
Missing the Point(er):
On the Effectiveness of Code Pointer Integrity1

Isaac Evans∗, Sam Fingeret†, Julián González†, Ulziibayar Otgonbaatar†, Tiffany Tang†,
Howard Shrobe†, Stelios Sidiroglou-Douskos†, Martin Rinard†, Hamed Okhravi∗

†MIT CSAIL, Cambridge, MA

Email: {samfin, jugonz97, ulziibay, fable, hes, stelios, rinard}@csail.mit.edu
∗MIT Lincoln Laboratory, Lexington, MA

Email: {isaac.evans, hamed.okhravi}@ll.mit.edu

Abstract—Memory corruption attacks continue to be a major
vector of attack for compromising modern systems. Numerous
defenses have been proposed against memory corruption attacks,
but they all have their limitations and weaknesses. Stronger
defenses such as complete memory safety for legacy languages
(C/C++) incur a large overhead, while weaker ones such as
practical control flow integrity have been shown to be ineffective.
A recent technique called code pointer integrity (CPI) promises
to balance security and performance by focusing memory safety
on code pointers thus preventing most control-hijacking attacks
while maintaining low overhead. CPI protects access to code
pointers by storing them in a safe region that is protected by
instruction level isolation. On x86-32, this isolation is enforced
by hardware; on x86-64 and ARM, isolation is enforced by
information hiding. We show that, for architectures that do
not support segmentation in which CPI relies on information
hiding, CPI’s safe region can be leaked and then maliciously
modified by using data pointer overwrites. We implement a proof-
of-concept exploit against Nginx and successfully bypass CPI
implementations that rely on information hiding in 6 seconds with
13 observed crashes. We also present an attack that generates
no crashes and is able to bypass CPI in 98 hours. Our attack
demonstrates the importance of adequately protecting secrets in
security mechanisms and the dangers of relying on difficulty of
guessing without guaranteeing the absence of memory leaks.

I. INTRODUCTION

Despite considerable effort, memory corruption bugs and

the subsequent security vulnerabilities that they enable remain

a significant concern for unmanaged languages such as C/C++.

They form the basis for attacks [14] on modern systems in the

form of code injection [40] and code reuse [49, 14].

The power that unmanaged languages provide, such as

low-level memory control, explicit memory management and

direct access to the underlying hardware, make them ideal

for systems development. However, this level of control

comes at a significant cost, namely lack of memory safety.

Rewriting systems code with managed languages has had

limited success [24] due to the perceived loss of control that

mechanisms such as garbage collection may impose, and the

fact that millions of lines of existing C/C++ code would need

to be ported to provide similar functionality. Unfortunately,

1This work is sponsored by the Assistant Secretary of Defense for Research
& Engineering under Air Force Contract #FA8721-05-C-0002. Opinions,
interpretations, conclusions and recommendations are those of the author and
are not necessarily endorsed by the United States Government.

retrofitting memory safety into C/C++ applications can cause

significant overhead (up to 4x slowdown) [36] or may require

annotations [37, 28].

In response to these perceived shortcomings, research has

focused on alternative techniques that can reduce the risk

of code injection and code reuse attacks without significant

performance overhead and usability constraints. One such

technique is Data Execution Prevention (DEP). DEP enables

a system to use memory protection to mark pages as non-

executable, which can limit the introduction of new executable

code during execution. Unfortunately, DEP can be defeated

using code reuse attacks such as return-oriented program-

ming [11, 17], jump-oriented programming [10] and return-

into-libc attacks [56].

Randomization-based techniques, such as Address Space

Layout Randomization (ASLR) [43] and its medium- [30], and

fine-grained variants [57] randomize the location of code and

data segments thus providing probabilistic guarantees against

code reuse attacks. Unfortunately, recent attacks demonstrate

that even fine-grained memory randomization techniques may

be vulnerable to memory disclosure attacks [52]. Memory dis-

closure may take the form of direct memory leakage [53] (i.e.,

as part of the system output), or it can take the form of indirect

memory leakage, where fault or timing side-channel analysis

attacks are used to leak the contents of memory [9, 47]. Other

forms of randomization-based techniques include instruction

set randomization (ISR) [8] or the multicompiler techniques

[26]. Unfortunately, they are also vulnerable to information

leakage attacks [53, 47].

Control flow integrity (CFI) is a widely researched runtime

enforcement technique that can provide practical protection

against code injection and code reuse attacks [3, 61, 62].

CFI provides runtime enforcement of the intended control

flow transfers by disallowing transfers that are not present in

the application’s control flow graph (CFG). However, precise

enforcement of CFI can have a large overhead [3]. This has

motivated the development of more practical variants of CFI

that have lower performance overhead but enforce weaker

restrictions [61, 62]. For example, control transfer checks are

relaxed to allow transfers to any valid jump targets as opposed

to the correct target. Unfortunately, these implementations

have been shown to be ineffective because they allow enough

2015 IEEE Symposium on Security and Privacy

© 2015, Isaac Evans. Under license to IEEE.

DOI 10.1109/SP.2015.53

781

2015 IEEE Symposium on Security and Privacy

© 2015, Isaac Evans. Under license to IEEE.

DOI 10.1109/SP.2015.53

781

valid transfers to enable an attacker to build a malicious

payload [21].

A recent survey of protection mechanisms [55] shows

that most available solutions are either (a) incomplete, (b)
bypassable using known attacks, (c) require source code

modifications or (d) impose significant performance overhead.

Recently a new technique, code pointer integrity (CPI),

promises to bridge the gap between security guarantees and

performance/usability. CPI enforces selective memory safety

on code pointers (i.e., it does not protect data pointers) without

requiring any source code modifications. The key idea behind

CPI is to isolate and protect code pointers in a separate safe
region and provide runtime checks that verify the code pointer

correctness on each control transfer. Since modification of a

code pointer is necessary to implement a control hijacking

attack, the authors of CPI argue that it is effective against

the most malicious types of memory corruption attacks. As

code pointers represent a small fraction of all pointers, CPI

is significantly more efficient than established techniques for

enforcing complete memory safety (average 2.9% for C, 8.4%

for C/C++) [31].

In this paper, we present an attack on CPI that uses a

data pointer vulnerability to launch a timing side-channel that

leaks information about the protected safe region. Our attack

takes advantage of two design weaknesses in CPI. First, on

architectures that do not support segmentation protection, such

as x86-64 and ARM, CPI uses information hiding to protect

the safe region. Second, to achieve the low performance

overhead, CPI focuses protection on code pointers. Since the

safe region is kept in the same memory space as the code it

is protecting, to avoid expensive context switches, it is also

subject to leakage and overwrite attacks. We show that an

attacker can disclose the location of the safe region using

a timing side-channel attack. Once the location of a code

pointer in the safe region is known, the metadata of the

pointer is modified to allow the location of a ROP chain.

Then the pointer is modified to point to a ROP chain that

can successfully complete the hijacking attack.

In our evaluation of CPIs implementation, we discovered a

number of implementation flaws that can facilitate an attack

against CPI. In this paper, we focus on an attack that exploits

a flaw in the use of information hiding to protect the safe

region for architectures that do not provide hardware isolation

(e.g., x86-64 and ARM). In other words, for the x86-64

and ARM architectures, we assume the weakest assumptions

for the attacker. In fact, the only assumption necessary for

an attacker to break CPI is control of the stack, which is

consistent with other code reuse attacks and defenses in the

literature [49, 23, 57]. For the remainder of the paper, when

referring to CPI, we are referring to the information-hiding

based implementations of CPI.

At a high level our attack works as follows. First, by

controlling the stack, we use a data pointer overwrite to

redirect a data pointer to a random location in memory map

(mmap) which is used by CPI. Using a timing side-channel

attack, we leak large parts of the safe region. We then use

a data-pointer overwrite attack to modify the safe region and

tamper with base and bounds information for a code pointer

that we need for the actual payload. This can be summarized

in the following steps:

1) Launch Timing Side-channel Attack: A data-pointer

overwrite vulnerability is used to control a data pointer

that is subsequently used to affect control flow (e.g.,

number of loop iterations) is used to reveal the contents

of the pointer under control (i.e., byte values). The data

pointer can be overwritten to point to a return address on

the stack, revealing where code is located, or a location

in the code segment, revealing what code is located

there.

2) Data Collection: Using the data pointer vulnerability,

we measure round-trip response times to our attack

application in order to collect the timing samples. We

create a mapping between the smallest cumulative delay

slope and byte 0, and the largest slope and byte 255. We

use these two mappings to interpolate cumulative delay

slopes for all possible byte values (0-255). This enables

us to read the contents of specific memory locations with

high accuracy.

3) Locate Safe Region: Using information about the

possible location of the safe region with respect to the

randomized location of mmap, we launch a search that

starts at a reliably mapped location within the safe region

and traverse the safe region until we discover a sequence

of bytes that indicates the location of a known library

(e.g., the base of libc). Under the current implementation

of CPI, discovering the base of libc allows us to trivially

compute the base address of the safe region. Up to this

point, the attack is completely transparent to CPI and

may not cause any crash or detectable side effect.

