrder as the argument.  
Referring to Listing 1, the reader can see that the ambient 
predicate is satisfied at the end of this sequence of execution.  

On the other hand, if the logic flaw explained in Section 
III.A is exploited, the final SymT will be TStore.com: 
#completeOrder(Cashier.com::#pay(MarkStore.com::#place
Order())). The difference between this SymT and that for the 
correct transaction is only that the call to method placeOrder 
is performed at MarkStore.com, which, from the perspective 
of TStore.com, has no reason to be trusted. In order words, 
this step of computation must be considered non-
deterministic when TStore.com tries to verify the ambient 
predicate. More specifically, what the synthesizer does is to 
ignore this step, and begin directly with the method pay with 
an arbitrary value as argument. Consequently, the 
certification fails (because merely executing pay and 
completeOrder on an arbitrary input is not sufficient to 
satisfy the ambient predicate) and the transaction is rejected. 
Note that MarkStore can even hide its presence by providing 
SymT=� in placeOrder_resp. If so, the final SymT will be 
TStore.com:#completeOrder(Cashier.com::#pay()). All our 
discussion is still valid in this case. 

IV. THE CST CERTIFIER 

In this section, we describe the design and implementation 
of the certifier that validates a symbolic transaction in the 
CST approach. In particular, we elaborate the synthesizer, 
the verifier and the cache. Overall, the certifier is a method 
with three arguments and a Boolean return value: 

synthesizer

de-hash 
table

verifier vProgram

Certifier

co
m

pl
et

e
O
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er

cache

 

Figure 4: The certifier (on TStore.com). 
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bool certify ( string FinalSymT,  
string AmbientPredicate,    
string[] TrustedParties  ) 

The arguments FinalSymT and AmbientPredicate are self-
explanatory. The argument TrustedParties is an array to 
specify which parties are considered trusted for this ambient 
predicate. For the example discussed earlier, the certifier (on 
TStore.com) only needs to trust TStore.com and 
Cashier.com, i.e., the validity of the ambient predicate 
should not depend on any other party. Similarly, in the 
single-sign-on scenario, the certifier on the relying party 
foo.com should only trust foo.com and the identity provider 
(e.g., facebook.com), but no one else. As stated earlier, the 
client (browser) is always an untrusted party, involved in all 
transactions. TrustedParties decides which computation 
steps the certifier should take into account. Computations 
performed on other parties, including the client, are ignored 
in the synthesized vProgram.  

A. Symbolic Transaction 
The symbolic transaction, SymT, is the basis of the CST 
approach. The SymT representation makes multiparty 
transactions, hitherto only an informal notion in the mind of 
a protocol designer, explicit in protocol messages.  

SymT needs to record not only the sequence of method calls, 
but also how two consecutive calls are stitched, i.e., how the 
output of a call (referred to as method1 on a.com) is fed 
into the input of the next call (referred to as method2 on 
b.com). Specifically, the main question is why b.com should 
believe that the input of method2 indeed comes from a.com. 
There are only two possible reasons: (1) the input is signed 
by a.com; (2) b.com itself makes a direct server-to-server 
call to method1 to obtain the input for method2.  

Therefore, SymT must precisely encode the stitching 
scenarios. Figure 5 shows three SymT values, in which we 
highlight certain symbols for discussion. In scenario A, the 
output of method1 is not signed (denoted by the highlighted 
single-colon), and is supplied to method2 by an unnamed 
party (denoted by the highlighted parentheses). An unsigned 
browser redirection is an example of scenario A. The only 
difference in scenario B is that the input of method2 (i.e., 
the output of method1) is protected by a.com’s signature, so 
b.com is confident that it is generated by a.com, untampered. 
The signing is denoted by the double-colon “::”. In scenario 
C, method1 is called from b.com using a direct server-to-
server call (e.g., a SOAP or REST API call), so b.com of 
course has the confidence that the input of method2 comes 
from a.com. The server-to-server call is denoted by two 
pairs of double-parentheses. Another valid SymT, not 
shown in Figure 5, could be b.com:#method2((a.com:: 
#method1((…)))), representing a server-to-server call that 
returns a signed response. It is equivalent to scenario C, as 
the signing is unnecessary. 

Signature checking. When receiving a signed message, such 
as each of the latter two messages in the protocol discussed 
in Section III, the receiver must check the validity of the 
signature and whether it matches the SymT string. More 
specifically, the receiver needs to ensure that: (1) the SymT 
field itself is covered by the signature; (2) if the SymT is 
a.com::#method1(…), then the signature is indeed generated 
by a.com.   

Signing in CST is simple and can be piggybacked on the 
existing protocol implementation: if a message in the 
existing implementation is unsigned, then it remains 
unsigned in the CST-enhanced implementation; if a message 
is signed, CST attaches the SymT string as an argument of 
the HTTP request (GET or POST) and hands the entire 
message to the underlying signing layer, which signs and 
sends the request.    

Grammar. Grammatically, SymT is a nested sequence of 
method calls specified by the production rules in Listing 2. 
The rules we use in our implementation are slightly more 
comprehensive; they also accommodate a method call 
taking multiple arguments and a signature covering selective 
fields.  

