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Abstract—Malicious software are usually obfuscated to avoid
detection and resist analysis. When new malware is encountered,
such obfuscations have to be penetrated or removed (“deobfus-
cated”) in order to understand the internal logic of the code
and devise countermeasures. This paper discusses a generic
approach for deobfuscation of obfuscated executable code. Our
approach does not make any assumptions about the nature of the
obfuscations used, but instead uses semantics-preserving program
transformations to simplify away obfuscation code. We have
applied a prototype implementation of our ideas to a variety
of different kinds of obfuscation, including emulation-based
obfuscation, emulation-based obfuscation with runtime code
unpacking, and return-oriented programming. Our experimental
results are encouraging and suggest that this approach can be
effective in extracting the internal logic from code obfuscated
using a variety of obfuscation techniques, including tools such as
Themida that previous approaches could not handle.

Keywords-Deobfuscation; Virtualization-Obfuscation; Return
Oriented Programming

I. INTRODUCTION

Malicious software are usually deployed in heavily ob-

fuscated form, both to avoid detection and also to hinder

reverse engineering by security analysts. Much of the research

to date on automatic deobfuscation of code has focused on

obfuscation-specific approaches. While important and useful,

such approaches are of limited utility against obfuscations

that are different from the specific ones they target, and

therefore against new obfuscations not previously encountered.

We aim to address this problem via a generic semantics-based

approach to deobfuscation; in particular, this paper focuses

on two very different kinds of programming/obfuscation tech-

niques that can be challenging to reverse engineer: emulation-
based obfuscation and return-oriented programming.

In emulation-based obfuscation, the computation being ob-

fuscated is implemented using an emulator for a custom-

generated virtual machine together with a byte-code-like rep-

resentation of the program’s logic [1]–[4]. Examination of the

obfuscated code reveals only the emulator’s logic, not that of

the emulated code. Existing techniques for reverse engineering

emulation-obfuscated code first reconstruct specifics of the

virtual machine emulator, then use this to decipher individual

byte code instructions, and finally recover the logic embedded

in the byte code program [5]. Such approaches typically make

strong assumptions about the structure and properties of the

emulator and may not work well if the analyzer’s assumptions

do not fit the code being analyzed, e.g., if parts of the emulator

are unpacked at runtime [4] or if there are multiple layers of

interpretation with distinct virtual program counters that are

difficult to tease apart. The work of Coogan et al. [6] has

similar goals to us, but is based on equational reasoning about

assembly-level instruction semantics, which is technically very

different from our work (see Section VI) and has the short-

coming that controlling the equational reasoning process can

be challenging, making it difficult to recover the logic of the

underlying computation into a program representation such as

control flow graphs.

A second class of programs that can be challenging to

reverse-engineer are return-oriented programs (ROP) [7], [8].

While originally devised to bypass defenses against code

injection, this programming technique can result in highly

convoluted control flow between many small gadgets, leading

to program logic that can be tricky to decipher. Other than the

work of Lu et al. [9], there has been little work on automatic

deobfuscation of ROPs.

This paper describes a generic approach to deobfuscation of

executable code that is conceptually simpler and more general

than those described above. Obfuscation-specific approaches

have the significant limitation that they can only be effective

against previously-seen obfuscations; they are, unfortunately,

of limited utility when confronted by new kinds of obfusca-

tions or new combinations of obfuscations that violate their

assumptions. Our work on generic deobfuscation is motivated

by the need for deobfuscation techniques that can be effective

even when applied to previously unseen obfuscations. The

underlying intuition is that the semantics of a program can be

understood as a mapping, or transformation, from input values

to output values. Deobfuscation thus becomes a problem of

identifying and simplifying the code that effects this input-

to-output transformation. We use taint propagation to track

the flow of values from the program’s inputs to its outputs,

and semantics-preserving code transformations to simplify the

logic of the instructions that operate on and transform values

through this flow. We make few if any assumptions about

the nature of the any obfuscation being used, whether that

be emulation, or ROP, or anything else. Experiments using

several emulation-obfuscation tools, including Themida, Code

Virtualizer, VMProtect, and ExeCryptor, as well as a number

of return-oriented implementations of programs, suggest that

the approach is helpful in reconstructing the logic of the

original program.

2015 IEEE Symposium on Security and Privacy

© 2015, Babak Yadegari. Under license to IEEE.

DOI 10.1109/SP.2015.47

674

2015 IEEE Symposium on Security and Privacy

© 2015, Babak Yadegari. Under license to IEEE.

DOI 10.1109/SP.2015.47

674



II. BACKGROUND

A. Emulation-based Obfuscation

In emulation-based obfuscation, a program P is represented

using the instruction set of virtual machine VP and interpreted

using a custom emulator IP for VP . A common representation

choice for P is as a sequence of byte code instructions

BP for VP , where the emulator IP uses the familiar fetch-

decode-execute loop of byte-code interpreters; however, other

interpreter implementations, such as direct or indirect thread-

ing, are also possible. The instruction set for VP can be

perturbed randomly such that different instances of VP look

very different even if the program P does not change. Further,

emulation can be combined with other obfuscations, such as

run-time code unpacking, to further complicate analysis.

Reverse engineering of emulation-obfuscated code is chal-

lenging because examining the code for the emulator IP
reveals very little about the logic of the original program P ,

which is actually embedded in the byte-code program BP . For

example, an execution trace of the emulator IP on the byte-

code program BP will show only the instructions in the emula-

tor IP . Memory accesses in this trace will contain a mixture of

the data manipulation behavior of the original program P and

memory operations pertaining to the operation of the emulator

IP ; teasing these apart to isolate the memory operations of

only the original program P , or only the emulator IP , can be

challenging. Control transfers in the trace, similarly, will be

a mixture of those stemming from the logic of P and those

corresponding to the dispatch loop of IP .

B. Return-Oriented Programming

Return-oriented programming (ROP) was introduced as a

way to bypass Data Execution Prevention and other defenses

against code injection attacks [7], [8]. It uses a multitude of

“gadgets,” which are small snippets of code ending in return
instructions, that are present in the existing code in a computer

system, whether in the kernel, libraries, or running applica-

tions. Each gadget achieves a small piece of computational

functionality. The gadgets are strung together by writing their

addresses as a contiguous sequence into a buffer that is then

used to effect a chain of return actions: each return then causes

the invocation of the next gadget in the buffer. This basic idea

has been generalized in various ways to obviate the need for

explicit return instructions [10], [11].

There are a number of characteristics of ROPs that can

make reverse engineering challenging. The first is that the

code for a ROP can be scattered across many different

functions and/or libraries, making it difficult to discern the

logical structure of the code. If these libraries employ Address

Space Layout Randomization, or are loaded into dynamically

allocated memory, they may occur at different addresses. ROP

sequences can take advantage of this fact by being generated

just-in-time for the attack, making it difficult to examine what

the ROP sequence will do without knowledge of the memory

space of the target machine. Secondly, since ROP gadgets are

constructed opportunistically from whatever code is already

available on a system, they may contain “useless” instructions

(from the gadget’s perspective) that can be tolerated as long

as they do not interfere with the desired functionality of the

gadget. However, this opens up the possibility that the same

gadget can be invoked in different ways at different times,

where a given instruction within the gadget may serve a

useful purpose in some invocations and be useless in others.

Finally, gadgets can overlap in memory in ways not usually

encountered in ordinary programs.

C. Threat Model

Our threat model assumes that the adversary knows our

semantics-based approach to deobfuscation as described in

this paper, as well as some—but not necessarily all—of

the transformation rules used for trace simplification. The

latter assumption is justified by the fact that our approach

is parameterized by the set of transformation rules used, and

these rules do not form a static set but can be augmented with

new rules as needed or desired.

III. OUR APPROACH

We use the term deobfuscation to refer to the process of

removing the effects of obfuscation from a program—i.e.,

given an obfuscated program P , analyzing and transforming

the code for P to obtain a program P ′ that is functionally

equivalent to P but is simpler and easier to understand.