4) Attack Safe Region: Using the safe region table

address, we can compute the address of any code pointer

stored in the safe region. At this point, we can change

a code pointer and any associate metadata to enable a

control hijacking attack (e.g., a ROP gadget). CPI does

not detect the redirection as a violation because we have

already modified its safe region to accept the new base

and bound for the code pointer.

In the CPI paper, the authors argue that leaking large parts of

memory or brute-forcing the safe region causes a large number

of crashes that can be detected using other means [31]. We

show that this assumption is incorrect and in fact leaking large

parts of the safe region can happen without causing any crash

in the target process. Another assumption in CPI is that if there

is no pointer into the safe region, its location cannot be leaked.

We show that this assumption is also incorrect. By jumping

into a randomly selected location in mmap, the attack can start

leaking the safe region without requiring any pointer to it.

To evaluate our attack, we construct a proof-of-concept at-

tack on a CPI-protected version on Nginx [45]. Our evaluation

shows that in Ubuntu Linux with ASLR, it takes 6 seconds

to bypass CPI with 13 crashes. Our analysis also shows

782782

that an attack can be completed without any crashes in ∼98

hours for the most performant and complete implementation

of CPI. This implementation relies on ASLR support from the

operating system.

A. Contributions

This paper make the following contributions:

• Attack on CPI: We show that an attacker can defeat

CPI, on x86-64 architectures, assuming only control of

the stack. Specifically, we show how to reveal the location

of the safe region using a data-pointer overwrite without

causing any crashes, which was assumed to be impossible

by the CPI authors.

• Proof of Concept Attack on Nginx: We implement a

proof-of-concept attack on a CPI protected version of the

popular Nginx web server. We demonstrate that our attack

is accurate and efficient (it takes 6 seconds to complete

with only 13 crashes).

• Experimental Results: We present experimental results

that demonstrate the ability of our attack to leak the safe

region using a timing side-channel attack.

• Countermeasures: We present several possible improve-

ments to CPI and analyze their susceptibility to different

types of attacks.

Next, Section II describes our threat model which is con-

sistent with CPI’s threat model. Section III provides a brief

background on CPI and the side-channel attacks necessary

for understanding the rest of the paper. Section IV describes

our attack procedure and its details. Section V presents the

results of our attack. Section VI describes a few of CPI’s

implementation flaws. Section VII provides some insights into

the root cause of the problems in CPI and discusses possible

patch fixes and their implications. Section VIII describes

the possible countermeasures against our attack. Section IX

reviews the related work and Section X concludes the paper.

II. THREAT MODEL

In this paper, we assume a realistic threat model that is

both consistent with prior work and the threat model assumed

by CPI [31]. For the attacker, we assume that there exists

a vulnerability that provides control of the stack (i.e., the

attacker can create and modify arbitrary values on the stack).

We also assume that the attacker cannot modify code in

memory (e.g., memory is protected by DEP [41]). We also

assume the presence of ASLR [43]. As the above assumptions

prevent code injection, the attacker would be required to

construct a code reuse attack to be successful.

We also assume that CPI is properly configured and cor-

rectly implemented. As we will discuss later, CPI has other

implementation flaws that make it more vulnerable to attack,

but for this paper we focus on its design decision to use

information hiding to protect the safe region.

III. BACKGROUND

This section presents the necessary background informa-

tion required to understand our attack on CPI. Specifically,

the section begins with an overview of CPI and continues

with information about remote leakage attacks. For additional

information, we refer the reader to the CPI paper [31] and a

recent remote leakage attack paper [47].

A. CPI Overview

CPI consists of three major components: static analysis,

instrumentation, and safe region isolation.

1) Static Analysis: CPI uses type-based static analysis to

determine the set of sensitive pointers to be protected. CPI

treats all pointers to functions, composite types (e.g., arrays

or structs containing sensitive types), universal pointers

(e.g., void* and char*), and pointers to sensitive types

as sensitive types (note the recursive definition). CPI protects

against the redirection of sensitive pointers that can result in

control-hijacking attacks. The notion of sensitivity is dynamic

in nature: at runtime, a pointer may point to a benign integer

value (non-sensitive) and it may also point to a function

pointer (sensitive) at some other part of the execution. Using

the results of the static analysis, CPI stores the metadata for

checking the validity of code pointers in its safe region. The

metadata includes the value of the pointer and its lower and

upper thresholds. An identifier is also stored to check for

temporal safety, but this feature is not used in the current

implementation of CPI. Note that static analysis has its own

limitations and inaccuracies [33] the discussion of which is

beyond the scope of this paper.

2) Instrumentation: CPI adds instrumentation that propa-

gates metadata along pointer operations (e.g. pointer arithmetic

or assignment). Instrumentation is also used to ensure that

only CPI intrinsic instructions can manipulate the safe region

and that no pointer in the code can directly reference the safe

region. This is to prevent any code pointers from disclosing the

location of the safe region using a memory disclosure attack

(on code pointers).

3) Safe Region Isolation: On the x86-32 architecture CPI

relies on segmentation protection to isolate the safe region.

On architectures that do not support segmentation protection,

such as x86-64 and ARM, CPI uses information hiding to

protect the safe region. There are two major weaknesses in

CPI’s approach to safe region isolation in x86. First, the x86-

32 architecture is slowly phased out as systems migrate to

64-bit architectures and mobile architectures. Second, as we

show in our evaluation, weaknesses in the implementation of

the segmentation protection in CPI makes it bypassable. For

protection in the x86-64 architecture, CPI relies on the size of

the safe region (242 bytes), randomization and sparsity of its

safe region, and the fact that there are no direct pointers to its

safe region. We show that these are weak assumptions at best.

CPI authors also present a weaker but more efficient version

of CPI called Code Pointer Separation (CPS). CPS enforces

safety for code pointers, but not pointers to code pointers.

Because the CPI authors present CPI as providing the strongest

security guarantees, we do not discuss CPS and the additional

safe stack feature further. Interested readers can refer to the

783783

original publication for more in-depth description of these

features.

B. Side Channels via Memory Corruption

Side channel attacks using memory corruption come in two

broad flavors: fault and timing analysis. They typically use

a memory corruption vulnerability (e.g., a buffer overflow) as

the basis from which to leak information about the contents of

memory. They are significantly more versatile than traditional

memory disclosure attacks [54] as they can limit crashes, they

can disclose information about a large section of memory,

and they only require a single exploit to defeat code-reuse

protection mechanisms.

Blind ROP (BROP) [9] is an example of a fault analysis

attack that uses the fault output of the application to leak

information about memory content (i.e., using application

crashes or freezes). BROP intentionally uses crashes to leak

information and can therefore be potentially detected by

mechanisms that monitor for an abnormal number of program

crashes.

Seibert, et al. [47] describe a variety of timing- and fault-

analysis attacks. In this paper, we focus on using timing

channel attacks via data-pointer overwrites. This type of

timing attack can prevent unwanted crashes by focusing timing

analysis on allocated pages (e.g., the large memory region

allocated as part of the safe region).

Consider the code sequence below. If ptr can be over-

written by an attacker to point to a location in memory, the

execution time of the while loop will be correlated with the

byte value to which ptr is pointing. For example, if ptr is

stored on the stack, a simple buffer overflow can corrupt its

value to point to an arbitrary location in memory. This delay

is small (on the order of nanoseconds); however, by making

numerous queries over the network and keeping the fastest

samples (cumulative delay analysis), an attacker can get an

accurate estimate of the byte values [47, 16]. In our attack,

we show that this type of attack is a practical technique for

disclosing CPI’s safe region.

1 i = 0;
2 while (i < ptr->value)
3 i++;

C. Memory Entropy

One of the arguments made by the authors of the CPI

technique is that the enormous size of virtual memory makes

guessing or brute force attacks difficult if not impossible.

Specifically, they mention that the 48 bits of addressable space

in x86-64 is very hard to brute force. We show that in practice

this assumption is incorrect. First, the entropy faced by an

attacker is not 48 bits but rather 28 bits: the entropy for the

base address of the mmap, where CPI’s safe region is stored,

is 28 bits [39]. Second, an attacker does not need to know

the exact start address of mmap. The attacker only needs to

redirect the data pointer to any valid location inside mmap.

Since large parts of the mmap are used by libraries and the

CPI safe region, an attacker can land inside an allocated mmap

page with high probability. In our evaluation we show that

this probability is as high as 1 for the average case. In other

words, since the size of the mmap region is much larger than

the entropy in its start address, an attacker can effectively land

in a valid location inside mmap without causing crashes.

IV. ATTACK METHODOLOGY

This section presents a methodology for performing attacks

on applications protected with CPI. As outlined in Section II,

the attacks on CPI assume an attacker with identical capa-

bilities as outlined in the CPI paper [31]. The section begins

with a high-level description of the attack methodology and

then proceeds to describe a detailed attack against Nginx [45]

using the approach.

At a high level, our attack takes advantage of two design

weaknesses in CPI. First, on architectures that do not support

segmentation protection, such as x86-64 and ARM, CPI uses

information hiding to protect the safe region. Second, to

achieve low performance overhead, CPI focuses protection

on code pointers (i.e., it does not protect data pointers).