(Scenario A) b.com:#method2(a.com:#method1(…)) 
b.coma.comunnamed party 

(e.g. browser)

resp1

m
et

ho
d1

m
et

ho
d2

 
(Scenario B) b.com:#method2(a.com::#method1(…)) 

b.coma.comunnamed party 
(e.g. browser)

resp1
(signed)
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ho
d1
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(Scenario C)  b.com:#method2((a.com:#method1((…)))) 

b.coma.comunnamed party 
(e.g. browser)
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d1
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ho
d2

 

Legend: Double-colon – signed message 
               Double parenthesis – server-to-server call 

Figure 5: Stitching two method calls. 
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LISTING 2: PRODUCTION RULES FOR SYMT 

SymT              �  � 
                          | PARTY-ID : METHOD-CALL  
                          | PARTY-ID :: METHOD-CALL                   
METHOD-CALL �  SRC-HASH ( SymT )  
                               | SRC-HASH (( SymT )) 
PARTY-ID         �  a.com | b.com | amazon.com | … 

Semantics. When SymT a.com:fa(b.com:fb(c.com:…)) is 
attached to message M, it represents the following recursive 
claim about the message (we add brackets to indicate the 
scoping): 

The message is M, which a.com claims is  
{ the result of executing fa() on input Ma, which b.com claims is  
    { the result of executing fb() on input Mb, which c.com claims is 
           { … } 
    } 
} 

If the above SymT contains double-colons and double-
parentheses, the meaning of the claim will not be changed. 
However, they will affect how the synthesizer trusts each 
layer of the claim, which will be explained in Section IV.B. 

It is worth emphasizing that SymT must not be interpreted 
as follows: 

a.com claims that {  the message is M, 
      which is the result of a.com executing fa() on input Ma,  
            which is the result of b.com executing fb() on input Mb,  
                   which is the result of c.com executing …  } 

This interpretation is wrong because a.com is not able to 
make a claim about the whole sequence of calls. The correct 
interpretation is a recursive claim, in which each party only 
makes a claim about one call. 

B. Synthesizer 
Think of SymT as an onion potentially rotten inside –   each 
layer is a claim, which, if untrusted, implies that everything 
inside is bogus. Thus, the synthesizer needs to identify the 
outer-most layer where the trust cannot be established, and 
discard it with everything inside. Specifically, the 
synthesizer examines the SymT string from left to right. It 
looks for the first call which is:  

(1) performed at an untrusted party (i.e., PARTY-ID � 
TrustedParties), or  

(2) not tamper-proof (i.e., when the pattern “(PARTY-
ID:METHOD-CALL)” is matched, such as in Scenario A).   

If such a call is found, it is discarded and replaced with the 
empty string �. The resulting SymT, basically a hollow 
onion, is trusted. The vProgram can be directly generated 
from it without any further considerations regarding trust. It 
takes arbitrary input values.  

Listing 3 shows the synthesized program corresponding to 
the SymT TStore.com:#completeOrder(Cashier.com::#pay( 
TStore.com::#placeOrder())). The method to be verified is 
the static method main(). The local variables of this method, 
such as placeOrder_req, pay_req, etc., and the global 

objects, such as TStore and MyCashier, are initialized with 
non-deterministic values; this initialization is not shown in 
the figure.  Since all method calls happen at trusted parties 
and no method call is an instance of Scenario A, lines L1-L6 
compose all the method calls.  Lines L7 and L8 are reached 
only if the order is completed. These lines assert that the 
ambient predicate holds on the preceding computation.  On 
the other hand, the SymT for the attack from Section III.A is 
“TStore.com:#completeOrder(Cashier.com::#pay(MarkStore
 .com::#placeOrder()))”. In this SymT, the computation of 
MarkStore.com::#placeOrder() is at an untrusted party and is 
therefore replaced by �, causing lines L1 and L2 to be 
dropped, so the assertions will fail. Similarly, if the first step 
was (TStore.com:#placeOrder()), which is not tamper-proof, 
it would result in the same vProgram without lines L1 and 
L2. Appendix B illustrates the synthesis steps graphically.  

In addition to the method main(), the complete vProgram 
also includes the aforementioned constructors and web 
methods, which are hashed and stored in the certifier’s de-
hash table. 

C. Verifier 
We demonstrated CST on systems implemented using 
ASP.NET and C#. The focus on .NET is only because we 
want to use an off-the-shelf program verifier for .NET.  The 

LISTING 3: THE VPROGRAM SYNTHESIZED FROM SYMT. 

class vvProgram  {    
//* The constructors of Merchant and Cashier construct objectts   

       wwith non-deterministic initial states */ 
      static Merchant TStore=new Merchant(); 
      static Cashier MyCashier=new Cashier(); 
      static void mmain()  {    

/* The program for a normal transaction will contain L1 and L2. 
The program for the attack described in Section III.A will not 
contain L1 and L2.  */ 

L1:  placeOrder_resp=TStore.placeOrder(placeOrder_req); 
L2:  pay_req = placeOrder_resp; 
L3:  pay_resp = MyCashier.pay(pay_req); 
L4:  completeOrder_req = pay_resp; 
L5:  bool completeOrder_resp= 
                        TStore.completeOrder(completeOrder_req); 
L6:  if (!completeOrder_resp) return; 
L7:  Contract.Assert(placeOrder_req.orderID==  
                                     completeOrder_req.orderID);  
L8:  Contract.Assert( 
        Contract.Exists(0,MyCashier.payments.Length, i => 
             MyCashier.payments[i].status == "Paid" && 
             MyCashier.payments[i].total == 
                    TStore.orders[completeOrder_req.orderID].gross && 
             MyCashier.payments[i].payee == 
                                            TStore.mySellerID      && 
             MyCashier.payments[i].orderID==  
                                             completeOrder_req.orderID ) 
         );    
      } 
} 
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CST technique is equally applicable to any programming 
language. Figure 6 shows the tool chain. The program 
generated by the synthesis tool is compiled by the C# 
compiler of Visual Studio. The output is an executable file 
of .NET byte code. ByteCodeTranslator (BCT) [5] is a tool 
to translate a .NET byte code program into a Boogie 
program. Boogie is an intermediate verification language [9]. 
We use the Corral system [16] as the verifier. In addition to 
the input Boogie program, the Corral verifier expects a non-
negative number to establish a bound for the unfolding of 
loops and recursion in the program. Corral outputs exactly 
one of three results: the program is verified, or the program 
is verified with respect to the bound, or the program is 
falsified. In the final case, Corral also presents a 
counterexample witnessing the error in the program. Our 
certifier certifies a transaction only if Corral returns the first 
output, i.e., the transaction is verified without a bound. 