A. Overview

Any approach to deobfuscation needs to start out by

identifying something in the code (or its computation) as

“semantically significant;” this is then used as the basis

for subsequent analysis. For example, when disassembling

obfuscated binaries, Kruegel et al. begin by identifying control

transfer instructions [12]. Automatic unpacking tools such as

Renovo [13] look for memory locations that are written to and

then executed. More directly relevant to this work, Sharif et
al. use memory access characteristics of emulation-obfuscated

code to identify the emulator’s virtual program counter, which

they then use to reverse-engineer the emulator [5]. Typically,

such notions of semantic significance are based on specific

aspects of the code that are either preserved by the obfuscation

(e.g., control transfers in the work of Kruegel et al. [12])

or else are introduced by the obfuscation (e.g., write-then-

execute memory locations for unpacked code [13], emulator

components in the work of Sharif et al. [5]). In each case, the

notion of what constitutes semantically significant code, and

the process of identifying such code, is intimately tied to the

particular obfuscation(s) being considered.

While such obfuscation-specific assumptions may simplify

the process of deobfuscation, they have two drawbacks. First,

such assumptions limit the future applicability of the de-

obfuscation technique to new and as-yet-unseen types of

obfuscation. Second, they may provide an adversary a point

of attack against the deobfuscation technique by perturbing

existing obfuscation techniques in a way that violates the
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Fig. 1. Overview of the deobfuscation. T1 is the original trace, consisting of instructions and register values. T2 is a trace with taint analysis and control
dependence information and T3 is a simplified trace from which a final control flow graph is constructed.

assumptions (an example we encountered recently is illustrated

in Figure 10 and discussed in Section VI).

In our case, therefore, we want to minimize assumptions

about the obfuscated code; in particular, we do not want to

presuppose that any particular kind of obfuscation is being

used. Since the identification of semantically significant code

is typically closely tied to the obfuscations under considera-

tion, this poses a quandary: what can be considered significant

without making assumptions about what obfuscations are

being used? To address this, we take an approach inspired

by a notion of program semantics where programs are seen

as mappings, or transformations, from inputs to outputs [14].

Since malicious code often involves self-modifying and/or

dynamically unpacked code, which is difficult to analyze

statically, we use dynamic analysis: we collect one or more

execution traces of the program, then analyze and simplify

these traces. Our approach consists of the following steps:

a) Identifying Input and Output Values: We consider the

notion of “input” broadly so as to comprise values obtained

from the command line and execution environment of the pro-

cess (e.g., the Process Environment Block, which is sometimes

used by malware to check whether it is being debugged or

otherwise monitored, e.g., see [15]) as well as those obtained

via explicit input operations; similarly, the notion of “output”

is considered to be any externally observable side effect (e.g.,

creation or deletion of files or processes) as well as the results

of explicit output operations and computations.

In our current prototype implementation, input and output

values are determined as follows. Any value that is obtained

from the command line, or which is defined (written) by a

library routine and subsequently read by an instruction in the

program, is treated as an input value; any value that is defined

(written) by an instruction in the program and subsequently

read by a library routine is treated as an output value.1 Our

dynamic analysis environment, which uses a modified version

of Ether [16], collects execution traces for library routines as

well as the main program, and the flow of values written within

the program and subsequently read within a library routine,

or vice versa, can be determined by examining the trace. We

use a combination of taint propagation and control-dependence

1This is an over-approximation, since not all library routines interact with
the program’s execution environment, and so may sometimes lead to a loss
in precision of analysis. However, it is conservative.

analysis to identify instructions in the execution trace that are

influenced by input values and/or influence output values.

b) Forward taint propagation: After identifying Input

sources, we should propagate the input taint through the trace

to find all the instructions which are influenced by input values.

In order to do this, we use a taint propagation technique which

is a well-known and useful analysis tool in the fields of static

and dynamic analysis. It turns out that a conventional byte-

level taint analysis is not precise enough for our needs, so

we use an enhanced bit-level taint-analysis [17]. This initial

computation captures explicit information flow from input to

output, but does not capture implicit flows, i.e., associations

between data values that arise due to control dependencies

rather than data dependencies. To this end, we use dependence

analysis to identify control dependencies, which we then

combine with the explicit data dependencies identified earlier

to capture implicit as well as explicit flow of information from

inputs to outputs.

c) Code Simplification: Once we have identified the

input-to-output value flows, we iteratively apply semantics-

preserving code transformations to simplify the execution

trace. The resulting simplified trace represents the behavior of

a program that is functionally equivalent to the original pro-

gram (at least for the particular execution that was observed)

but which is simpler.

d) Control Flow Graph Construction: The simplified

trace is used to construct a control flow graph (CFG) that

makes explicit some of the higher-level control flow structures

such as conditionals and loops. The final step of our deobfus-

cation process is to apply semantics-preserving transforma-

tions to the CFG to eliminate some spurious execution paths

and produce a more precise CFG. The resulting simplified

CFG is then produced as the output of our deobfuscation

system.

As mentioned before, dynamic analysis is more powerful

when dealing with self-modification or run-time code unpack-

ing but we also need to address the possible low-code coverage

issue resulting from recording one execution path. In order to

solve this problem we have implemented a concolic execution

system which can operate on a trace and produce constraints

to solve for other possible inputs to the program to record

other execution paths. We can feed both the obfuscated trace

and the simplified one to produce alternative inputs to the

program. There have been many studies on symbolic execution
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and multi-path exploration techniques (e.g [18]–[21]) so we

do not discuss the details here. Figure 1 gives a high level

overview of our approach. We discuss each of these steps in

more detail below.

B. Identifying Input-to-Output Flows

The first step of our algorithm is to identify the flow of

values from input operations to output operations, and thereby

the instructions that transform input values to output values.

To this end, we first use taint propagation to identify the

explicit flow of values from inputs to outputs, then use control

dependence analysis to identify implicit flows.

1) Taint Analysis: Taint analysis finds many important

applications in dynamic security analysis. We use it to identify

the runtime flow of values from a program’s inputs to its

outputs; this information is then used for control dependency

analysis. The essential idea is to associate each value computed

by the program with a bit indicating whether or not it is

“tainted,” i.e., derived directly or indirectly from an input

value. Initially, only values that are obtained directly from

inputs are marked as tainted. Taint is then propagated itera-

tively to other values by marking any value that is computed

from a tainted value as tainted. There is a considerable body

of literature on taint analysis (e.g., see the paper by Schwartz

et al. [22]) so we omit the details of the algorithm.

Our approach uses two kinds of taint analysis:

1) Forward taint analysis. This is used to identify the flow

of input values through the program. It is especially

important for finding code that is control dependent on

input values. We perform taint analysis for registers,

memory, and condition-code flags.

2) Backward taint analysis. This starts from output values

and works backwards identifying variables and values

that influence the program’s outputs. In some ways this

resembles dynamic program slicing where the slicing

criterion is the program’s observable output. This is im-

portant because static statements under dynamic controls

which affect the output should not be simplified away.

The precision of the forward taint analysis is particularly

important because the rest of the deobfuscation depends sig-

nificantly on how well the taint analysis identifies the decision

points in the program being examined. As discussed in more

detail later, when simplifying the code it is important to iden-

tify static computations whose iteration counts are influenced

by dynamic input, e.g. loops where the iteration is determined

by input values, and imprecision in taint propagation adversely

affects the deobfuscation of such loops, e.g., under-tainting

leads to too much of the code getting simplified away, and

over-tainting leads to too little simplification.

It turns out that traditional byte- or word-level taint analysis

is too imprecise for our needs and can result in significant over-

tainting. To address this problem, we use an enhanced taint-

analysis that differs from conventional taint analyses in two

ways. First, in order to deal with obfuscated code—including

obfuscations that scramble together the bits from different

words—we maintain and propagate taint information at the

level of individual bits. Second, instead of simply indicating

taintedness via a single bit, indicating whether or not a location

is tainted or not, we keep track of the source of each distinct

taint value [17]. Keeping track of taint sources turns out to

be very helpful for reasoning about the taint of the result

of an operation where both inputs originate from the same

value; it turns out that such operations are often used in

obfuscated code to construct opaque predicates or constants

[23]. The propagation of taint values is conceptually analogous

to traditional taint analysis, though arithmetic operations have

to be handled carefully, e.g., a single tainted bit in a source

operand for an add instruction can cause several bits to

become tainted in the result due to carry propagation. This

enhanced taint analysis Indeed, ROPs frequently use the carry

flag for conditional statements.