This section demonstrates that these design decisions can be

exploited to bypass CPI.

Intuitively, our attack exploits the lack of data pointer

protection in CPI to perform a timing side channel attack that

can leak the location of the safe region. Once the location of

a code pointer in the safe region is known, the code pointer,

along with its metadata, is modified to point to a ROP chain

that completes the hijacking attack. We note that using a data-

pointer overwrite to launch a timing channel to leak the safe

region location can be completely transparent to CPI and may

avoid any detectable side-effects (i.e., it does not cause the

application to crash).

The attack performs the following steps:

1) Find data pointer vulnerability

2) Gather data

• Identify statistically unique memory sequences

• Collect timing data on data pointer vulnerability

3) Locate safe region

4) Attack safe region

Next, we describe each of these steps in detail.

A. Vulnerability

The first requirement to launch an attack on CPI is to

discover a data pointer overwrite vulnerability in the CPI-

protected application. Data pointers are not protected by CPI;

CPI only protects code pointers.

The data pointer overwrite vulnerability is used to launch

a timing side-channel attack [47], which, in turn, can leak

information about the safe region. In more detail, the data

pointer overwrite vulnerability is used to control a data pointer

that is subsequently used to affect control flow (in our case,

the number of iterations of a loop) and can be used to

reveal the contents of the pointer (i.e., byte values) via timing

information. For example, if the data pointer is stored on the

784784

stack, it can be overwritten using a stack overflow attack; if it

is stored in heap, it can be overwritten via a heap corruption

attack.

In the absence of complete memory safety, we assume that

such vulnerabilities will exist. This assumption is consistent

with the related work in the area [50, 12]. In our proof-of-

concept exploit, we use a stack buffer overflow vulnerability

similar to previous vulnerabilities [1] to redirect a data pointer

in Nginx.

B. Data Collection

Given a data-pointer vulnerability, the next step is collect

enough data to accurately launch a timing side-channel attack

that will reveal the location of the safe region.

The first step is to generate a request that redirects the vul-

nerable data pointer to a carefully chosen address in memory

(see Section IV-C). Next, we need to collect enough informa-

tion to accurately estimate the byte value that is dereferenced

by the selected address. To estimate the byte value, we use

the cumulative delay analysis described in Equation 1.

byte = c

s∑

i=1

(di − baseline) (1)

In the above equation, baseline represents the average

round trip time (RTT) that the server takes to process requests

for a byte value of zero. di represents the delay sample RTT for

a nonzero byte value, and s represents the number of samples

taken.

Once we set byte = 0, the above equation simplifies to:

baseline =

∑
di
s

Due to additional delays introduced by networking condi-

tions, it is important to establish an accurate baseline. In a

sense, the baseline acts as a band-pass filter. In other words,

we subtract the baseline from di in Eq. 1 so that we are

only measuring the cumulative differential delay caused by

our chosen loop.

We then use the set of delay samples collected for byte

255 to calculate the constant c. Once we set byte = 255, the

equation is as follows:

c =
255

s∑

i=1

(di)− s ∗ baseline

Once we obtain c, which provides of the ratio between the

byte value and cumulative differential delay, we are able to

estimate byte values.

stack
higher memory addresses
lower memory addresses

stack gap (at least 128MB)
max mmap_base

random mmap_base
linked libraries

min mmap_base =
max-2^28*PAGE_SIZE

min mmap_base -
size of linked libraries

max mmap_base - 2^42 -
size of linked libraries

safe region
2^42 bytes always allocated

dynamically loaded
libraries,

any heap allocations
backed by mmap

end of mmap region

Fig. 1. Safe Region Memory Layout.

C. Locate Safe Region

Figure 1 illustrates the memory layout of a CPI-protected

application on the x86-64 architecture. The stack is located

at the top of the virtual address space and grows downwards

(towards lower memory addresses) and it is followed by the

stack gap. Following the stack gap is the base of the mmap

region (mmap base), where shared libraries (e.g., libc) and

other regions created by the mmap() system call reside. In

systems protected by ASLR, the location of mmap base
is randomly selected to be between max mmap base (lo-

cated immediately after the stack gap) and min mmap base.

min mmap base is computed as:

min mmap base =

max mmap base− aslr entropy ∗ page size

where aslr entropy is 228 in 64-bit systems, and the

page size is specified as an operating system parameter

(typically 4KB). The safe region is allocated directly after any

linked libraries are loaded on mmap base and is 242 bytes.

Immediately after the safe region lies the region in memory

where any dynamically loaded libraries and any mmap-based

heap allocations are made.

Given that the safe region is allocated directly after all

linked libraries are loaded, and that the linked libraries are

linked deterministically, the location of the safe region can

785785

be computed by discovering a known location in the linked

libraries (e.g., the base of libc) and subtracting the size of

the safe region (242) from the address of the linked library.

A disclosure of any libc address or an address in another

linked library trivially reveals the location of the safe region

in the current CPI implementation. Our attack works even if

countermeasures are employed to allocate the safe region in a

randomized location as we discuss later.

To discover the location of a known library, such as the

base of libc, the attack needs to scan every address starting

at min mmap base, and using the timing channel attack

described above, search for a signature of bytes that uniquely

identify the location.

The space of possible locations to search may require

aslr entropy∗page size scans in the worst case. As the base

address of mmap is page aligned, one obvious optimization is

to scan addresses that are multiples of page size, thus greatly

reducing the number of addresses that need to be scanned to:

(aslr entropy ∗ page size)/page size

In fact, this attack can be made even more efficient. In the

x86-64 architecture, CPI protects the safe region by allocating

a large region (242 bytes) that is very sparsely populated with

pointer metadata. As a result, the vast majority of bytes inside

the safe region are zero bytes. This enables us to determine

with high probability whether we are inside the safe region or a

linked library by sampling bytes for zero/nonzero values (i.e.,

without requiring accurate byte estimation). Since we start in

the safe region and libc is allocated before the safe region,

if we go back in memory by the size of libc, we can avoid

crashing the application. This is because any location inside

the safe region has at least the size of libc allocated memory

on top of it. As a result, the improved attack procedure is as

follows:

1) Redirect a data pointer into the always allocated part of

the safe region (see Fig. 1).

2) Go back in memory by the size of libc.

3) Scan some bytes. If the bytes are all zero, goto step 2.

Else, scan more bytes to decide where we are in libc.

4) Done.

Note that discovery of a page that resides in libc directly

reveals the location of the safe region.

Using this procedure, the number of scans can be reduced

to:

(aslr entropy ∗ page size)/libc size

Here libc size, in our experiments, is approximately 221. In

other words, the estimated number of memory scans is: 228 ∗
212/221 = 219. This non-crashing scan strategy is depicted on

the left side of Fig. 2.

We can further reduce the number of memory scans if we

are willing to tolerate crashes due to dereferencing an address

not mapped to a readable page. Because the pages above

mmap base are not mapped, dereferencing an address above

Fig. 3. Tolerated Number of Crashes

mmap base may crash the application. If the application

restarts after a crash without rerandomizing its address space,

then we can use this information to perform a search with the

goal of finding an address x such that x can be dereferenced

safely but x + libc size causes a crash. This implies that x
lies inside the linked library region, thus if we subtract the

size of all linked libraries from x, we will obtain an address

in the safe region that is near libc and can reduce to the case

above. Note that it is not guaranteed that x is located at the

top of the linked library region: within this region there are

pages which are not allocated and there are also pages which

do not have read permissions which would cause crashes if

dereferenced.

To find such an address x, the binary search proceeds

as follows: if we crash, our guessed address was too high,

otherwise our guess was too low. Put another way, we maintain

the invariant that the high address in our range will cause

a crash while the lower address is safe, and we terminate

when the difference reaches the threshold of libc size. This

approach would only require at most log2 2
19 = 19 reads and

will crash at most 19 times (9.5 times on average).

More generally, given that T crashes are allowed for our

scanning, we would like to characterize the minimum number

of page reads needed to locate a crashing boundary under the

optimum scanning strategy. A reason for doing that is when

T < 19, our binary search method is not guaranteed to find a

crashing boundary in the worst case.

We use dynamic programming to find the optimum scanning

strategy for a given T . Let f(i, j) be the maximum amount of

memory an optimum scanning strategy can cover, incurring

up to i crashes, and performing j page reads. Note that to

cause a crash, you need to perform a read. Thus, we have the

recursion

f(i, j) = f(i, j − 1) + f(i− 1, j − 1) + 1

This recursion holds because in the optimum strategy for

f(i, j), the first page read will either cause a crash or not.

786786

4th page scan

5th page scan

…

…

libc

safe region
First dereference loc.

1st page scan

Si
ze

 L

2nd page scan

3rd page scan

Nth page scan
libc found!

…

L

L

L

L

L

4th page scan

5th page scan

First dereference loc.
1st page scan

2nd page scan

3rd page scan

Kth page scan
 libc found!

…

MMAP base

…

Crash!

Crash!