Ambient predicates, like lines L7 and L8 in Listing 3, are 
specified using the Contract class [20] defined in C# 
System.Diagnostics.Contracts namespace. 

D. Cache  
Program verification is expensive (e.g., 10 - 30 seconds to 
verify a transaction in our cases). It is impractical to do it for 
every transaction. Caching is therefore essential in CST: 
when the verification is done, the certifier caches the result 
(i.e., true/false) with the triple FinalSymT, AmbientPredicate 
and TrustedParties. Any future call to the certifier by any 
user will return the result directly if it matches a cached 
triple. 

E. Putting it all together 
A one-sentence summary of CST’s safety guarantee is that 
each certified transaction is assured to satisfy the ambient 
predicate regardless of the value of the current state of the 
multiparty system. This assurance comes from three 
elements in the CST design, which fulfill different but 
complementary goals: 

(1) SymT construction. The SymT construction is to 
passively record the computations. It faithfully states 
important basic facts, such as whether a message is a 
redirection or direct server-to-server call, and whether a 
message is signed (if so, who signs it). 

(2) vProgram synthesis. The synthesis is to recover the 
computations based on the SymT string. As explained 
earlier, the SymT string can be thought of as an onion. The 
untrusted inner core is discarded, so the remaining hollow 
onion represents the truth about the computations in the 
transaction.    

(3) vProgram verification. It symbolically checks whether 
the sequence of recovered computations is sufficient to 
ensure the ambient predicate. This is done by an off-the-
shelf verification tool chain.  

F. Important practical considerations 
Ambient predicate and replay attack. The three elements 
above only ensure that the transaction satisfies the ambient 
predicate. Whether this is sufficient to ensure security 
depends on the definition of the ambient predicate. As an 
example, we consider the possibility of replay attacks on the 
example discussed in Section III. If the clause 
Cashier.payments[i].orderID==placeOrder_req.orderID was 
missing from the ambient predicate, CST would not guard 
against a replay attack that makes only one payment but 
checks out multiple orders with the identical total price from 
the same merchant. Obviously, this attack will have serious 
consequences. 

Typically, a protocol designed to be resilient to replay 
attacks contains some sort of sequence number (or nonce). 
To prove that resilience to replay attacks is indeed achieved, 
the ambient predicate should check the sequence number (or 
nonce) to make sure that each transaction is honored only 
once, i.e., it is void when replayed. The orderID clause 
above serves this purpose. It ensures that there is a one-one 
mapping between the payment ID and the order ID, thereby 
ensuring that the payment is for the order being checked out. 

Revoking the effect of a rejected transaction. CST checks 
the safety property at the last moment before a transaction is 
completed. Hence, a rejected transaction may have changed 
the state on the involved parties, e.g., a payment is made but 
the final checkout step is rejected. Undoing these effects for 
a rejected transaction requires an explicit revocation 
procedure. 

Even without CST, a protocol may abort an on-going 
transaction at any step for a variety of reasons. 
Consequently, a real-world system already requires a 
mechanism handle such situations, e.g., payment dispute, 
automatic revocation, etc. A transaction rejected by CST’s 
certifier is not fundamentally different from those rejected 
by other conditions. The developer does not need to perform 
any special handling for CST and only needs to add the CST 
check as a conjunct to the existing rejection conditions.   

V. APPLYING CST IN THE REAL WORLD  

We have applied CST to enhance various systems that serve 
practical purposes. Unlike proof-of-concept prototypes, 
these systems contain realistic source code and data 
structures written by actual developers. We view it as an 
accomplishment that all our enhanced systems are ready for 
commercial deployments. For example, people can install 
our CST-enhanced NopCommerce to run their stores: a 
customer can choose items, check out orders, and specify 
shipping and payment methods, etc; payments are made on 

vProgram
(C#) C# 

compiler

ByteCode
Translator 

(BCT)
Corral

.NET 
Byte 
Code

Boogie
Code

 

Figure 6: The verifier. 
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the real Amazon and PayPal servers. People can also use our 
Live Connect SDK to enable single-sign-on on their 
websites. Functionality-wise and performance-wise, our 
systems are indistinguishable from the original ones. These 
systems are all publicly accessible. Their URLs, source code, 
as well as instructions and videos of demos, are given in 
https://sites.google.com/site/symbolictransaction/ [32].  

A. Categories of the enhanced systems 
We have worked on three categories of systems so far: 

Payment/checkout. NopCommerce [23] is a widely used 
open-source e-commerce application. It was one of the 
focused systems in previous security studies [27][30]. 
NopCommerce accepts many third-party payments. We 
decided to enhance its payment modules for Amazon 
Simple Pay and PayPal Standard. The former is essentially 
what we described in Section III.A, and latter is shown in 
Figure 7. They are significantly different in that Amazon 
Simple Pay is based on signed redirection messages, 
whereas the PayPal Standard mechanism relies on a direct 
server-to-server call, namely the PDT (Payment Data 
Transfer) query, for securely communicating the payment 
details.   

Single-sign-on (SSO). We worked on the implementations 
of three different SSO protocols: (i) the OpenID-2.0-based 
SSO [24] in the DotNetOpenAuth framework [12]; (ii) the 
OAuth-2.0-based SSO [15] in Microsoft Visual Studio 
ASP.NET MVC 4 web application template that uses 
Facebook’s OAuth service [13]; (iii) Live Connect SDK 
[19], which heavily influenced the OpenID Connect 
specification [26]. (Note that the terminology may cause a 
little confusion. OpenID Connect is a protocol, drafted by 
the OpenID Foundation, to use OAuth 2.0 for SSO. It was 
published very recently. Live Connect SDK predates the 
OpenID Connect specification, so the SDK refers to its SSO 
mechanism as OAuth 2.0, rather than OpenID Connect.) 
The message diagram of the OAuth-2.0-based SSO is 
shown in Figure 8. The ones for OpenID 2.0 and Live 
Connect are given in Appendix A. 