As mentioned earlier, the precision of the forward taint

analysis algorithm is particularly important for our approach to

deobfuscation. Figure 2 illustrates the impact of different taint

propagation algorithms on the quality of deobfuscation. The

input program is a simple binary search routine whose control

flow graph is shown in Figure 2(a). The control flow graph

of the program resulting from obfuscating this code using a

commercial obfuscation tool named ExeCryptor [2] is shown

in Figure 2(b). Figure 2(c) shows the effect of deobfuscation

using traditional byte-level taint analysis: this can be seen to be

only marginally better that Figure 2(b), indicating that the taint

propagation is of limited utility. When a bit-level taint analysis

is used, the quality of deobfuscation improves considerably,

as shown by the control flow graph in Figure 2(d); however,

although this control flow graph is much simpler than that

of Figure 2(c), it can be seen to still be significantly more

convoluted than the original control flow graph of Figure 2(a).
However, using our enhanced bit-level taint analysis, which

tracks taintedess together with taint source information at the

level of individual bits, the deobfuscation process yields much

better results, as shown by the control flow graph of Figure

2(e).
2) Control Dependency Analysis: Given two instructions

(statements) I and J in a program, J is said to be control-
dependent on I if the outcome of I determines whether or

not J is executed. More formally, J is control dependent

on I if and only if there is a non-empty path π from

I to J such that J post-dominates each instruction in π
except I [24]. The identification of control dependencies has

been well-studied in the compiler literature [24]. However,

the situation is a little different in our case since, because

when dealing with emulation-obfuscated code, some of the

control transfers encountered correspond to the logic of the

program being emulated while others are simply an artifact

of the emulation process and therefore not interesting from

the perspective of identifying dependencies. We want to find

control dependencies of the original program, but we cannot

do this simply by examining the control flow graph of the

emulator, so we need to untangle the emulator’s control flow

structure apart from that of the original program.
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(a) (b) (c) (d) (e)

Key:
(a) Original program
(b) Obfuscated program
(c) Deobfuscation result: traditional byte-level taint analysis
(d) Deobfuscation result: bit-level analysis (taintedness information only)
(e) Deobfuscation result: enhanced bit-level analysis (taintedness + taint source information)

(our algorithm)

Fig. 2. Impact of different taint analysis algorithms on quality of debofuscation (Input program: binary search; obfuscated using: ExeCryptor)

Algorithm 1: Finding Control Dependencies

Input: An initial input/output tainted trace T
Result: The trace T with control dependencies between

instructions identified

1 Construct an initial control flow graph G
2 Compute post-dominator relations in G [24]

3 Use post-dominator relationships to compute explicit

control dependencies [24]:

4 (a) C = the set of input-tainted conditional control

transfers; and

5 (b) DepVars ={x | ∃C ∈ C: x control dependent on C}
6 while ∃ an indirect control transfer Ins dependent on

some x ∈ DepVars do
7 BBl ← basic block of Ins in G
8 Mark BBl as dependent on the direct control transfer

in C that x is dependent on

9 end

The approach we take is shown in Algorithm 1. We consider

two types of control flows: explicit and implicit. Explicit

control flows are those control transfers where the predicate

is explicitly reflected in the transfer of control, e.g., as in

conditional jump instructions. Finding explicit control depen-

dencies is straightforward using post-dominators [24]. Implicit

control flows are those indirect control transfers of the form

‘jmp [�]’ where the location � is data-dependent on the set

DepVars of dependent variables identified in Algorithm 1.

Intuitively, implicit control dependencies account for the fact

that a control dependence between two instructions I and J
may arise indirectly through an assignment D of the value

of a variable x if D is control dependent on I and where x
determines the target of an indirect control transfer to J (this

happens in, but is not restricted to, the dispatch jump of an

emulator).

Figure 3 shows an example of explicit and implicit control

flows. The value of register eax on line 6 is dependent on the

conditional jump on line 2, so the target of the jmp instruction

of line 6 also depends on which path is taken on line 2. This

way the basic block following the jmp on line 6 is also control

dependent on the conditional transfer on line 2. It is fair to say

that the data dependency from line 6 to lines 3 and 5, through

the value of eax, is really a control dependency in disguise.

C. Trace Simplification

Once we have identified the instructions in the trace that

participate in computing output values from input values, the

next step is to map these instructions to an equivalent but

simpler instruction sequence. Since we want to make as few

678678



1 test ecx, eax
2 jnz L1

3 mov eax, 0
4 jmp L2

5 L1: mov eax, 1
6 L2: jmp [edx+4*eax]

Fig. 3. An example of implicit control flow

assumptions as possible about the obfuscations we may be

dealing with, we use a set of simple and general semantics-

preserving transformations for this.

An important concept in this context is the notion of a quasi-

invariant location. We define a location � to be quasi-invariant
for an execution if � contains the same value �c at every use

of � in that execution. For constant propagation purposes, we

consider a value to be a constant during an execution if either

it is an immediate operand of an instruction or if it comes from

a memory location that is quasi-invariant for that execution.

Quasi-invariant locations allow us to handle transient mod-

ifications to the contents of memory locations, e.g., due to

unpacking, as long as we see the same value each time a

location is used. Quasi-invariants can be identified in a single

forward pass over a trace keeping track of memory locations

that are modified and, for each such modification, the value

that is written. The notion of quasi-invariance can be extended

in various ways, e.g., we may consider whether a memory

word contains the same value every time it is used for an

indirect branch (this is useful, for example, for dealing with

jump tables whose elements are kept in encrypted or encoded

form, decrypted prior to use, and then re-encrypted).

The transformations we use include the following (this is a

non-exhaustive list):

1) Arithmetic simplifications. In essence this is a straight-

forward adaptation of the classic compiler optimization

of constant folding to work with dynamic traces and

quasi-invariant locations. However, as described below,

it has to be controlled to avoid over-simplification.

For example, in the code sequence shown above, the

constant value 0xa4 loaded into the register bh can

be propagated through the bit-manipulation instructions

following it, and the entire sequence of instructions

manipulating bh can be replaced by a single instruction

‘mov bh, 0x8b’.

2) Indirect memory reference simplification. An indirect

memory reference through a quasi-invariant location �
that holds a value A is simplified to refer directly to A.

This transformation is applied to both control transfers

and data references.

3) Data movement simplification. We use pattern-driven

rules to identify and simplify data movement. For ex-

ample, one of our rules states that the following simpli-

fication can be performed provided that the sequence of

instructions Instr does not access the stack and does not

change the value of A:

push A
Instrs −→ Instrs
pop B mov B, A /* B := A */

4) Dead code elimination. Instructions whose destinations

are dead, i.e., not used subsequently in the computation,

are deleted. This transformation must consider all desti-

nations of an instructions, including destination operands

that are implicit and which may not be mentioned in the

instruction (such implicit destinations includes condition

flags).

5) Control transfer simplification Control transfer instruc-

tions whose targets are constant are replaced by direct

jumps. Candidates for this transformation include return
instructions to constant targets in ROP code as well

as indirect jumps to fixed targets in emulation-based

obfuscation. Using control flags implicitly to control

the transfer flow of the program is common among

interpreters and is also used in ROPs. For example one

can implement loops in ROPs as follows:
mov eax,0
sub counter,1
adc eax,eax /* eax := 1 if counter=0 */
push [L+eax*4]
ret

where L is the address of the memory location which

points to the beginning of the loop and subsequent

location points to where loop should exit to. In this

example, the target of the return instruction is affected

by the outcome of carry flag so the ret instruction can

be replaced by a conditional jump which directly uses

the carry flag.