…
libc

safe region

MMAP base

Non-crashing scan strategy Crashing scan strategy

Fig. 2. Non-Crashing and Crashing Scan Strategies.

When a crash happens, it means that libc is below the first

page we read, thus the amount of memory we have to search

is reduced to a value that is at most f(i − 1, j − 1). As for

the latter case, the amount we have to search is reduced to a

value that is at most f(i, j − 1).
Having calculated a table of values from our recursion, we

can use it to inform us about the scanning strategy that incurs

at most T crashes. Fig. 3 shows the number of reads performed

by this strategy for different T values.
Because we know the layout of the library region in

advance, when we find a crash boundary we know that

subtracting 8 ∗ libc size from x will guarantee an address

in the safe region because this amount is greater than the size

of all linked libraries combined. Thus, at most 8 more reads

will be needed to locate an address in libc. The crashing scan

strategy is depicted on the right side of Fig. 2.
We can still obtain a significant improvement even if the

application does rerandomize its address space when it restarts

after a crash. Suppose that we can tolerate T crashes on

average. Rather than begin our scan at address:

min mmap base =

max mmap base− aslr entropy ∗ page size (2)

we begin at:

max mmap base− 1

T + 1
(aslr entropy ∗ page size)

With probability 1
T+1 , it will be the case that mmap base

is above this address and we will not crash, and the number

of reads will be reduced by a factor of 1
T+1 . With probability

1 − 1
T+1 , this will crash the application immediately and we

will have to try again. In expectation, this strategy will crash

T times before succeeding.

Note that in the rerandomization case, any optimal strategy

will choose a starting address based on how many crashes

can be tolerated and if this first scan does not crash, then

the difference between consecutive addresses scanned will be

at most libc size. If the difference is ever larger than this

number, then it may be the case that libc is jumped over,

causing a crash, and all knowledge about the safe region is

lost due to the rerandomization. If the difference between

consecutive addresses x, y satisfies y − x > libc size, then

replacing x by y− libc size and shifting all addresses before

x by y− libc size−x yields a superior strategy since the risk

of crashing is moved to the first scan while maintaining the

same probability of success.

Once the base address of mmap is discovered using the

timing side channel, the address of the safe region table can

be computed as follows:

table address = libc base− 242

D. Attack Safe Region

Using the safe region table address, the address of a

code pointer of interest in the CPI protected application,

ptr_address, can be computed by masking with the

cpi_addr_mask, which is 0x00fffffffff8, and then

multiplying by the size of the table entry, which is 4.

787787

Armed with the exact address of a code pointer in the safe

region, the value of that pointer can be hijacked to point to a

library function or the start of a ROP chain to complete the

attack.

E. Attack Optimizations

A stronger implementation of CPI might pick an arbitrary

address for its safe region chosen randomly between the

bottom of the linked libraries and the end of the mmap region.

Our attack still works against such an implementation and can

be further optimized.

We know that the safe region has a size of 242 bytes.

Therefore, there are 248/242 = 26 = 64 possibilities for

where we need to search. In fact, in a real world system

like Ubuntu 14.04 there are only 246.5 addresses available to

mmap on Ubuntu x86-64 –thus there is a 1
25 chance of getting

the right one, even with the most extreme randomization

assumptions. Furthermore, heap and dynamic library address

disclosures will increase this chance. We note that CPI has

a unique signature of a pointer value followed by an empty

slot, followed by the lower and upper bounds, which will make

it simple for an attacker to verify that the address they have

reached is indeed in the safe region. Once an address within

the safe region has been identified, it is merely a matter of

time before the attacker is able to identify the offset of the safe

address relative to the table base. There are many options to

dramatically decrease the number of reads to identify exactly

where in the safe region we have landed. For instance, we

might profile a local application’s safe region and find the most

frequently populated addresses modulo the system’s page size

(since the base of the safe region must be page-aligned), then

search across the safe region in intervals of the page size at

that offset. Additionally, we can immediately find the offset if

we land on any value that is unique within the safe region by

comparing it to our local reference copy.

We can now make some general observations about choos-

ing the variable of interest to target during the search. We

would be able to search the fastest if we could choose a pointer

from the largest set of pointers in a program that has the same

addresses modulo the page size. For instance, if there are 100

pointers in the program that have addresses that are 1 modulo

the page size, we greatly increase our chances of finding one

of them early during the scan of the safe region.

Additionally, the leakage of any locations of other libraries

(making the strong randomization assumption) will help iden-

tify the location of the safe region. Note that leaking all other

libraries is within the threat model of CPI.

V. MEASUREMENTS AND RESULTS

We next present experimental results for the attack described

in Section IV on Nginx 1.6.2, a popular web server. We

compile Nginx with clang/CPI 0.2 and the -flto -fcpi
flags. Nginx is connected to the attacker via a 1Gbit wired

LAN connection. We perform all tests on a server with a quad-

core Intel i5 processor with 4 GB RAM.

A. Vulnerability

We patch Nginx to introduce a stack buffer overflow vul-

nerability allowing the user to gain control of a parameter

used as the upper loop bound in the Nginx logging system.

This is similar to the effect that an attacker can achieve with

(CVE-2013-2028) seen in previous Nginx versions [1]. The

vulnerability enables an attacker to place arbitrary values on

the stack in line with the threat model assumed by CPI (see

Section II). We launch the vulnerability over a wired LAN

connection, but as shown in prior work, the attack is also

possible over wireless networks [47].

Using the vulnerability, we modify a data pointer in

the Nginx logging module to point to a carefully chosen

address. The relevant loop can be found in the source code

in nginx_http_parse.c.

for (i = 0; i < headers->nelts; i++)

The data pointer vulnerability enables control over the

number of iterations executed in the loop. Using the timing

analysis presented in Section IV, we can distinguish between

zero pages and nonzero pages. This optimization enables the

attack to efficiently identify the end of the safe region, where

nonzero pages indicate the start of the linked library region.

B. Timing Attack

We begin the timing side channel attack by measuring the

HTTP request round trip time (RTT) for a static web page

(0.6 KB) using Nginx. We collect 10,000 samples to establish

the average baseline delay. For our experiments, the average

RTT is 3.2ms. Figure 4 and 5 show the results of our byte

estimation experiments. The figures show that byte estimation

using cumulative differential delay is accurate to within 2%
(±20).

Fig. 4. Timing Measurement for Nginx 1.6.2 over Wired LAN

788788

Fig. 5. Observed Byte Estimation

C. Locate Safe Region

After we determine the average baseline delay, we redi-

rect the nelts pointer to the region between address

0x7bfff73b9000 and 0x7efff73b9000. As mentioned

in the memory analysis, this is the range of the CPI safe region

we know is guaranteed to be allocated, despite ASLR being

enabled. We pick the the top of this region as the first value

of our pointer.

A key component of our attack is the ability to quickly

determine whether a given page lies inside the safe region or

inside the linked libraries by sampling the page for zero bytes.

Even if we hit a nonzero address inside the safe region, which

will trigger the search for a known signature within libc, the

nearby bytes we scan will not yield a valid libc signature and

we can identify the false positive. In our tests, every byte read

from the high address space of the safe region yielded zero.

In other words, we observed no false positives.

One problematic scenario occurs if we sample zero bytes

values while inside libc. In this case, if we mistakenly interpret

this address as part of the safe region, we will skip over

libc and the attack will fail. We can mitigate this probability

by choosing the byte offset per page we scan intelligently.

Because we know the memory layout of libc in advance,

we can identify page offsets that have a large proportion of

nonzero bytes, so if we choose a random page of libc and read

the byte at that offset, we will likely read a nonzero value.

In our experiments, page offset 4048 yielded the highest

proportion of non-zero values, with 414 out of the 443 pages

of libc having a nonzero byte at that offset. This would give

our strategy an error rate of 1 − 414/443 = 6.5%. We note

that we can reduce this number to 0 by scanning two bytes per

page instead at offsets of our choice. In our experiments, if we

scan the bytes at offsets 1272 and 1672 in any page of libc,

one of these values is guaranteed to be nonzero. This reduces

our false positive rate at the cost of a factor of 2 in speed.

In our experiments, we found that scanning 5 extra bytes in

addition to the two signature bytes can yield 100% accuracy

using 30 samples per byte and considering the error in byte

estimation. Figure 6 illustrates the sum of the chosen offsets

for our scan of zero pages leading up to libc. Note that we

jump by the size of libc until we hit a non-zero page. The dot

on the upper-right corner of the figure shows the first non-zero

page.

In short, we scan 30∗7 = 210 bytes per size of libc to decide

whether we are in libc or the safe region. Table I summarizes

the number of false positives, i.e. the number of pages we

estimate as nonzero, which are in fact 0. The number of data

samples and estimation samples, and their respective fastest

percentile used for calculation all affect the accuracy. Scanning

5 extra bytes (in addition to the two signature bytes for a page)

and sampling 30 times per bytes yields an accuracy of 100% in

our setup. As a result, the attack requires (2+ 5) ∗ 219 ∗ 30 =
7 ∗ 219 ∗ 30 = 110, 100, 480 scans on average, which takes

about 97 hours with our attack setup.