Gambling. People are familiar with the above two categories, 
because standards organizations and major companies have 
provided protocol specifications or API documentations. We 
decided to use CST to build a gambling system. The goal is 
two-fold: (1) we do not have any existing gambling protocol 
to conform to, so building this system is an end-to-end 
exercise of the protocol-independent thinking process; (2) 
previous scenarios only involve two trusted services. We 
want to challenge the CST approach by involving more 
parties. The gambling system we built consists of four 
independent services for betting, payment, authorization and 
coin-tossing (see Figure 9).   

B. Ambient predicates 
Despite the significant differences among these systems and 
their adopted protocols, we specify the same ambient 
predicate for each category.  

Payment/checkout. Our enhanced implementations for 
Amazon Simple Pay and PayPal Standard ensure the same 
ambient predicate as we presented in the example in Section 
III. It is to ensure that when the merchant is about to check 
out an order, there exists a payment record in the cashier 
that matches this order.  

SSO. Figure 10 gives our protocol-independent definition of 
the SSO security goal. In every SSO system, there are a 
client, an identity provider (IdP) and a relying party (RP). 
The client holds a piece of BrowserSecret, which is shared 
with the identity provider, but not the relying party. The 
relying party has at least two constants: My_Realm is its 
identifier known to the identity provider; My_Hostname is 
its network-addressable name. Variable Session_UID is the 
session variable to be set upon a successful sign-on. 

An SSO transaction starts with a request from the client to 
the identity provider, namely auth_req, containing the 

TStore.comPayPal.com
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completeOrder_req <tx>

placeOrder_resp <orderID,total,returnURL, etc.>
pay_req <orderID,total, 
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completeOrder_resp <status>

Check accountID
against payee 
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Figure 7: PayPal Standard. 
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Figure 8: SSO based on OAuth-2.0. 

Cashier Gambling siteToken manager
(OAuth service)

Coin tosser

(5) 
write_back.aspx

 

Figure 9: The gambling system. 
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BrowserSecret and the Realm of the relying party that the 
client wants to sign in. The identity provider then retrieves 
an object called ID_Claim using the pair 
(BrowserSecret,Realm). ID_Claim contains at least two fields: 
User_ID is the identifier of the user that this claim is about; 
Redir_dest indicates the destination of the redirection 
message (i.e., the website that signIn_req is sent to). The 
retrieval is based on a two-key dictionary called IdpAuth, 
defined as follows in C#: 

Dictionary<string, Dictionary<string, ID_Claim>>  IdpAuth;  
Note that how IdpAuth entries are established is not what 
SSO concerns about. The identity provider can identify the 
client as “Alice” for any reason (e.g., through password or 
SSL client certificate), thus creates an IdpAuth entry. An 
SSO protocol is to prove to the relying party the existence 
of the entry, i.e., the fact that the identity provider believes 
the client is Alice.  

An SSO transaction must satisfy the ambient predicate: 

IdPAuth[auth_req.BrowserSecret][My_Realm].Redir_dest                                  
                                                     == My_Hostname   &&          (1) 
IdPAuth[auth_req.BrowserSecret][My_Realm].User_ID 
                                                    == Session_UID                        (2) 

The first clause asserts that the identity provider passes the 
ID_Claim to this relying party, not to any other website 
(which could then use the ID_Claim to sign into this relying 
party illegally). The second clause asserts that the user ID to 
be associated with the session (i.e., Session_UID) is the one 
in the aforementioned ID_Claim. 

Gambling. The ambient predicate for the gambling system is 
given below. Clauses (2)-(4) ensures that a proper payment 
has been made for the bet (identified by final_req.betID); 
Clauses (5) - (8) ensures that the bet is valid and matches 
the tossing result of the coin-tosser. 

GamblingSite.bets[final_req.betID].status==“Pending” &&              (1) 
� i. ( 
    Cashier.payments[i].total  == 
               GamblingSite.bets[final_req.betID].amount  &&      (2)      
    Cashier.payments[i].orderID == final_req.betID &&    (3) 
    Cashier.payments[i].payee==GamblingSite.MySellerID) && (4)                              
� x. ( 

TokenMgr.records[x].payee==GamblingSite.MySellerID &&        (5) 

TokenMgr.records[x].betID == final_req.betID  &&          (6) 

      TokenMgr.records[x].EffectiveResult != “untossed” &&     (7)  
    GamblingSite.bets[final_req.betID].guess  
                             ==TokenMgr.records[x].EffectiveResult)                (8) 

As mentioned earlier, a motivation for building this 
gambling system is to challenge the CST approach with 
substantial complexity. In this case, the final SymT of a 
normal transaction contains 4 parties and 7 hash values:   

GamblingSite.com:#redeem(CoinTosser.com::#post_toss((Toke
nMgr.com:#write_back((CoinTosser.com:#toss(TokenMgr.com:: 
#issueToken(amazon.com::#pay(GamblingSite.com::#bet())))))))) 

The synthesized vProgram has more than 300 lines of C# 
code, which the certifier is able to verify.  
C. Programming  
Every verification technology applied to real-world systems 
needs the effort of abstraction. The abstraction is often done 
through factoring and stubbing. This subsection explains 
what they mean in the CST programming. For concreteness, 
the description incorporates our experience of enhancing the 
Live Connect SDK, although the general ideas apply to our 
experiences of enhancing other systems.  

(1) Factoring. CST requires the core computations to be 
factored out in order to be logically verified. Typical non-
core computations include methods for parsing, composing 
and HTTP-encoding/decoding for messages. These non-core 
computations contain complicated string (byte-array) 
operations. Currently Corral and Boogie have only limited 
capability for reasoning about string operations: assignment, 
equality comparison and string-indexed dictionary are 
supported, but concatenation, tokenization, character 
operations, etc. are not.  