Example 3.1: Figure 4 gives an example of indirect memory
reference simplification. Figure 4(a) shows a small program
that sits in a loop making indirect jumps through successive
elements of a read-only array T. Figure 4(b) shows the unsim-
plified trace for this code. Since T is read-only, its elements are
constant, making indirect calls through this table amenable to
indirect memory reference simplification; the resulting trace
is shown in Figure 4(c). Since T is no longer being used
for indirect jumps, instructions that load from T then become
dead and are removed via dead code elimination. Similarly,
constant propagation converts the add instructions into mov
instructions that load constants into register ebx. This then
determines the outcome of each of the cmp instructions, and
allows the cmp and jne instructions to be simplified away;
once this happens the instructions that load into ebx also
become dead and are removed.

The final simplified trace is shown in Figure 4(d). What is
left is pretty much just the code executed at the addresses that,
in the original program, had been reached via a sequence of
indirect jumps through the jump table T. In the simplified trace,
almost everything other than the code eventually executed has
been simplified away.

The indirect jump behavior illustrated in this example is
very similar to the dispatch code of an emulator. Indirect
memory reference simplification allows us to replace the
dispatch jumps of an emulator with direct jumps that can
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(read-only)
T: 0x500000

0x520000
0x550000

mov ebx, 0
L: mov eax, T[ebx]

jmp [eax]
add ebx, 4
cmp ebx, 12
jne L

mov ebx, 0
mov eax, T[ebx]
jmp [eax]
Trace of code at 0x500000
add ebx, 4
cmp ebx, 12
jne L

mov eax, T[ebx]
jmp [eax]
Trace of code at 0x520000
add ebx, 4
cmp ebx, 12
jne L

mov eax, T[ebx]
jmp [eax]
Trace of code at 0x550000
add ebx, 4
cmp ebx, 12
jne L

mov ebx, 0
mov eax, 0x500000
jmp 0x500000
Trace of code at 0x500000
mov ebx, 4
cmp ebx, 12
jne L

mov eax, 0x520000
jmp 0x520000
Trace of code at 0x520000
mov ebx, 8
cmp ebx, 12
jne L

mov eax, 0x550000
jmp 0x550000
Trace of code at 0x550000
mov ebx, 12
cmp ebx, 12
jne L

mov ebx, 0
mov eax, 0x500000
jmp 0x500000
Trace of code at 0x500000
mov ebx, 4
cmp ebx, 12
jne L

mov eax, 0x520000
jmp 0x520000
Trace of code at 0x520000
mov ebx, 8
cmp ebx, 12
jne L

mov eax, 0x550000
jmp 0x550000
Trace of code at 0x550000
mov ebx, 12
cmp ebx, 12
jne L

(a) Static code (b) Unsimplified trace (c) Trace after constant
propagation and indirect
memory reference simpli-
fication

(d) Trace after dead code
elimination

Fig. 4. An example of indirect memory reference simplification

then be candidates for further optimization. Importantly, this is
being done via a completely general transformation that makes
no assumptions about whether or how an emulator might be
dispatching code.

While the trace simplification process described above is

crucial for removing obfuscation code, it has to be carefully

controlled so that it does not remove too much of the logic

of the computation. The problem is illustrated by Figure

5. Figure 5(a) shows the static code for a simple iterative

factorial computation, written in a C-like notation for ease

of understanding. Figure 5(b) shows the execution trace for

this program for an input value of 3, with input-tainted

instructions shown underlined. Figure 5(c) shows the result of

trace simplification: it can be seen that constant propagation

has been applied to all of the updates to the variables fact
and i, and as a result the output operation at the end has been

reduced to ‘write(6)’. This is not helpful for understanding

the logic of the computation, i.e., the mapping from input

values to output values.

To understand the problem, consider the instruction I5 ≡
‘fact := fact * i’. The variables i and fact have

both been initialized to the value 1 at this point, so the

value of the expression ‘fact * i’ is inferred to be a

constant. Constant propagation then simplifies this instruction

to the assignment ‘fact := 1’. Arguably, this simplification

does not preserve the logic of this computation because it

suggests that this assignment computes a fixed constant value

when, in reality, the value that is computed by this instruction

depends on the number of iterations of the loop, which in turn

depends on the input value. The same observation applies to

the other arithmetic simplifications carried out on this trace.

The problem arises because the simplification fails to take into

account the fact that the instruction being simplified is control-

dependent on the input-tainted instruction I4 ≡ ‘if (i >
n) goto Bot’, which induces an implicit information flow

from the input to I5.

We address this problem by restricting the propagation of

constants across input-tainted conditional jumps. This is done

as follows. We first identify control dependencies as described

in Algorithm 1. Given an instruction X , let ControlDeps(X)
denote the set of input-tainted instructions in the execution

trace that X is control-dependent on. Then, a backward-

tainted arithmetic operation I is simplifiable only if every

source operand of I is either an immediate operand, or else

is defined by an instruction J such that ControlDeps(J) =
ControlDeps(I). Applying this condition to the trace of Fig-

ure 5(b), we find that instruction I5 is control-dependent on the

input-tainted instruction I4 ≡ ‘if (i > n) goto Bot’,

but its operands fact and i, which are defined by instructions

I3 and I2 respectively, which are not control dependent on

any instruction and therefore in particular are not control

dependent on I4. Thus, ControlDeps(I5) �= ControlDeps(I3)
and so I5 is not simplifiable. The constant value of fact
defined by I3 is therefore not propagated to I5, which is what

we want.

D. Control Flow Graph Construction

The final step in our deobfuscation process is to construct a

CFG [24] from the simplified trace obtained from the trace

simplification step. For deobfuscation purposes, one issue

that arises in this context is that of reuse of code in a

way that complicates the program’s control flow structure. In

obfuscated code, we very often find that a given functionality

I—e.g., an emulator operation such as addition or subtrac-
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n := read()
i := 1
fact := 1

Top: if (i > n) goto Bot
fact: = fact * i
i := i + 1
goto Top

Bot: write(fact)
halt

I1 n := read()
I2 i := 1
I3 fact := 1
I4 if (i > n) goto Bot
I5 fact := fact * i
I6 i := i + 1
I7 goto Top
I8 if (i > n) goto Bot
I9 fact := fact * i
I10 i := i + 1
I11 goto Top
I12 if (i > n) goto Bot
I13 fact := fact * i
I14 i := i + 1
I15 goto Top
I16 if (i > n) goto Bot
I17 write(fact)
I18 halt

I1 n := read()
I2 i := 1
I3 fact := 1
I4 if (i > n) goto Bot
I5 fact := fact * i 1
I6 i := i + 1 2
I7 goto Top
I8 if (i > n) goto Bot
I9 fact := fact * i 2
I10 i := i + 1 3
I11 goto Top
I12 if (i > n) goto Bot
I13 fact := fact * i 6
I14 i := i + 1 4
I15 goto Top
I16 if (i > n) goto Bot
I17 write(fact 6)
I18 halt

(a) Static code (b) Unsimplified trace (input = 3).
Input-tainted instructions are shown un-
derlined.

(c) Result of oversimplification.

Fig. 5. An example illustrating over-simplification

Algorithm 2: Final Control Flow Graph Construction

Input: Set of simplified execution trace T
Result: Control flow graph G for T

1 Let B0 be first basic block in T
2 tcurr := vcurr := B0

3 G := (V,E) where V = {vcurr} and E = ∅
4 EdgeStk := NULL

5 while there are unprocessed blocks in T do
6 let tnext be the next block after tcurr in T
7 if tnext is already a successor of vcurr then
8 vnext := tnext
9 else if a successor can be added to vcurr then

10 /* add tnext as a successor to vcurr */
11 Let vnext be a basic block in G that its entry

point has the same address as tnext in T
12 if vnext = NULL then
13 vnext := tnext
14 add vnext to V
15 add e ≡ ‘vcurr → vnext ’ to E
16 push e on EdgeStk
17 else
18 /* backtrack using EdgeStk */
19 pop e ≡ ‘a→ b’ from EdgeStk
20 tcurr := block in T corresponding to a
21 tnext := block in T corresponding to b
22 vcurr := block in G corresponding to tcurr
23 vnext := Duplicate(tnext )
24 add e ≡ ‘vcurr → vnext ’ to E
25 push e on EdgeStk
26 end
27 vcurr := vnext
28 tcurr := tnext
29 end
30 Output G

tion (in emulation-obfuscation), or a gadget for an operation

such as copying one register to another (in return-oriented

programming)—is implemented using a single code fragment

CI ; control is then directed to CI whenever the functionality

I is needed in the program. This means that if there are k
different occurrences of I in the original program, they will

end up executing the same piece of code CI in the emulated

program k times, with k corresponding repetitions of CI in

the execution trace. A CFG constructed in a straightforward

way will then have k pairs of control flow edges coming into

and out of the code region CI , which will cause the control

flow behavior of the program to appear very tangled.