Once we have a pointer to a nonzero page in libc, we send

more requests to read additional bytes with high accuracy

to determine which page of libc we have found. Figure 7

illustrates that we can achieve high accuracy by sending

10, 000 samples per byte.

Despite the high accuracy, we have to account for errors

in estimation. For this, we have developed a fuzzy n−gram

matching algorithm that, given a sequence of noisy bytes, tells

us the libc offset at which those bytes are located by comparing

the estimated bytes with a local copy of libc. In determining

zero and nonzero pages, we only collect 30 samples per byte as

we do not need very accurate measurements. After landing in a

nonzero page in libc, we do need more accurate measurements

to identify our likely location. Our measurements show that

10, 000 samples are necessary to estimate each byte to within

20. We also determine that reading 70 bytes starting at

page offset 3333 reliably is enough for the fuzzy n−gram

matching algorithm to determine where exactly we are in libc.

This offset was computed by looking at all contiguous byte

sequences for every page of libc and choosing the one which

required the fewest bytes to guarantee a unique match. This

orientation inside libc incurs additional 70∗10, 000 = 700, 000
requests, which adds another hour to the total time of the attack

for a total of 98 hours.

After identifying our exact location in libc, we know the

exact base address of the safe region:

safe region address = libc base− 242

D. Fast Attack with Crashes

We can make the above attack faster by tolerating 12 crashes

on average. The improved attack uses binary search as opposed

to linear search to find libc after landing in the safe region as

described in section IV-C. We also use an alternative strategy

for discovering the base of libc. Instead of sampling individual

pages, we continue the traversal until we observe a crash that

789789

TABLE I
ERROR RATIO IN ESTIMATION OF 100 ZERO PAGES USING OFFSETS 1, 2, 3,

4, 5, 1272, 1672

Data samples # Estimation samples False positive ratio
(%-tile used) (%-tile used)
1,000 (10%) 1,000 (10%) 0%
10,000 (1%) 1,000 (10%) 0%
1,000 (10%) 100 (10%) 0%
10,000 (1%) 100 (10%) 0%
1,000 (10%) 50 (20%) 0%
10,000 (1%) 50 (20%) 3%
1,000 (10%) 30 (33%) 2%
10,000 (1%) 30 (33%) 0%
1,000 (10%) 20 (50%) 5%
10,000 (1%) 20 (50%) 13%
1,000 (10%) 10 (100%) 91%
10,000 (1%) 10 (100%) 92%
1,000 (10%) 5 (100%) 68%
10,000 (1%) 5 (100%) 86%
1,000 (10%) 1 (100%) 54%
10,000 (1%) 1 (100%) 52%

Fig. 6. Estimation of Zero Pages in Safe Region.

indicates the location of the non-readable section of libc. This

reveals the exact address of libc. In our setup, the binary search

caused 11 crashes; discovering the base of libc required an

additional 2 crashes.

E. Attack Safe Region

After finding the safe region, we then use the same data

pointer overwrite to change the read_handler entry of the

safe region. We then modify the base and bound of the code

pointer to hold the location of the system call (sysenter).

Since we can control what system call sysenter invokes by

setting the proper values in the registers, finding sysenter
allows us to implement a variety of practical payloads. After

this, the attack can proceed simply by redirecting the code

pointer to the start of a ROP chain that uses the system call.

CPI does not prevent the redirection because its entry for the

code pointer is already maliciously modified to accept the ROP

chain.

The entire crashing attack takes 6 seconds to complete.

Fig. 7. Actual Bytes Estimation of a Nonzero Page in LIBC.

F. Summary

In summary, we show a practical attack on a version of
Nginx protected with CPI, ASLR and DEP. The attack uses a

data pointer overwrite vulnerability to launch a timing side

channel attack that can leak the safe region in 6 seconds

with 13 observed crashes. Alternatively, this attack can be

completed in 98 hours without any crashes.

VI. IMPLEMENTATION FLAWS OF CPI
The published implementation (simpletable) of CPI uses

a fixed address for the table for all supported architectures,

providing no protection in its default configuration. We assume

this is due to the fact that the version of CPI we evaluated is

still in “early preview.” We kept this in mind throughout our

evaluation, and focused primarily on fundamental problems

with the use of information hiding in CPI. Having said that,

we found that as currently implemented there was almost no

focus on protecting the location of the safe region.

The two alternate implementations left in the source,
hashtable and lookuptable, use mmap directly without a fixed

address, which is an improvement but is of course relying on

mmap for randomization. This provides no protection against

an ASLR disclosure, which is within the threat model of the

CPI paper. We further note that the safe stack implementation

also allocates pages using mmap without a fixed address, thus

making it similarly vulnerable to an ASLR disclosure. This

vulnerability makes the safe stack weaker than the protection

offered by a stack canary, as any ASLR disclosure will allow

the safe stack location to be determined, whereas a stack

canary needs a more targeted disclosure (although it can be

bypassed in other ways).

In the default implementation (simpletable), the
location of the table is stored in a static variable

790790

(__llvm__cpi_table) which is not zeroed after its

value is moved into the segment register. Thus, it is trivially

available to an attacker by reading a fixed offset in the data

segment. In the two alternate implementations, the location

of the table is not zeroed because it is never protected by

storage in the segment registers at all. Instead it is stored as

a local variable. Once again, this is trivially vulnerable to

an attack who can read process memory, and once disclosed

will immediately compromise the CPI guarantees. Note that

zeroing memory or registers is often difficult to perform

correctly in C in the presence of optimizing compilers [44].

We note that CPI’s performance numbers rely on support

for superpages (referred to as huge pages on Linux). In the

configurations used for performance evaluation, ASLR was not

enabled (FreeBSD does not currently have support for ASLR,

and as of Linux kernel 3.13, the base for huge table allocations

in mmap is not randomized, although a patch adding support

has since been added). We note this to point out a difference

between CPI performance tests and a real world environment,

although we have no immediate reason to suspect a large

performance penalty from ASLR being enabled.

It is unclear exactly how the published CPI implementation

intends to use the segment registers on 32-bit systems. The

simpletable implementation, which uses the %gs register,

warns that it is not supported on x86, although it compiles.

We note that using the segment registers may conflict in

Linux with thread-local storage (TLS), which uses the %gs
register on x86-32 and the %fs register on x86-64 [18]. As

mentioned, the default implementation, simpletable, does not

support 32-bit systems, and the other implementations do not

use the segment registers at all, a flaw noted previously, so

currently this flaw is not easily exposed. A quick search of

32-bit libc, however, found almost 3000 instructions using the

%gs register. Presumably this could be fixed by using the %fs
register on 32-bit systems; however, we note that this may

cause compatibility issues with applications expecting the %fs
register to be free, such as Wine (which is explicitly noted in

the Linux kernel source) [2].

Additionally, the usage of the %gs and %fs segment

registers might cause conflicts if CPI were applied to protect

kernel-mode code, a stated goal of the CPI approach. The

Linux and Windows kernels both have special usages for these

registers.

VII. DISCUSSION

In this section we discuss some of the problematic CPI

design assumptions and discuss possible fixes.

A. Design Assumptions

1) Enforcement Mechanisms: First, the authors of CPI

focus on extraction and enforcement of safety checks, but

they do not provide enough protection for their enforcement

mechanisms. This is arguably a hard problem in security, but

the effectiveness of defenses rely on such protections. In the

published CPI implementation, protection of the safe region is

very basic, relying on segmentation in the 32-bit architecture

and the size of the safe region in the 64-bit one. However, since

the safe region is stored in the same address space to avoid

performance expensive context switches, these protections are

not enough and as illustrated in our attacks they are easy

to bypass. Note that the motivation for techniques such as

CPI is the fact that existing memory protection defenses such

as ASLR are broken. Ironically, CPI itself relies on these

defenses to protect its enforcement. For example, relying on

randomization of locations to hide the safe region has many

of the weaknesses of ASLR that we have illustrated.

2) Detecting Crashes: Second, it is assumed that leaking

large parts of memory requires causing numerous crashes

which can be detected using other mechanisms. This in fact is

not correct. Although attacks such as Blind ROP [9] and brute

force [51] do cause numerous crashes, it is also possible on

current CPI implementations to avoid such crashes using side-

channel attacks. The main reason for this is that in practice

large number of pages are allocated and in fact, the entropy

in the start address of a region is much smaller than its

size. This allows an attacker to land correctly inside allocated

space which makes the attack non-crashing. In fact, CPI’s

implementation exacerbates this problem by allocating a very

large mmap region.

3) Memory Disclosure: Third, it is also implicitly assumed

that large parts of memory cannot leak. Direct memory dis-

closure techniques may have some limitations. For example,

they may be terminated by zero bytes or may be limited to

areas adjacent to a buffer [54]. However, indirect leaks using

dangling data pointers and timing or fault analysis attacks do

not have these limitations and they can leak large parts of

memory.

4) Memory Isolation: Fourth, the assumption that the safe

region cannot leak because there is no pointer to it is incorrect.

As we show in our attacks, random searching of the mmap

region can be used to leak the safe region without requiring

an explicit pointer into that region.