Figure 11 shows the call-graph of callback.aspx in the Live 
Connect SDK, which handles a redirection from the LiveID 
server. In this 3-dimensional drawing, the methods are 
placed on an unshaded level and a shaded level. The shaded 
level consists of the core methods that we factor out. The 
unshaded level serves as the interface between the core logic 
and the underlying platform. For example, Page_Load 
parses HTTP arguments. RequestAccessToken_raw is a 
method we create so that the string operation for 
constructing an HTTP request can be separate from the core 
method RequestAccessToken. The constructor of class JWT 
(i.e., JsonWebToken) performs Base64 decoding and 
signature validation, which are byte-array operations.     

It is not a requirement that all complicated string (byte-array) 
operations are moved out from the core methods. For 
example, a core method can still construct a string for the 
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Figure 10: A protocol-independent definition of single-sign-on. 
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logging/debugging purpose, as long as it does not affect the 
validity of the ambient predicate. Our experience on existing 
implementations of real-world service frameworks is that 
they are already architected similarly to Figure 11 so that 
lower-level methods parse HTTP requests into well-
structured objects and assemble HTTP responses using 
these objects, while upper-level modules implement core 
computations on these objects. The core computations 
usually deal with basic types (e.g., integers and Booleans), 
structs and arrays of basic types, as well as string 
assignments and equality comparisons. Corral/Boogie can 
effectively reason about all these programming constructs.  

(2) Stubbing. The core methods call many other methods, 
which will not be included in the vProgram for verification. 
In other words, these methods are treated as unimplemented, 
from the certifier’s standpoint. For Corral/Boogie, the 
default semantics of an unimplemented method is that it 
returns a non-deterministic value, but does not modify any 
program state (i.e., the body is a no-op). This works in most 
cases, because most of these methods are not essential to the 
verification. However, there are a few situations in which 
the semantics of these methods matter, so developers need 
to define their semantics as stubs. In the Live Connect SDK, 
we provided a stub method as shown in Figure 11. The 
source code is below. 

static JsonWebToken JWT_Constructor_stub  (OAuthToken token)    
{       JsonWebToken jwt; 
         havoc(jwt);    //to assign jwt a non-deterministic value 
         Contract.Assume(jwt == token.jwt && jwt != null); 
         return jwt; 
} 

The reason to provide JWT_Constructor_stub is to replace 
the Base64 decoding and signature validation operations in 
the JWT constructor with the logic most essential to the 
verification. Specifically, the logic is that a new JWT object 
equals to the jwt member of the input argument token, i.e., 
jwt!=null && jwt== token.jwt.  

Another situation for providing a stub is to model a database 
operation. In real-world systems, persistent data (e.g., the 
payment records) are often stored in and queried from a 
database by INSERT and SELECT. Corral/Boogie does not 
have built-in support for these operations. Developers need 
to wrap these operations in C# methods, and define stubs 
that are logically equivalent to database operations but use 
C# data structures like array, set, list, etc.  

(3) Mapping from variable names in ambient predicate to 
those in implementation. Every verification technique needs 
to map variable names in specification to that in source code, 
and so does CST. The ambient predicates defined above use 
generic names for message fields and variables. 
Unfortunately, they are named differently across protocol 
documentation and implementations. In our programming, 
we had to adapt the ambient predicates to the terminologies 
of these implementations. For example, the BrowserSecret 

in our definition is called MSPAuth in Live Connect; the 
Realm in our definition is called AppID in Facebook OAuth 
and openid.realm in OpenID 2.0.  

D. Deployment 
The deployment path we envision is that, first, major service 
providers, e.g., Facebook and Amazon, attach the SymT 
field in their messages; then, relying websites gradually opt-
in to take advantage of CST. Note that CST has the 
advantage of incremental deployment: without any 
modification, a CST-unaware relying website (i.e., a relying 
party or merchant website) will just work normally with a 
CST-enhanced service provider, as SymT is treated as a 
superfluous field.  

Even before the service providers actually deploy the 
enhancement, CST can be used to secure real-world 
transactions. This is exactly what we did for all the 
aforementioned open-source packages (except for 
DotNetOpenAuth), which do not contain the service 
provider code. For each of these services, we built a 
“wrapper service”, which serves as a relay in order to attach 
the SymT field. An example is shown in Figure 12, the 
dashed-line redirection is implemented as two solid-line 
ones with the wrapper service as the trampoline. A server-
to-server call is similarly implemented. Hence, all 
transactions certified on our relying websites are processed 
by the actual service providers for real. Of course, a caveat 
is that the attached source code hash is only our best effort 
approximation for the logic behind these web methods.  

VI. EVALUATION 

We evaluated the CST approach on security, protocol-
independence, performance, and programming effort. 

A.  Security  
We studied 14 real-world vulnerabilities (listed in Table I), 
which we believe are a representative sample set in this 
problem space – this set includes all the cases reported in 
the literature [25][27][28][29] that allows an attacker to 
either check out an order without a proper payment or sign 
into a victim user’s account through SSO, excluding the 
cases due to generic web programming flaws like cross-site 
scripting, cross-site request forgery (CSRF) and session 
fixation. We show next that 12 out of the 14 cases would be 
addressed by CST. The other two are out-of-scope issues. 

Amazon Wrapper 
(to attach SymT that 
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server’s logic)

NopCommerce
(open-source package 
with our added and 
changed code)

Amazon server 
(no source code 
available)

 

Figure 12: An example wrapper service.  
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Cases for which CST is effective. Attacks for cases #1, #2 
and #11 can be launched against the systems that we built 
using CST – NopCommerce with PayPal Standard, 
NopCommerce with Amazon Simple Pay and OAuth-2.0-
based SSO. We confirmed that the attacks result in 
vPrograms not satisfying the ambient predicates. 