During deobfuscation, therefore, we try to construct the

CFG in a way that attempts to untangle some of the paths

by judiciously duplicating basic blocks. Intuitively, we want

to minimize the amount of such code duplication, while at the

same time reducing the number of “spurious” control flow

paths (paths that are possible in the CFG constructed but

which are not observed in the trace(s) used to construct the

CFG). Solving this problem optimally seems combinatorially

challenging, and related problems in computational learning

theory that are known to be computationally hard: the problem

of identifying a CFG that is consistent with a given trace (i.e.,

which admits that trace but may also admit other execution

paths) can be modeled as that of constructing a DFA consistent

with a given set of strings (i.e., which accepts those strings but

may also accept other strings). Unfortunately the problem of

finding the smallest DFA (or the smallest regular expression)

that is consistent with a given regular language is NP-hard

[25], [26] and is not even efficiently approximable [27].

Given these results, we augment the usual CFG construction

algorithm [24] with heuristics aimed at balancing the number

of vertices and the complexity of the constructed CFG, using a

depth-first backtracking search to explore the search space as

is shown in the Algorithm 2. We briefly sketch the algorithm

here.
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The simplified trace, from which we construct the deob-

fuscated control flow graph, is a sequence of instructions that

can also be considered as a sequence of basic blocks such

that if a block B is followed by a block B′ in the (simplified)

trace it corresponds to an edge B → B′ in the corresponding

control flow graph. Our algorithm traverses the sequence of

basic blocks in the trace, constructing a control flow graph G
using the usual CFG construction algorithm, by adding basic

blocks and/or edges to G, as long as this does not violate

any structural constraints of any vertex in G; currently, the

primary structural constraint that is enforced is the out-degree
constraint: namely, that a basic block ending with a conditional

jump can have at most two successors or if it is ending with

an indirect jump, there is no restriction on the number of its

succesors. This requirement is checked at the line 9 of the

Algorithm 2. If the algorithm encounters a situation where

adding a block and/or edge to G would violate this structural

constraint, it backtracks to the most recently added vertex that

can be duplicated without violating the out-degree constraint

(Algorithm 2 lines 18-25). This vertex is then duplicated,

together with vertices and edges that were added to G more

recently, after which the algorithm resumes in the forward

direction.

Another problem that the simplification might cause is

removing dynamically dead instrucitons that affects the final

CFG in such a way that causes the CFG construction algorithm

to produce a new basic block for the code in which dynam-

ically dead instructions are missing. The final step of deob-

fuscation is to apply semantics-preserving transformations to

simplify the control flow graph. In particular, we identify and

merge basic blocks that differ solely due to dynamically dead

instructions. The following snippet of code, to compute the

factorial function, illustrates the problem:2

int factorial(int n) {
int i, p;
p = i = 1;
while (n > 0) {
p = p*i
i = i+1
n = n-1

}
return p;

}

Suppose this function is called with the argument n = 2. The

resulting execution trace for this function is:
/* 1 */ i = 1
/* 2 */ p = 1
/* 3 */ n > 0? /* n == 2 */
/* 4 */ p = p*i
/* 5 */ i = i+1
/* 6 */ n = n-1
/* 7 */ n > 0? /* n == 1 */
/* 8 */ p = p*i
/* 9 */ i = i+1
/* 10 */ n = n-1

2In reality we work with assembly instructions. This example uses C code
for the program, and a quasi-C syntax for the trace, for simplicity and ease
of understanding.

/* 11 */ n > 0? /* n == 0 */
/* 12 */ return p

The statement at position 9 in this trace, ‘i = i+1’, is

dynamically dead, since the value it computes at that point in

the execution is not used later, and so it is removed during trace

simplification. When a control flow graph is constructed from

the simplified trace, however, we get two different versions of

the loop body:

p = p*i
i = i+1
n = n-1
n > 0?

and

p = p*i

n = n-1
n > 0?

The first of these corresponds to the iterations up to the last

iteration, while the second corresponds to the last iteration.

More generally, depending on the dependence structure/dis-

tance of the loop(s) we may get multiple such loop body

fragments with some code simplified away. Such blocks are

treated as distinct by the control flow graph construction

algorithm, resulting in a graph that has more vertices, and

is more cluttered, than necessary. A similar situation arises

with function calls if some call sites use the return value but

others do not.

We deal with this situation by identifying and merging basic

blocks that are identical modulo dynamically dead instructions.

Define two blocks B1 and B2 to be mergeable if the following

conditions hold:

1) B1 and B2 span the same range of addresses (except

possibly for any dynamically dead instructions at the

beginning and/or end of either block).

2) [Non-dynamically dead instructions] If an instruction

I occurs in both B1 and B2, then it is the identical

instruction in both B1 and B2. I.e., the operands should

not have changed (e.g. due to constant propagation).

3) [Dynamically dead instructions] For each instruction

I ∈ B1 that does not occur in B2, I is dead if it is added

into B2 at the appropriate position; and analogously with

instructions that are in B2 but not in B1.

To simplify the control flow graph, we repeatedly find merge-

able basic blocks and merge them to obtain the final control

flow graph.3

IV. EXPERIMENTAL EVALUATION

We have evaluated our ideas using a prototype implemen-

tation of our approach. Execution traces of the original and

obfuscated binaries were collected using a modified version of

Ether [16]. Trace simplification was carried out on a machine

with 2× quad-core 2.66 GHz Intel Xeon processors with 96

GB of RAM running Ubuntu Linux 12.04. The results of our

experiments are discussed below. To quantify the similarity

between the original and the deobfuscated programs (and, for

completeness, the obfuscated programs as well), we use an

3From an implementation perspective, it turns out to be simpler to mod-
ify the simplified trace to reintroduce, where necessary, dynamically dead
instructions that had been simplified away, and then rebuild the control flow
graph.
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algorithm of Hu, Chiueh, and Shin for computing the edit

distance between two control flow graphs [28]. Given two

control flow graphs G1 and G2, this algorithm computes a

correspondence between the vertices of G1 and G2 using

maximum bipartite matching, then uses this correspondence to

determine the number of edits, i.e., the number of vertex and

edge insertion/deletion operations necessary to transform one

graph to the other. To facilitate comparisons between CFGs

of different sizes, we normalize the edit distance to the total

size of the graphs being compared. Let δ(G1, G2) be the edit

distance between two control flow graphs G1 and G2, then

their similarity is computed as

sim(G1, G2) = 1− δ(G1, G2)

|G1|+ |G2|
where |G| is the size of the graph G and is given by the total

number of vertices and edges in G. A similarity score of 0

means that the graphs are completely dissimilar; a similarity

score of 1 means that the graphs are identical.

Our experimental samples, including source code for the test

programs and executables for the original and obfuscated pro-

grams, are available at www.cs.arizona.edu/projects/

lynx/Samples/Obfuscated/.