To summarize, the main weakness of CPI is its reliance

on secrets which are kept in the same space as the process

being protected. Arguably, this problem has contributed to the

weaknesses of many other defenses as well [59, 51, 54, 47].

B. Patching CPI

Our attacks may immediately bring to mind a number

of patch fixes to improve CPI. We considered several of

these fixes here and discuss their effectiveness and limitations.

Such fixes will increase the number of crashes necessary for

successful attacks, but they cannot completely prevent attacks

on architectures lacking segmentation (x86-64 and ARM).

1) Increase Safe Region Size: The first immediate idea is

to randomize the location of the safe region base within an

even larger mmap- allocated region. However, this provides no

benefit: the safe region base address must be strictly greater

than the beginning of the returned mmap region, effectively

increasing the amount of wasted data in the large region but

not preventing our side channel attack from simply continuing

to scan until it finds the safe region. Moreover, an additional

791791

register must be used to hide the offset and then additional

instructions must be used to load the value from that register,

add it to the safe region segment register, and then add the

actual table offset. This can negatively impact performance.

2) Randomize Safe Region Location: The second fix can

be to specify a fixed random address for the mmap allocation

using mmap_fixed. This has the advantage that there will

be much larger portions of non-mapped memory, raising the

probability that an attack might scan through one of these

regions and trigger a crash. However, without changing the

size of the safe region an attacker will only need a small num-

ber of crashes in order to discover the randomized location.

Moreover, this approach may pose portability problems; as the

mmap man page states, “the availability of a specific address

range cannot be guaranteed, in general.” Platform-dependent

ASLR techniques could exacerbate these problems. There are

a number of other plausible attacks on this countermeasure:

• Unless the table spans a smaller range of virtual memory,

attacks are still possible based on leaking the offsets and

knowing the absolute minimum and maximum possible

mmap_fixed addresses, which decrease the entropy of

the safe region.

• Induce numerous heap allocations (at the threshold caus-

ing them to be backed by mmap) and leak their ad-

dresses. When the addresses jump by the size of the

safe region, there is a high probability it has been found.

This is similar to heap spraying techniques and would be

particularly effective on systems employing strong heap

randomization.

• Leak the addresses of any dynamically loaded libraries.

If the new dynamically loaded library address increases

over the previous dynamic library address by the size of

the safe region, there is a high probability the region has

been found.

3) Use Hash Function for Safe Region: The third fix can

be to use the segment register as a key for a hash function into

the safe region. This could introduce prohibitive performance

penalties. It is also still vulnerable to attack as a fast hash

function will not be cryptographically secure. This idea is

similar to using cryptography mechanisms to secure CFI [35].

4) Reduce Safe Region Size: The fourth fix can be to make

the safe region smaller. This is plausible, but note that if mmap

is still contiguous an attacker can start from a mapped library

and scan until they find the safe region, so this fix must be

combined with a non-contiguous mmap. Moreover, making the

safe region compact will also result in additional performance

overhead (for example, if a hashtable is being used, there will

be more hashtable collisions). A smaller safe region also runs a

higher risk of running out of space to store “sensitive” pointers

more easily.

In order to evaluate the viability of this proposed fix, we

compiled and ran the C and C++ SPECint and SPECfp 2006

benchmarks [22] with several sizes of CPI hashtables on an

Ubuntu 14.04.1 machine with 4GB RAM. All C benchmarks

were compiled using the -std=gnu89 flag (clang requires

this flag for 400.perlbench to run). In our setup, no bench-

mark compiled with the CPI hashtable produced correct output

on 400.perlbench, 403.gcc and 483.xalancbmk.

Table II lists the overhead results for SPECint. NT in the

table denotes “Not terminated after 8 hours”. In this table, we

have listed the performance of the default CPI hashtable size

(233). Using a hashtable size of 226, CPI reports that it has run

out of space in its hashtable (i.e. it has exceed a linear probing

maximum limit) for 471.omnetpp and 473.astar. Using

a hashtable size of 220, CPI runs out of space in the safe region

for those tests, as well as 445.gobmk and 464.h264ref.

The other tests incurred an average overhead of 17% with

the worst case overhead of 131% for 471.omnetpp. While

in general decreasing the CPI hashtable size leads to a small

performance increase, these performance overheads can still

be impractically high for some real-world applications, partic-

ularly C++ applications like 471.omnetpp.

Table III lists the overhead results for SPECfp. IR in

the table denotes “Incorrect results.” For SPECfp and a

CPI hashtable size of 226, two benchmarks run out of

space: 433.milc and 447.dealII. In addition, two

other benchmarks return incorrect results: 450.soplex and

453.povray. The 453.povray benchmark also returns

incorrect results with CPI’s default hashtable size.

TABLE II
SPECINT 2006 BENCHMARK PERFORMANCE BY CPI FLAVOR

Benchmark No CPI CPI simpletable CPI hashtable
401.bzip2 848 sec 860 (1.42%) 845 (-0.35%)
429.mcf 519 sec 485 (-6.55%) 501 (-3.47%)
445.gobmk 712 sec 730 (2.53%) 722 (1.40%)
456.hmmer 673 sec 687 (2.08%) 680 (1.04%)
458.sjeng 808 sec 850 (5.20%) 811 (0.37%)
462.libquantum 636 sec 713 (12.11%) 706 (11.01%)
464.h264ref 830 sec 963 (16.02%) 950 (14.46%)
471.omnetpp 582 sec 1133 (94.67%) 1345 (131.10%)
473.astar 632 sec 685 (8.39%) 636 (0.63%)
400.perlbench 570 sec NT NT
403.gcc 485 sec 830 (5.99%) NT
483.xalancbmk 423 sec 709 (67.61%) NT

TABLE III
SPECFP 2006 BENCHMARK PERFORMANCE BY CPI FLAVOR

Benchmark No CPI CPI simpletable CPI hashtable
433.milc 696 sec 695 (-0.14%) 786 (12.9%)
444.namd 557 sec 571 (2.51%) 574 (3.05%)
447.dealII 435 sec 539 (23.9%) 540 (24.1%)
450.soplex 394 sec 403 (2.28%) 419 (6.34%)
453.povray 250 sec IR IR
470.lbm 668 sec 708 (5.98%) 705 (5.53%)
482.sphinx3 863 sec 832 (-3.59%) 852 (-1.27%)

To evaluate the effectiveness of a scheme which might

dynamically expand and reduce the hashtable size to reduce

the attack surface at the cost of an unknown performance

penalty and loss of some real-time guarantees, we also ran the

SPEC benchmarks over an instrumented hashtable implemen-

tation to discover the maximum number of keys concurrently

792792

resident in the hashtable; our analysis showed this number to

be 223 entries, consuming 228 bytes. However, some tests did

not complete correctly unless the hashtable size was at least

228 entries, consuming 233 bytes. Without any other mmap

allocations claiming address space, we expect 246

228 = 218

crashes with an expectation of 217, or 246

233 = 213 crashes with

an expectation of 212. This seems to be a weak guarantee of

the security of CPI on programs with large numbers of code

pointers. For instance, a program with 2GB of memory in

which only 10% of pointers are found to be sensitive using a

CPI hashtable with a load factor of 25% would have a safe

region of size (2 ∗ 109/8 ∗ 8% ∗ 4 ∗ 32 bytes). The expected

number of crashes before identifying this region would be only

slightly more than 214. This number means that the hashtable

implementation of CPI is not effective for protecting against a

local attacker and puts into question the guarantees it provides

on any remote system that is not monitored by non-local

logging. As a comparison, it is within an order of magnitude

of the number of crashes incurred in the Blind ROP [9] attack.

5) Use Non Contiguous Randomized mmap: Finally, the

fifth fix can be to use a non-contiguous, per-allocation random-

ized mmap. Such non-contiguous allocations are currently only

available using customized kernels such as PaX [43]. However,

even with non-contiguous allocations, the use of super pages

for virtual memory can still create weaknesses. An attacker

can force heap allocation of large objects, which use mmap

directly to generate entries that reduce total entropy. Moreover,

knowing the location of other libraries further reduces the

entropy of the safe region because of its large size. As a

result, such a technique must be combined with a reduction

in safe region size to be viable. More accurate evaluation of

the security and performance of such a fix would require an

actual implementation which we leave to future work.

The lookuptable implementation of CPI (which was non-

functional at the time of our evaluation) could support this

approach by a design which randomly allocates the address of

each subtable at runtime. This would result in a randomized

scattering of the much smaller subtables across memory. There

are, however, only 246

32∗222entries = 219 slots for the lookup

table’s subtable locations. The expectation for finding one of

these is 219

2K crashes, where K is the number of new code

pointers introduced that cause a separate subtable table to be

allocated. If there are 25 such pointers (which would be the

case for a 1GB process with at least one pointer across the

address space), that number goes to 213 crashes in expectation,

which as previously argued does not provide strong security

guarantees.

We argue that we can identify a subtable because of

the recognizable CPI structure, and search it via direct/side-

channel attacks. While we cannot modify any arbitrary code

pointer, we believe that it is only a matter of time until an

attacker discovers a code pointer that enables remote code

execution.