Case #7 is about a relying party that uses the email address 
(email) field, rather than the claimed_id field, as the user’s 
identifier. The reported vulnerability is because the 
signIn_req.email field can be excluded from the signature 
coverage by the malicious user, so that it bears an arbitrary 
value supplied by the client. We intentionally introduced 
this vulnerability to our OpenID 2.0 implementation on 
DotNetOpenAuth. When the attack is launched, the 
resulting vProgram fails to verify clause (2) in the ambient 
predicate, because Session_UID is taken from the 
signIn_req.email field, which is non-deterministic in the 
vProgram. 

Cases #3-#5 are about Interspire, which is another merchant 
software providing similar functionalities as NopCommerce. 
We have not applied CST on Interspire. However, based on 
the nature of the attacks, it is clear that they fall nicely into 
the scope of CST: 

� Case #3 is an attack in which the attacker starts two 
independent transactions – one is expensive, the other is 
cheap. The attacker only performs the PayPal payment step 
in the cheap transaction, but not in the expensive transaction. 
At a particular stage, the merchant takes a signed orderID as 
the input argument. It is at this stage where the attacker 
supplies the signed orderID of the expensive transaction into 
the HTTP session of the cheap transaction, so the expensive 
order is checked out although only the cheap order is paid. 
This attack will be defeated by CST, because the orderID is 
always attached with the SymT, and signed together. When 
the attacker swaps the orderID of the expensive transaction 
into the cheap transaction, the SymT of the transaction has 
to be swapped in as well. The SymT clearly indicates that 
no payment step has been performed, so the ambient 
predicate will fail to verify.  
� Case #4 is a vulnerability because the merchant may take 
the orderID from the client’s cookie that is not signed. 
According to our definition, any unsigned value supplied by 
the client is non-deterministic. Having a non-deterministic 
orderID, the vProgram fails verify. 
� Case #5 is because the payment total is calculated based 
on the shopping cart at the checkout time, but the order 
being checked out is generated based on the shopping cart 
after the payment is made.  The ambient predicate will not 
verify in this case, because the shopping cart is a runtime 
object, querying its property at two time points are 
semantically two method calls, corresponding to two 
different symbolic values. The equality would not be estab-
lished in the verification. 

Case #9 is about JanRain SSO service. The attack is to set 
the redirection destination (i.e., Redir_dest) to the attacker’s 
website when the (victim) user tries to sign into a (victim) 
website. The JanRain server correctly checks the redirection 
destination, but the most important step in the attack is that 
the client can swap in an unchecked URL as the redirection 
destination after the checking. If CST was applied, the 
unchecked URL would be an arbitrary value (i.e., the 
attached SymT would not indicate any logic constraint 
imposed on this URL), so the clause in the ambient 
predicate about the redirection destination would fail. 

Similar to case #7, case #10 is about a relying party that 
intends to use the email field as user ID. However, the 
developer mistakenly uses an arbitrary non-email field as 
the email field, due to a misunderstanding of the OpenID 
2.0 protocol. CST would prevent the flaw because the 
IdPAuth dictionary on the identity provider would not even 
contain this arbitrary field. 

Cases #12-#14 include every exploitable flaw reported in 
[25]. In case #12, the attacker replaces the payee account ID 
with his own PayPal account ID, and checks out an order 
from the victim store by paying himself. Cases #13 and #14 
are similar to case #3, in which the attacker places two 
orders in two sessions, and supplies a message obtained 
from the session of the cheaper order into the session of the 
more expensive order. We have explained that these are 
precisely the type of logic flaws that CST would prevent.  

TABLE I: REAL-WORLD CASES STUDIED IN OUR SECURITY ANALYSIS 

No. Attack Target system CST 
effectiveness 

#1 Section III.A.1 
of [27] 

NopCommerce with PayPal 
Standard 

Yes 

#2 Section III.A.2 
of [27] 

NopCommerce with Amazon 
Simple Pay 

Yes 

#3 Section III.B.1 
of [27] 

Interspire with PayPal Express Yes 

#4 Section III.B.2 
of [27] 

Interspire with PayPal Standard Yes 

#5 Section III.B.3 
of [27] 

Interspire with Google Checkout Yes 

#6 Section III.C of 
[27] 

Websites using Amazon Payments No 

#7 Section 4.1 of 
[28] 

Websites using Google ID Yes 

#8 Section 4.2  of 
[28] 

Websites using Facebook Connect No 

#9 Section 4.3  of 
[28] 

Websites using JanRain sign-on Yes 

#10 Section 4.5  of 
[28] 

Websites using Google ID Yes 

#11 Section 2 of 
[29] 

Websites using OAuth implicit 
flow for  SSO 

Yes 

#12 Section IV.A.1 
of [25] 

osCommerce, CS-Cart and 
AbanteCart using PayPal Standard 

Yes 

#13 Section IV.A.2 
of [25] 

OpenCart and TomatoCart using 
PayPal Express 

Yes 

#14 Section IV.A.3 
of [25] 

TomatoCart using PayPal Express Yes 
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Cases that are not addressed by CST. CST relies on every 
party to correctly verify signatures. Case #6 is a 
vulnerability in signature verification. It is out of scope of 
CST. The root cause of case #8 is a client-side cross domain 
issue. Specifically, it is due to a special Adobe Flash 
communication mode that does not conform to the same-
origin policy. This causes secret data from the IdP to be 
obtained by a malicious webpage on the victim user’s 
browser. CST does not address security flaws in the 
underlying platform.   

B. Protocol independence 
The fact that we check the same ambient predicates for 
systems adopting considerably different protocols shows the 
protocol independence of their security goals. To make the 
point even stronger, we built implementations that blatantly 
violate protocols but are nevertheless secure. Three of them 
are shown in Figure 13. 