A. Emulation-based Obfuscation

We evaluated our deobfuscator using four commercial

emulation-obfuscation tools: Code Virtualizer [1], EXECryp-

tor [2], Themida [4], and VMProtect [3]. Code Virtualizer and

VMProtect are representative of obfuscation tools that have

been considered in previous work [5], [6]; these authors do

not discuss EXECryptor so we do not know whether they are

able to handle software obfuscated using this tool. As far as

we know, none of the existing approaches on deobfuscation

of emulation-obfuscated software are able to handle binaries

obfuscated using Themida. When obfuscating programs using

Themida, users can select various parameters, including the

complexity of the VM instructions: for our experiments used

the setting ‘mutable CISC processor’ with one VM whose

opcode type is ‘metamorphic level-2’.4

1) Single-Level Emulation: Single-level emulation refers to

obfuscation where there is just a single level of emulation,

namely, that of the emulator introduced by the obfuscation

process. This is the only kind of emulation-based obfuscation

considered thus far by other researchers on this topic.

To evaluate the quality of deobfuscation results using our

approach on single-level emulation, we applied the commer-

cial obfuscators named above to several malware programs,

whose source code we obtained from VX Heavens [31],

together with two synthetic benchmarks we wrote ourselves.

The malware programs we used were: Blaster [29], Cairuh,

epo, hunacha, newstar, and netsky ae [30]. Of these programs,

Blaster is a network worm; Cairuh is a P2P worm; hunatcha

4“Mutable CISC processor” and “metamorphic level-2” are settings in the
Themida tool; the available documentation does not specify, in any further
detail, exactly how these settings affect the low-level characteristics of the
obfuscated code.

is a file dropper; newstar and epo are file infectors that imple-

ment different file infection mechanisms to drop payloads into

other files; and netsky ae is a worm whose functionality we

divided into different pieces: netsky ae1 searches and elimi-

nates antivirus and monitoring software running on the system,

netsky ae2 installs the malware for surviving the system boots,

netsky ae3 infects the system with encrypted variations of the

malware and netsky ae4 recursively copies the malware into

shared folders. In addition to these malware programs, we used

two synthetic benchmarks, huffman, and matrix-multiply, to

explore how our techniques handled various combinations of

conditionals and nested loops.

Space constraints preclude showing the full control flow

graph of each of our test inputs; Figure 6 gives a high-level

visual impression of the effect of emulation-based obfuscation,

together with the deobfuscated programs obtained using our

approach, for two different malware samples: Netsky ae1, Hu-
natcha, and the matrix multiply program, that have reasonably

interesting control flow structure, consisting of nested loops

and conditionals; and three widely-used obfuscation tools:

Code Virtualizer, ExeCryptor, and Themida. In order to focus

the discussion on the core portion of the computation, the

graphs shown omit the program setup/takedown and I/O code.

It can be seen, from visual inspection, that the control flow

graph resulting from deobfuscation is in each case very similar

to that of the original program.

The results of the similarity comparisons are shown in Table

I. Columns labeled ‘Obf.’ give the similarity of the obfuscated

programs with the original programs; those labeled ‘Deobf.’
give the similarity between the deobfuscated programs and the

original programs. Not surprisingly, the obfuscated programs

are usually very different from the original code structurally:

by and large these similarity numbers are in the 6%–8%

range, with several programs showing similarities of less that

10%, and a few (e.g. huffman, hunatcha and epo for Code

Virtualizer, and huffman for VMProtect) with similarity values

over 15%. The exceptions here are Cairuh, netsky ae2 and

netsky ae4 which because of having switch statements in their

code, they are structurally similar to the virtualized binaries

so they are in fact more similar to the obfuscated binaries

than the other programs. By contrast, the control flow graphs

resulting from our deobfuscation algorithm have significantly

higher similarities. While nearly similar on average, they are

highest for Code Virtualizer and Execryptor, ranging from

72% to 95% for Code Virtualizer and in the range of 75%

to more than 94% for EXECryptor. On average the similarity

values for Code Virtualizer and EXECryptor are 86.6% and

86.4%. The deobfuscation results are comparable for Themida

and VMProtect, ranging from 82% to 96% for Themida and

from 46% to 96% for VMProtect. However, it should be noted

that our approach still achieves significant improvements in

similarity relative to the obfuscated code.

Our Ether-based tracing infrastructure crashed on the Cairuh
and blaster programs obfuscated with Themida so we were

unable to collect an execution trace for these programs.
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OpenProcess

CloseHandle

_strupr

strcmp

EnumProcessModulesTerminateProcess

FreeLibrary

GetModuleBaseNameA

Original Obfuscated (cropped) Deobfuscated

(a) Netsky ae1: Code Virtualizer

Original Obfuscated (cropped) Deobfuscated

(b) Hunatcha: ExeCryptor

Original Obfuscated (cropped) Deobfuscated

(c) Matrix multiply: Themida

Fig. 6. Effects of obfuscation and deobfuscation on the control flow graphs of some malware samples
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Control flow graph similarity (%)
PROGRAM CODE VIRTUALIZER EXECRYPTOR THEMIDA VMPROTECT

Obf. Deobf. Obf. Deobf. Obf. Deobf. Obf. Deobf.
huffman 20.75 72.24 06.08 83.50 06.03 83.91 16.45 46.40
hunatcha 22.43 90.30 04.82 90.04 05.60 84.84 15.57 73.65
matrix-mult 06.50 81.63 01.31 83.95 01.56 81.63 07.22 75.55
Cairuh 39.37 89.02 26.46 94.04 NA NA 28.68 82.39
blaster 13.25 84.54 02.40 84.87 NA NA 14.07 89.24
newstar 09.09 94.38 02.15 92.56 02.21 96.70 08.49 75.20
epo 29.26 92.51 07.86 80.92 09.28 81.23 20.03 96.28
netsky ae1 19.78 88.03 08.19 87.27 06.15 84.14 19.00 82.81
netsky ae2 50.90 80.85 13.12 93.40 19.75 88.17 24.50 89.95
netsky ae3 11.52 92.85 02.43 85.49 03.84 82.81 09.35 94.36
netsky ae4 30.30 86.60 20.71 75.04 14.04 82.66 22.65 87.85

AVERAGE 23.01 86.63 08.68 86.43 07.60 85.12 16.91 81.24

TABLE I
SIMILARITY OF ORIGINAL AND DEOBFUSCATED CONTROL FLOW GRAPHS: EMULATION-OBFUSCATION

In Figure 7 we have included the CFGs of a subtrace

of the netsky1 ae program with instructions included in the

graph: Figure 7(a) corresponds to the original program and

(b) corresponds to the deobfuscated program obfuscated us-

ing Code Virtualizer. This shows that with the high level

information that can be recovered by the CFGs, program

semantic information is also included at the instructions level.

For example in Figure 7, it can be seen that in both graphs,

there is a test on the output of the strcmp function call

marked with label 1. The program is trying to kill all the

unwanted processes currently running in the system and by

comparing process names with ones in a list, it determines

whether to terminate the process or not. If the comparison

satisfies, it calls OpenProcess (labeled with 2) and then

terminates the process using a call to TerminateProcess
(labeled with 3). There is correspondence between two graphs

and the semantics are equivalent in both the original and

deobfuscated programs. Getting this level of information from

the obfuscated program, where the graph is shown on Figure

6(a), is very unlikely, if not impossible, and requires significant

amount of time and efforts.

However, there is one difference between two graphs that

should be noted here. As it was discussed in Section III-D, the

CFG construction algorithm tries to balance between the code

duplications and the number of paths in the final graph. Doing

so, the CFG constructed for the deobfuscated program uses an

existing block (pointed by label 4) rather than duplicating it

for the corresponding block in original program (also pointed

by label 4). This is mostly because in the original program,

only one target branch is observed (for the basic block pointed

by label 4) and so the CFG construction algorithm does not

have a clue about the other branch existing in the original

program. It should also be noted that this does not however

affect the semantics of the program and the constructed graph

still represents the original logic correctly and this is a general

limitation for dynamic analysis where the code coverage is an

issue rather a specific limitation of our approach.

Analysis speed depends partly on the input trace size but

mostly on the number of iterations of code simplification

needed, which in turn depends on how entangled the ob-

fuscations are; there seems to be a non-linear component to

the execution time that we are currently looking into. Execu-

tion times for the three largest trace files, Cairuh-VMProtect

(6.4M instructions), hunatcha-Themida (7.7M instructions),

and huffman-Themida (56.6 M instructions) are 188 sec, 244

sec, and 4,726 sec respectively, which translate to speeds

of 34,042 instrs/sec, 31,557 instrs/sec, and 11,976 instrs/sec

respectively.