VIII. POSSIBLE COUNTERMEASURES

In this section we discuss possible countermeasures against

control hijacking attacks that use timing side channels for

memory disclosure.

a) Memory Safety: Complete memory safety can defend

against all control hijacking attacks, including the attack

outline in this paper. Softbound with the CETS extensions [36]

enforces complete spatial and temporal pointer safety albeit at

a significant cost (up to 4x slowdown).

On the other hand, experience has shown that low overhead

mechanisms that trade off security guarantees for performance

(e.g., approximate [48] or partial [5] memory safety) eventu-

ally get bypassed [9, 52, 21, 11, 17].

Fortunately, hardware support can make complete memory-

safety practical. For instance, Intel memory protection ex-

tensions (MPX) [25] can facilitate better enforcement of

memory safety checks. Secondly, the fat-pointer scheme shows

that hardware-based approaches can enforce spatial memory

safety at very low overhead [32]. Tagged architectures and

capability-based systems can also provide a possible direction

for mitigating such attacks [58].

b) Randomization: One possible defense against timing

channel attacks, such as the one outlined in this paper, is to

continuously rerandomize the safe region and ASLR, before

an attacker can disclose enough information about the memory

layout to make an attack practical. One simple strategy is to

use a worker pool model that is periodically re-randomized

(i.e., not just on crashes) by restarting worker processes.

Another approach is to perform runtime rerandomization [20]

by migrating running process state.

Randomization techniques provide probabilistic guarantees

that are significantly weaker than complete memory safety

at low overhead. We note that any security mechanism that

trades security guarantees for performance may be vulnerable

to future attacks. This short term optimization for the sake of

practicality is one reason for the numerous attacks on security

systems [9, 52, 21, 11, 17].

c) Timing Side Channel Defense: One way to defeat

attacks that use side channels to disclose memory is to remove

execution timing differences. For example, timing channels

can be removed by causing every execution (or path) to take

the same amount of time. The obvious disadvantage of this

approach is that average-case execution time now becomes

worst-case execution time. This change in expected latency

might be too costly for many systems. We note here that

adding random delays to program execution cannot effectively

protect against side channel attacks [19].

IX. RELATED WORK

Memory corruption attacks have been used since the early

70’s [6] and they still pose significant threats in modern

environments [14]. Memory unsafe languages such as C/C++

are vulnerable to such attacks.

Complete memory safety techniques such as the SoftBound

technique with its CETS extension [36] can mitigate mem-

ory corruption attacks, but they incur large overhead to the

793793

execution (up to 4x slowdown). “fat-pointer” techniques such

as CCured [37] and Cyclone [28] have also been proposed

to provide spatial pointer safety, but they are not compatible

with existing C codebases. Other efforts such as Cling [4],

Memcheck [38], and AddressSanitizer [48] only provide tem-

poral pointer safety to prevent dangling pointer bugs such as

use-after-free. A number of hardware-enforced memory safety

techniques have also been proposed including the Low-Fat

pointer technique [32] and CHERI [58] which minimize the

overhead of memory safety checks.

The high overhead of software-based complete memory

safety has motivated weaker memory defenses that can be

categorized into enforcement-based and randomization-based

defenses. In enforcement-based defenses, certain correct code

behavior that is usually extracted at compile-time is enforced

at runtime to prevent memory corruption. In randomization-

based defenses different aspects of the code or the execution

environment are randomized to make successful attacks more

difficult.

The randomization-based category includes address space

layout randomization (ASLR) [43] and its medium-grained

[30] and fine-grained variants [57]. Different ASLR imple-

mentations randomize the location of a subset of stack,

heap, executable, and linked libraries at load time. Medium-

grained ASLR techniques such as Address Space Layout

Permutation [30] permutes the location of functions within

libraries as well. Fine-grained forms of ASLR such as Binary

Stirring [57] randomize the location of basic blocks within

code. Other randomization-based defenses include in-place

instruction rewriting such as ILR [23], code diversification

using a randomizing compiler such as the multi-compiler

technique [27], or Smashing the Gadgets technique [42].

Unfortunately, these defenses are vulnerable to information

leakage (memory disclosure) attacks [54]. It has been shown

that even one such vulnerability can be used repeatedly by an

attacker to bypass even fine-grained forms of randomization

[52]. Other randomization-based techniques include Genesis

[60], Minestrone [29], or RISE [8] implement instruction set

randomization using an emulation, instrumentation, or binary

translation layer such as Valgrind [38], Strata [46], or Intel

PIN [34] which in itself incurs a large overhead, sometimes

as high as multiple times slowdown to the applications.

In the enforcement-based category, control flow integrity

(CFI) [3] techniques are the most prominent ones. They

enforce a compile-time extracted control flow graph (CFG) at

runtime to prevent control hijacking attacks. Weaker forms of

CFI have been implemented in CCFIR [61] and bin-CFI [62]

which allow control transfers to any valid target as opposed

to the exact ones, but such defenses have been shown to

be vulnerable to carefully crafted control hijacking attacks

that use those targets to implement their malicious intent

[21]. The technique proposed by Backes et al. [7] prevents

memory disclosure attacks by marking executable pages as

non-readable. A recent technique [15] combines aspects of

enforcement (non-readable memory) and randomization (fine-

grained code randomization) to prevent memory disclosure

attacks.

On the attack side, direct memory disclosure attacks have

been known for many years [54]. Indirect memory leakage

such as fault analysis attacks (using crash, non-crash signal)

[9] or in general other forms of fault and timing analysis

attacks [47] have more recently been studied.

Non-control data attacks [13], not prevented by CPI, can

also be very strong in violating many security properties;

however, since they are not within the threat model of CPI

we leave their evaluation to future work.

X. CONCLUSION

We present an attack on the recently proposed CPI tech-

nique. We show that the use of information hiding to protect

the safe region is problematic and can be used to violate the

security of CPI. Specifically, we show how a data pointer

overwrite attack can be used to launch a timing side channel

attack that discloses the location of the safe region on x86-

64. We evaluate the attack using a proof-of-concept exploit

on a version of the Nginx web server that is protected with

CPI, ASLR and DEP. We show that the most performant

and complete implementation of CPI (simpletable) can be

bypassed in 98 hours without crashes, and 6 seconds if a small

number of crashes (13) can be tolerated. We also evaluate

the work factor required to bypass other implementations

of CPI including a number of possible fixes to the initial

implementation. We show that information hiding is a weak

paradigm that often leads to vulnerable defenses.

XI. ACKNOWLEDGMENT

This works is sponsored by the Office of Naval Research

under the Award #N00014-14-1-0006, entitled Defeating Code

Resue Attacks Using Minimal Hardware Modifications and

DARPA (Grant FA8650-11-C-7192). The opinions, interpre-

tations, conclusions and recommendations are those of the

authors and do not reflect official policy or position of the

Office of Naval Research or the United States Government.

The authors would like to sincerely thank Dr. William

Streilein, Fan Long, the CPI team, Prof. David Evans, and

Prof. Greg Morrisett for their support and insightful comments

and suggestions.

REFERENCES

[1] Vulnerability summary for cve-2013-2028, 2013.

[2] Linux cross reference, 2014.

[3] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow integrity. In Proceedings of the 12th ACM
conference on Computer and communications security,

pages 340–353. ACM, 2005.

[4] P. Akritidis. Cling: A memory allocator to mitigate

dangling pointers. In USENIX Security Symposium, pages

177–192, 2010.

[5] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Cas-

tro. Preventing memory error exploits with wit. In

Security and Privacy, 2008. SP 2008. IEEE Symposium
on, pages 263–277. IEEE, 2008.

794794

[6] J. P. Anderson. Computer security technology planning

study. volume 2. Technical report, DTIC Document,

1972.

[7] M. Backes, T. Holz, B. Kollenda, P. Koppe,

S. Nürnberger, and J. Pewny. You can run but

you can’t read: Preventing disclosure exploits in

executable code. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications
Security, pages 1342–1353. ACM, 2014.

[8] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Ste-

fanovic, and D. D. Zovi. Randomized instruction set

emulation to disrupt binary code injection attacks. In

Proceedings of the 10th ACM Conference on Computer
and Communications Security, CCS ’03, pages 281–289,

New York, NY, USA, 2003. ACM.

[9] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and

D. Boneh. Hacking blind. In Proceedings of the 35th
IEEE Symposium on Security and Privacy, 2014.

[10] T. Bletsch, X. Jiang, V. Freeh, and Z. Liang. Jump-

oriented programming: A new class of code-reuse attack.

In Proc. of the 6th ACM Symposium on Info., Computer
and Comm. Security, pages 30–40, 2011.

[11] N. Carlini and D. Wagner. Rop is still dangerous: Break-

ing modern defenses. In USENIX Security Symposium,

2014.

[12] S. Checkoway, L. Davi, A. Dmitrienko, A. Sadeghi,

H. Shacham, and M. Winandy. Return-oriented program-

ming without returns. In Proc. of the 17th ACM CCS,

pages 559–572, 2010.