Implementation (A) does not conform to the OAuth 2.0 
protocol (shown earlier in Figure 8) for two reasons:  

� First, the protocol requires token_req to contain the field 
AppSecret, which is a secret the identity provider assigned 

to every relying party at the registration time. We realized 
that the purpose of AppSecret is to prevent another website 
from impersonating the relying party to access the identity 
provider, which seemed unrelated to SSO. We removed 
AppSecret, and the ambient predicate still held, suggesting 
that AppSecret is indeed unnecessary in SSO. Note that we 
do not claim that AppSecret is useless in general in the 
OAuth protocol (in fact, we now understand precisely where 
it is useful). 

� Second, the protocol requires the identity provider to 
check redirect_uri. In implementation (A), the identity 
provider does not perform the check. Instead, it returns 
redirect_uri in me_resp, so that the relying party can check 
it. The ambient predicate still hold in this case. 

Implementation (B) even more blatantly violates the 
protocol, because it gets rid of code, but uses token for the 
client to authenticate into RP.com. According to a previous 
study, using token to authenticate is a pervasive and serious 
vulnerability [29]. Recently, the OAuth 2.0 specification has 
been augmented to explicitly forbid this kind of token usage 
(see section 10.16 of RFC 6749). However, we realized that 
this usage is vulnerable only because, if the relying party 
accepts a token rather than a code for authentication, the 
steps token_req and token_resp will be skipped. The 
relying party directly calls me_req:(token), so the checking 
of redirect_uri and AppID required by the ambient predicate 
is missing. If me_req took additional arguments redirect_uri 
and AppID, and the identity provider performed the checking, 
as in implementation (B), then security would still be 
achieved. 

Suppose the identity provider insists not to check anything, 
is the implementation doomed flawed? Not necessarily. The 
checking can be performed by the relying party, like in 
implementation (C). 

Summary. We can see that all these implementations are just 
different ways of sharing the responsibility of performing all 
necessary checks. The OAuth 2.0 protocol describes one 
particular way, but not the only way. Of course, we 
understand that protocol conformance not only affects 
security, but also modularity, deployability, interoperability, 
etc. We do not suggest implementers disregard protocols, 
but only argue that security can (and should) be ensured 
independently, because understanding “who should do what, 
and why” about each protocol specification can be very 
subtle. 

C.  Performance 
A significant strength of CST is its near-zero runtime 
overhead. Table II provides the measurement results, 
obtained from a server with a 2.10 GHz CPU and a 3.5 GB 
RAM, running Windows Server 2008. The numbers fall into 
two categories: per transaction cost and one-time cost. The 
time spent on synthesizing and verifying a vProgram 
belongs to the one-time cost, because the caching amortizes 
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Figure 13: Protocol-violating yet secure implementations. 
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the cost over all transactions on all users. In fact, developers 
themselves are most likely the users who actually pay for 
the cost during testing. 

Per-transaction cost. For a non-certifier party, the only 
runtime overhead is to produce the SymT. The source code 
hash is a pre-computed constant for a given version, so the 
only overhead is a string concatenation. Also note that CST 
incurs no additional signing operation, i.e., any unsigned 
message in the original implementation will remain 
unsigned in the CST-enhanced implementation. For the 
certifier, the only per-transaction overhead is the cache 
lookup for the SymT. Obviously, the runtime overheads for 
both a non-certifier party and the certifier should be 
extremely small. We nevertheless did the actual measure-
ments to confirm that, for every system we implemented, 
the per-transaction runtime overhead is too small to report. 

The SymT field incurs traffic overhead for protocol 
messages. We measured the average traffic overhead per 
SymT field (shown as Bytes/SymT). Our implementations 
use SHA-1 (160 bits), RSA (384 bits) and UTF-8 for 
hashing, encryption and encoding.  

One-time cost. The synthesis cost is measured for two 
situations – when the de-hash table is stored locally or on 
another server. The first one mainly indicates the 
computational time of the synthesis algorithm, which is 
within 5 milliseconds in each of our case. The second 
situation may be more beneficial in practice because it 
offloads the de-hash table to another server. Although the 
synthesis time is longer, since it is a one-time cost, it should 
not be a performance concern in practice.  

The last column in Table II corresponds to the real heavy-
lifting step in CST. It consists of C# compilation into .NET 
byte code, byte-code translation into Boogie code and 
verification of Boogie code. The time reflects the significant 
logic complexity for verifying a transaction consisting of 
realistic methods. In contrast, today, this significant logic 
reasoning is never conducted, and correctness is taken on 
faith. 

D. Programming effort  
Table III shows the lines of code (LoC) we added or 
changed in each open-source project, excluding comment 

and white lines. The certifier is the same across all projects. 
It consists of 347 LoC. The LoC numbers in the unshaded 
cells are a good measurement of the effort for factoring and 
stubbing. The amount of code is fairly small, under 200 LoC 
for each party, indicating that the original developers had 
architected the code well so that it was amenable for the 
CST enhancement. The shaded cells correspond to our 
wrapper code for the real API providers, and factoring and 
stubbing do not apply for them. 

TABLE III: LINES OF CODE THAT WE ADDED OR CHANGED IN THE 

OPEN-SOURCE PACKAGES (COMMENT AND WHITE LINES EXCLUDED) 

 Shared 
methods  

The relying 
website 

The API-provider 

Live Connect SDK 0 48 100  
(wrapper)  

OpenID 2.0 on 
DotNetOpenAuth 

104 59 182 

Facebook SSO using 
ASP.NET MVC 4 

0 119 411  
(wrapper) 

NopCommerce with 
Amazon Simple Pay 

0 71 375 
(wrapper) 

NopCommerce with 
PayPal Standard 

0 71 239  
(wrapper) 

VII. RELATED WORK 

There is a rich body of literature about verifying security 
protocols themselves, which we do not discuss here due to 
the space constraint. Research is also conducted to address 
issues in protocol implementations. Existing approaches can 
be categorized as either top-down or bottom-up. The top-
down approaches focus on generating or verifying 
implementations based on formal specifications of protocols. 
For example, Bhargavan et al. [6] verified a number of 
reference implementations of the InfoCard protocol. In their 
work, the protocol and the security specifications are written 
in high-level languages F# and WSDL. Bhargavan and 
Corin et al. [7][11] developed a compiler that can synthesize 
a protocol implementation from a high-level F# specifica-
tion of multiparty transactions. The bottom-up approaches 
try to extract protocols from actual systems. Aizatulin et al. 
[1] proposed to use symbolic execution to convert a protocol 
implementation in C into its high-level model in the applied 
pi calculus. Bai et al. developed a technique to extract SSO 
protocols from HTTP messages of network traces [4]. The 

TABLE II. PERFORMANCE OVERHEAD – PER TRANSACTION AND ONE-TIME COSTS. 