We have also applied our deobfuscator to a number

of emulation-obfuscated malicious binaries that we ob-

tained from virusshare.com, including Win32/Kryptik, Trojan-
Downloader.Banload, Win32.Dubai, W32/Dialer, and Back-
door.Vanbot. Space constraints preclude showing the origi-

nal and simplified CFGs for these programs, so we briefly

summarize our findings. We found that in the samples we

tested, emulation was typically applied selectively to selected

sensitive code regions, with multiple layers of unpacking

added subsequently to further obfuscate the malicious payload.

Our deobfuscator was able to remove all of the emulation

and unpacking code, leaving only the logic of the malicious

payload with a much simpler CFG. The time taken to perform

this simplification for the malware samples we tested was

around 10 minutes per sample.

Overall, these results show that while our prototype imple-

mentation is not yet perfect, it is nevertheless able to extract

control flow graphs that closely resemble those of original

unobfuscated programs. Notably, it is able to do this for both

“ordinary” emulation-obfuscated programs and also Themida-

obfuscated programs, which combine runtime unpacking with

emulation and, as far as we know, are not handled by any

previously proposed techniques for automatic deobfuscation.

Considering that we make very few assumptions about the

nature of the obfuscations applied, we consider this encourag-

ing. We are currently working on improving our analyses to

improve the deobfuscation results further.

2) Multi-level Emulation: We have also applied our ap-

proach to programs obfuscated using multiple levels of em-

ulation, i.e., where one emulator interprets another emulator
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 jmp dword near [0x4020b0] 

 strcpy

 mov edx, [ebp+0xfffffee0] 
 mov eax, 0x458 
 push eax 
 push 0x0 
 push dword 0x410 
 mov dword [0x12e79c], 0x0 

 OpenProcess

 cmp dword [ebp+0xffffedec], 0x0 
 lea ecx, [ebp+0xfffffdb0] 
 push ecx 
 push 0x4 
 lea edx, [ebp+0xfffffed8] 
 push edx 
 mov eax, [ebp+0xffffedec] 
 push eax 
 mov dword [0x12e798], 0x0 

 cmp dword [ebp+0xffffedec], 0x0 
 push 0x0 
 mov edx, [ebp+0xffffedec] 
 push edx 
 mov dword [0x12e7a0], 0x0 

2

 EnumProcessModules  TerminateProcess

 push dword 0x104 
 lea ecx, [ebp+0xfffffdc8] 
 push ecx 
 mov edx, [ebp+0xfffffed8] 
 push edx 
 mov eax, [ebp+0xffffedec] 
 push eax 
 mov dword [0x12e798], 0x0 

 GetModuleBaseNameA

 mov ecx, [ebp+0xffffedec] 
 push ecx 
 mov dword [0x12e7a4], 0x0 

 CloseHandle

 push edx 
 lea eax, [ebp+0xfffffdc8] 
 push eax 
 mov dword [0x12e7a0], 0x0 

 _strupr

 push eax 
 call 0x40101c 

 push eax 
 call 0x40101c 

 jmp dword near [0x4020bc] 

 strcmp

 test eax, eax 
 jnz dword 0x401ad9 

 test eax, eax 
 mov dword [ebp+0xfffffeec], 0x1 
 mov eax, [ebp+0xfffffee0] 
 mov ecx, 0x568 
 push ecx 
 push 0x0 
 push 0x1 
 mov dword [0x12e79c], 0x0 

1

 mov edx, [ebp+0xfffffee0] 
 add edx, 0x1 
 mov [ebp+0xfffffee0], edx 
 mov eax, [ebp+0xfffffee0] 
 cmp eax, [ebp+0xffffe9fc] 
 jae dword 0x401ade 

 lea ecx, [ebp+0xfffffef0] 
 push ecx 
 lea edx, [ebp+0xfffffdc8] 
 push edx 
 mov dword [0x12e7a0], 0x0 

4

3

 jmp dword near [0x4020b0] 

 strcpy

 sub esp, 0x4 
 mov dword [esp], 0x432 
 sub esp, 0x4 
 mov dword [esp], 0x0 
 sub esp, 0x4 
 mov dword [esp], 0x410 
 mov dword [0x12e7a8], 0x0 
 jmp 0x406038 

 OpenProcess

 mov [esp], eax 
 sub esp, 0x4 
 mov edi, 0x404200 
 push eax 
 pop ecx 
 cmp ecx, 0x0 
 pushfd  
 mov eax, 0x7 
 pop dword [edi+eax*4] 
 mov eax, 0x40421c 
 mov ecx, [eax] 
 and ecx, 0x40 
 shr ecx, 0x6 
 mov eax, 0x1 
 xor eax, ecx 
 mov [esp], eax 
 not dword [esp] 
 mov eax, [esp] 
 and eax, 0x1 
 mov edx, eax 
 shl edx, 1 
 mov [0x404220], edx 
 mov edi, 0x404200 
 cmp dword [edi+0x20], 0x0 
 sub esp, 0xc 
 mov dword [esp], 0x0 
 mov eax, [0x12eba0] 
 push eax 
 jmp 0x406038 

 push dword 0x0 
 push dword 0x404200 
 mov edx, 0x404200 
 add esp, 0x6 
 pop dword [edx] 
 mov edx, 0x404218 
 add esp, 0x12 
 pop dword [edx] 
 mov [esp], eax 
 add esp, 0x4 
 mov edi, 0x404200 
 push eax 
 pop ecx 
 add esp, 0x8 
 cmp ecx, 0x0 
 pushfd  

2

 TerminateProcess

 add esp, 0x2 
 mov eax, 0x7 
 pop dword [edi+eax*4] 
 mov eax, 0x40421c 
 mov ecx, [eax] 
 and ecx, 0x40 
 shr ecx, 0x6 
 mov eax, 0x1 
 xor eax, ecx 
 mov [esp], eax 
 not dword [esp] 
 mov eax, [esp] 
 and eax, 0x1 
 mov edx, eax 
 shl edx, 1 
 mov [0x404220], edx 
 mov edi, 0x404200 
 cmp dword [edi+0x20], 0x0 
 jz dword 0x406fb5 

 add esp, 0x6 
 mov dword [esp], 0x40273c 
 sub esp, 0x6 
 mov dword [esp], 0xfffffdc8 
 add esp, 0x2 
 mov dword [esp], 0x40903b 
 jmp dword near [0x4020b0] 

 sub esp, 0x4 
 mov eax, 0x3 
 push dword [edi+eax*4] 
 add esp, 0x4 
 push dword [esp] 
 pop edx 
 sub esp, 0x4 
 push edx 
 mov eax, [0x12e7a4] 
 sub eax, 0x2b0d0c86 
 add eax, 0x2cb87490 
 add eax, 0xfffffdb0 
 sub eax, 0x2cb87490 
 add eax, 0x2b0d0c86 
 mov edx, eax 
 sub esp, 0x8 
 mov [esp], edx 
 sub esp, 0xa 
 mov dword [esp], 0x4 
 mov eax, [0x12eba0] 
 sub esp, 0xa 
 push eax 
 sub esp, 0x4 
 mov dword [esp], 0x40904f 
 mov edx, 0x404218 
 push dword [edx] 
 mov edx, 0x404200 
 push dword [edx] 
 jmp 0x406038 

4

 EnumProcessModules

 sub esp, 0x8 
 mov dword [esp], 0x104 
 mov dword [0x404204], 0x1000000 
 mov edx, 0x404204 
 push dword [edx] 
 mov eax, [esp] 
 add esp, 0x4 
 push eax 
 sub esp, 0x4 
 mov dword [esp], 0x409059 
 jmp 0x406038 

 GetModuleBaseNameA

 mov eax, [0x12eba0] 
 add esp, 0x6 
 push eax 
 sub esp, 0x4 
 mov dword [esp], 0x409063 
 jmp 0x406038 