[13] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer.

Non-control-data attacks are realistic threats. In Usenix
Security, volume 5, 2005.

[14] X. Chen, D. Caselden, and M. Scott. New zero-day

exploit targeting internet explorer versions 9 through 11

identified in targeted attacks, 2014.

[15] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen,

A.-R. Sadeghi, S. Brunthaler, and M. Franz. Readactor:

Practical code randomization resilient to memory disclo-

sure. In IEEE Symposium on Security and Privacy, 2015.

[16] S. A. Crosby, D. S. Wallach, and R. H. Riedi. Opportu-

nities and limits of remote timing attacks. ACM Trans-
actions on Information and System Security (TISSEC),
12(3):17, 2009.

[17] L. Davi, D. Lehmann, A.-R. Sadeghi, and F. Monrose.

Stitching the gadgets: On the ineffectiveness of coarse-

grained control-flow integrity protection. In USENIX
Security Symposium, 2014.

[18] U. Drepper. Elf handling for thread-local storage, 2013.

[19] F. Durvaux, M. Renauld, F.-X. Standaert, L. v. O. tot

Oldenzeel, and N. Veyrat-Charvillon. Efficient removal of
random delays from embedded software implementations
using hidden markov models. Springer, 2013.

[20] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. En-

hanced operating system security through efficient and

fine-grained address space randomization. In USENIX
Security Symposium, pages 475–490, 2012.

[21] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portoka-

lidis. Out of control: Overcoming control-flow integrity.

In IEEE S&P, 2014.

[22] J. L. Henning. Spec cpu2006 benchmark descrip-

tions. SIGARCH Comput. Archit. News, 34(4):1–17, Sept.

2006.

[23] J. Hiser, A. Nguyen, M. Co, M. Hall, and J. Davidson.

Ilr: Where’d my gadgets go. In IEEE Symposium on
Security and Privacy, 2012.

[24] G. Hunt, J. Larus, M. Abadi, M. Aiken, P. Barham,

M. Fähndrich, C. Hawblitzel, O. Hodson, S. Levi,

N. Murphy, et al. An overview of the singularity project.

2005.

[25] intel. Introduction to intel memory protection extensions,

2013.

[26] T. Jackson, A. Homescu, S. Crane, P. Larsen, S. Brun-

thaler, and M. Franz. Diversifying the software stack

using randomized nop insertion. In Moving Target
Defense, pages 151–173. 2013.

[27] T. Jackson, B. Salamat, A. Homescu, K. Manivannan,

G. Wagner, A. Gal, S. Brunthaler, C. Wimmer, and

M. Franz. Compiler-generated software diversity. Moving
Target Defense, pages 77–98, 2011.

[28] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks,

J. Cheney, and Y. Wang. Cyclone: A safe dialect of c. In

USENIX Annual Technical Conference, General Track,

pages 275–288, 2002.

[29] A. D. Keromytis, S. J. Stolfo, J. Yang, A. Stavrou,

A. Ghosh, D. Engler, M. Dacier, M. Elder, and D. Kien-

zle. The minestrone architecture combining static and

dynamic analysis techniques for software security. In

SysSec Workshop (SysSec), 2011 First, pages 53–56.

IEEE, 2011.

[30] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address

space layout permutation (aslp): Towards fine-grained

randomization of commodity software. In Proc. of
ACSAC’06, pages 339–348. Ieee, 2006.

[31] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea,

R. Sekar, and D. Song. Code-pointer integrity. 2014.

[32] A. Kwon, U. Dhawan, J. Smith, T. Knight, and A. Dehon.

Low-fat pointers: compact encoding and efficient gate-

level implementation of fat pointers for spatial safety and

capability-based security. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communica-
tions security, pages 721–732. ACM, 2013.

[33] W. Landi. Undecidability of static analysis. ACM Letters
on Programming Languages and Systems (LOPLAS),
1(4):323–337, 1992.

[34] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.

Pin: building customized program analysis tools with dy-

namic instrumentation. ACM Sigplan Notices, 40(6):190–

200, 2005.

[35] A. J. Mashtizadeh, A. Bittau, D. Mazieres, and D. Boneh.

Cryptographically enforced control flow integrity. arXiv
preprint arXiv:1408.1451, 2014.

795795

[36] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.

Cets: compiler enforced temporal safety for c. In ACM
Sigplan Notices, volume 45, pages 31–40. ACM, 2010.

[37] G. C. Necula, S. McPeak, and W. Weimer. Ccured: Type-

safe retrofitting of legacy code. ACM SIGPLAN Notices,

37(1):128–139, 2002.

[38] N. Nethercote and J. Seward. Valgrind: a framework for

heavyweight dynamic binary instrumentation. In ACM
Sigplan Notices, volume 42, pages 89–100. ACM, 2007.

[39] H. Okhravi, T. Hobson, D. Bigelow, and W. Streilein.

Finding focus in the blur of moving-target techniques.

IEEE Security & Privacy, 12(2):16–26, Mar 2014.

[40] A. One. Smashing the stack for fun and profit. Phrack
magazine, 7(49):14–16, 1996.

[41] OpenBSD. Openbsd 3.3, 2003.

[42] V. Pappas, M. Polychronakis, and A. D. Keromytis.

Smashing the gadgets: Hindering return-oriented pro-

gramming using in-place code randomization. In IEEE
Symposium on Security and Privacy, 2012.

[43] PaX. Pax address space layout randomization, 2003.

[44] C. Percival. How to zero a buffer, Sept. 2014.

[45] W. Reese. Nginx: the high-performance web server and

reverse proxy. Linux Journal, 2008(173):2, 2008.

[46] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W.

Davidson, and M. L. Soffa. Retargetable and reconfig-

urable software dynamic translation. In Proceedings of
the international symposium on Code generation and op-
timization: feedback-directed and runtime optimization,

pages 36–47. IEEE Computer Society, 2003.

[47] J. Seibert, H. Okhravi, and E. Soderstrom. Information

Leaks Without Memory Disclosures: Remote Side Chan-

nel Attacks on Diversified Code. In Proceedings of the
21st ACM Conference on Computer and Communications
Security (CCS), Nov 2014.

[48] K. Serebryany, D. Bruening, A. Potapenko, and

D. Vyukov. Addresssanitizer: A fast address sanity

checker. In USENIX Annual Technical Conference, pages

309–318, 2012.

[49] H. Shacham. The geometry of innocent flesh on the

bone: Return-into-libc without function calls (on the

x86). In Proceedings of the 14th ACM conference on
Computer and communications security, pages 552–561.

ACM, 2007.

[50] H. Shacham. The geometry of innocent flesh on the bone:

Return-into-libc without function calls (on the x86). In

Proc. of ACM CCS, pages 552–561, 2007.

[51] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu,

and D. Boneh. On the effectiveness of address-space

randomization. In Proc. of ACM CCS, pages 298–307,

2004.

[52] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,

C. Liebchen, and A.-R. Sadeghi. Just-in-time code reuse:

On the effectiveness of fine-grained address space layout

randomization. In Security and Privacy (SP), 2013 IEEE
Symposium on, pages 574–588. IEEE, 2013.

[53] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens,

S. Lachmund, and T. Walter. Breaking the memory

secrecy assumption. In Proc. of EuroSec’09, pages 1–

8, 2009.

[54] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens,

S. Lachmund, and T. Walter. Breaking the memory

secrecy assumption. In Proceedings of EuroSec ’09,

2009.

[55] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal

war in memory. In Proc. of IEEE Symposium on Security
and Privacy, 2013.

[56] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh,

and P. Ning. On the expressiveness of return-into-libc

attacks. In Proc. of RAID’11, pages 121–141, 2011.

[57] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary

stirring: Self-randomizing instruction addresses of legacy

x86 binary code. In Proceedings of the 2012 ACM
conference on Computer and communications security,

pages 157–168. ACM, 2012.

[58] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore,

J. Anderson, D. Chisnall, N. Dave, B. Davis, B. Laurie,

S. J. Murdoch, R. Norton, M. Roe, S. Son, M. Vadera,

and K. Gudka. Cheri: A hybrid capability-system archi-

tecture for scalable software compartmentalization. In

IEEE Symposium on Security and Privacy, 2015.

[59] Y. Weiss and E. G. Barrantes. Known/chosen key

attacks against software instruction set randomization.

In Computer Security Applications Conference, 2006.
ACSAC’06. 22nd Annual, pages 349–360. IEEE, 2006.

[60] D. Williams, W. Hu, J. W. Davidson, J. D. Hiser, J. C.

Knight, and A. Nguyen-Tuong. Security through diver-

sity: Leveraging virtual machine technology. Security &
Privacy, IEEE, 7(1):26–33, 2009.

[61] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres,

S. McCamant, D. Song, and W. Zou. Practical control

flow integrity and randomization for binary executables.

In Security and Privacy (SP), 2013 IEEE Symposium on,

pages 559–573. IEEE, 2013.

[62] M. Zhang and R. Sekar. Control flow integrity for cots

binaries. In USENIX Security, pages 337–352, 2013.

796796