 Per-transaction cost One-time cost 
Runtime 
overhead 

Average traffic 
overhead 

Program synthesis 
using a local  de-

hash server 

Program synthesis 
using a remote de-

hash server 

compilation, byte-
code translation and 

verification 
Live Connect SDK � 0ms 106 B/SymT 3ms 568ms 18758ms 
OpenID 2.0 on DotNetOpenAuth � 0ms 119 B/SymT 5ms 409ms 15380ms 
Facebook SSO using ASP.NET MVC 4 � 0ms 120 B/SymT 5ms 408ms 12090ms 
NopCommerce with Amazon Simple Pay � 0ms 78 B/SymT 2ms 450ms 15444ms 
NopCommerce with PayPal Standard � 0ms 105 B/SymT 8ms 190ms 10990ms 
Coin tossing gambling � 0ms 205 B/SymT 3ms 945ms 32477ms 
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uniqueness of CST is that it performs static verification at 
runtime, which converts the harder obligation of verifying a 
system into that of verifying intended transactions. 

Proof carrying code (PCC) [21] is a technology for a code 
consumer (e.g., an OS kernel) to examine whether the code 
from an untrusted producer (e.g., a kernel extension from a 
third-party company) is accompanied by a logic proof of 
desired safety properties. CST and PCC target different 
problems. CST does not have the “proof carrying” aspect of 
PCC, but interestingly has a “code carrying” aspect that 
enables the verification.  

Our work has connections with logic-based access control. 
Research on access control logic focus on expressiveness, 
decidability and theorem-proving efficiency of different 
logic frameworks. Lampson et al. defined a decidable logic 
based on the “speaks for” relation [17]. Appel and Felten 
found that many access control scenarios need higher-order 
logic, which is more expressive, but usually undecidable. 
They proposed proof-carrying authentication (PCA) [3], 
motivated by the idea of PCC, to shift the proof obligation 
to requestors. Code-carrying authorization (CCA) [18] is a 
follow-up of PCA. CCA allows requestors to provide 
fragments of the reference monitor’s code (in form of the 
spi calculus), rather than proofs as in PCA. Our work is 
different from prior work on access control logic in two 
ways: (1) The certifier in a CST system is not a reference 
monitor; rather the computation being certified by the 
certifier is akin to a reference monitor; (2) The notion of 
proof in a CST system is partitioned into reasoning about 
trust (in the synthesizer) and logical correctness (in the 
program verifier), enabling the use of off-the-shelf program 
verifiers. On the other hand, proof systems for access-
control are monolithic and based on custom axioms and 
inference rules about trust and authority, which makes it 
difficult to use off-the-shelf verifiers.  

Connections can also be drawn between CST and secure 
multiparty computation [31] and verifiable computation [14] 
in applied cryptography. However, the goal are very 
different from CST. Secure multiparty computation is to 
enable parties to jointly compute a function over secret data 
held by individual parties. Verifiable computation enables a 
weaker device to securely outsource computations to 
untrusted servers.  

VIII. FINAL REMARKS 

We show that CST is a practical approach for real 
developers to utilize program verification technologies to 
guard against logic flaws.  

CST represents a paradigm shift for developers.  Program-
ming is less about conforming to a protocol, but more about 
explicating the computations in order to establish an end-to-
end global safety property. From the security standpoint, 
protocols become advisory rather than mandatory. What is 
truly mandatory is the ambient predicates independent of 
these protocols.  

Looking forward, we believe that the CST approach will get 
benefits by involving a broader community of protocol 
committees and API-providing companies. Today, the 
security goals are vague and confusing: protocols use 
different terminologies for same concepts; the global 
security goals are often implicit or buried in the step-by-step 
instructions of individual protocols. A valuable effort we 
envision is that the community agree on common 
terminologies and draft a “meta-specification” to formally 
define ambient predicates for each class of protocols, which 
will enable developers to do verification with little 
arbitrariness. As shown in the paper, this appears to be 
achievable in reality. 
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Appendix A: OpenID-2.0 SSO and Live Connect SSO 
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Appendix B: An example of the synthesizer discarding an untrusted call 
(Note that the single colon with the placeOrder call) 
 
 FinalSymT=  

TStore.com:#completeOrder( 
    Cashier.com::#pay( 
        TStore.com::#placeOrder() 

) 
) 
 
Meaning: 
The message is M, which TStore.com claims is  
{ the result of executing completeOrder() on input Ma, which Cashier.com claims is  
    { the result of executing pay() on input Mb, which TStore.com claims is 
           { the result of executing placeOrder() on input Mc, which is  
                 {  arbitrary  } 
           } 
    } 
} 

TrustedParties= ( 
       TStore.com, Cashier.com 
) 

Single-colon enclosed by a pair of single parentheses 

FinalSymT=  
TStore.com:#completeOrder( 
    Cashier.com::#pay( 
              

) 
) 
 
Meaning: 
The message is M, which TStore.com claims is  
{ the result of executing completeOrder() on input Ma, which Cashier.com claims is  
    { the result of executing pay() on input Mb, which is 
            { 
                   arbitrary   
            } 
    } 
} 

� 

AmbientPredicate=  
   The one shown in Section III. The synthesized vProgram 

will fail to be verified. 
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