 CloseHandle

 sub esp, 0x2 
 mov dword [esp], 0xfffffdc8 

 add esp, 0x8 
 mov dword [esp], 0x40906d 
 jmp 0x406038 

 add esp, 0x4 
 mov dword [esp], 0xfffffdc8 

 _strupr

 add esp, 0xc 
 push eax 
 sub esp, 0x2 
 mov dword [esp], 0x409077 
 jmp dword near [0x4020bc] 

 strcmp

 mov eax, 0x0 
 mov ecx, 0x0 
 add esp, 0x4 
 test eax, ecx 
 pushfd  
 mov eax, 0x7 
 pop dword [edi+eax*4] 
 mov eax, 0x40421c 
 mov ecx, [eax] 
 and ecx, 0x40 
 shr ecx, 0x6 
 mov eax, 0x0 
 xor eax, ecx 
 mov [esp], eax 
 not dword [esp] 
 mov eax, [esp] 
 and eax, 0x1 
 mov edx, eax 
 shl edx, 1 
 mov [0x404220], edx 
 mov edi, 0x404200 
 cmp dword [edi+0x20], 0x0 
 jz dword 0x406fb5 

 mov eax, 0x1 
 mov ecx, 0x1 
 add esp, 0x4 
 test eax, ecx 
 pushfd  

1

3

(a) Original program (b) Deobfuscated program

Fig. 7. Example of CFGs with instructions

which in turn interprets byte code for the program to be

executed: the results are similar to those presented here, in

that we are able to remove most of the obfuscation and recover

deobfuscated control flow graphs that are very similar to those

shown here. We selected a subset of our test programs which

we used for single-level emulation, including binary-search,

bubble-sort and matrix-multiply and obfuscated them using

Code Virtualizer, and then applied another round of emulation

using EXECryptor. Each of these programs therefore had two

levels of emulation. We also wrote an emulator, modeled

on DLXsim and SPIM, for a small RISC-like processor

that we call tinyRISC, and ran it on hand-compiled byte-

code for a binary-search program. This program was also

obfuscated using CodeVirtualizer and EXECryptor and is

included as tinyRISC:bin-search; this program uses three levels

of emulation (the tinyRISC emulator, Code Virtualizer, and

EXECryptor). Table II shows the similarity numbers for the

obfuscated and deobfuscated CFGs of our test programs. It

can be seen that the similarity of the deobfuscated CFGs and

the original CFGs ranges from 80.6% to 87.9%. This shows

that our approach is effective in cutting through multiple levels

of emulation.

The similarity between the numbers for the multi-level

emulated binaries and the ones obfuscated using only Code

Virtualizer in Table I suggests that applying additional levels

of emulation does not change the structure of the underlying

interpreted program, although the obfuscated programs are

quite different (see CFG similarity numbers for the obfus-
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cated programs in the two cases), and the execution traces

differ significantly with those for multi-level emulation being

significantly larger.

No. of CFG similarity (%)
PROGRAM Levels Obf. Deobf.
binary-search 2 4.45 85.29
bubble-sort 2 6.41 80.64
matrix-multiply 2 5.26 81.63
tinyRISC:bin-search 3 4.45 87.87

AVERAGE 5.14 83.85

TABLE II
SIMILARITY OF ORIGINAL AND DEOBFUSCATED CONTROL FLOW GRAPHS:

MULTI-LEVEL EMULATION. No. of Levels GIVES THE NUMBER OF

EMULATION LEVELS IN THE OBFUSCATED CODE.

B. Return-Oriented Programs

We evaluated our prototype implementation with two differ-

ent sets of ROP test cases. The first set of binaries were sim-

ple synthetic programs including factorial, fibonacci, matrix-
multiply and bubble-sort. These programs were implemented

by chaining relevant ROP gadgets from Windows system

libraries such as ntdll.dll and msvcrt.dll rather than

a high level programming language to carry out the intended

computation so they can simulate the behavior of ROP attacks.

We chose these programs because they have enough complex

structures such as loops and conditional statements to measure

the ability of a reverse engineering system which tries to

recover the logic of the underlying computation. For com-

parison purposes we also created the non-ROP version of the

programs which are written in C. We also applied our approach

to several ROP malware samples, but found that our ROP

malware samples had a relatively simple control flow structure

since all they were trying to do was to change the access

permissions on some memory pages to make them executable.

As a result, our hand-crafted ROP benchmarks presented a

greater challenge for deobfuscation than the malware samples

we tested. For our hand-crafted ROP sample, we tried to use

ROPC [31] to create the ROP programs but, for a variety of

technical reasons, were not able to get it to work.

The similarity numbers for our synthetic programs are

presented in Table III. The column labeled Obf. shows the CFG

similarity of the ROP version of the program to its non-ROP

version and column labeled Deobf. shows the similarity of the

CFG similarity (%)
PROGRAM Obf. Deobf.
factorial 47.61 88.88
fibonacci 30.61 85.71
matrix-multiply 64.51 79.22
bubble-sort 48.22 82.85

AVERAGE 47.73 84.16

TABLE III
SIMILARITY OF ORIGINAL AND DEOBFUSCATED CONTROL FLOW GRAPHS:

ROPS

deobfuscated ROP program to its non-ROP version. The table

shows that our method is also able to reverse engineer the ROP

gadgets and produce a very similar control flow graph to the

non-ROP version by simplifying the ROP version execution

trace.

We have included the set of control flow graphs of two ROP

programs, factorial and fibonacci in Figure 8 very similar to

Figure 6. Note that the factorial program has a nested loop;

the reason is that we did not find a multiplication gadget in

ntdll.dll or msvcrt.dll, so we simulated this using a

loop of additions.5

C. Comparison With Coogan et al.

We tested our approach against that of Coogan et al. [6]; the

results are shown in Figure 9. Coogan’s approach results in

complex equations that are difficult to map to CFGs, especially

for nontrivial programs. Our approach, by contrast, produces

CFGs that can be meaningfully compared to the original

program’s CFGs. So we think that our approach produces more

understandable results than Coogan’s. We ran Coogan’s tool on

their set of test programs and mapped the resulting relevant
subtraces (which is equivalent to the deobfuscated program
in our terminology) to CFGs. We first applied our tool on

the traces used by Coogan et al. in their experiments [6] and

compared the similarity of the resulting deobfuscated traces

with the original ones. To compare the result of the two tools,

we also generated CFGs of the relevant subtraces produced by

their tool and compared the CFGs to the original programs.

It can be seen, from Figure 9, that our system outperforms

Coogan’s tool with a 30% to 60% higher similarity numbers

in all the programs. We were not able to get a result of their

tool on the md5 program obfuscated using Code Virtualizer

because the computation did not finish on time so we did not

have any data for that. The small difference between similarity

numbers of the programs that are common in our set of input

programs and the set they used for evaluation, e.g., hunatcha,

is that the programs used by Coogan et al. and represented in

Figure 9 are slightly different from those used for Table I.

Coogan et al. do not apply their technique to obfuscations

other than emulation, nor do they provide results for multi-

level emulation.

V. DISCUSSION

Like all other work on automatic malware analysis, we

presuppose that the malicious code has been analyzed and

(since we are using dynamic analysis) an execution trace has

been collected. If a program attempts to thwart analysis via

anti-analysis defenses then those defenses will have to be

overcome before our techniques can be applied. This problem

is common to all work on automated malware analysis and is

orthogonal to the topic of this paper, so we do not pursue it

further here.

5This problem with unavailability of multiplication gadgets in Windows
system libraries, and a solution using iterated addition, is also discussed by
Roemer et al. [7].
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Original ROP Deobfuscated

(a) factorial

Original ROP Deobfuscated

(b) fibonacci

Fig. 8. Some examples of ROP deobfuscation results
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Fig. 9. Comparison with Coogan et al.

Code coverage can be an issue since we rely on dynamic

analysis, where only one execution path through the program

is observed. To overcome this problem we apply multi-path

exploration techniques based on concolic execution to iden-

tify inputs that will exercise alternative execution paths and

increase code coverage [21], [18]. The constraints used to iden-

tify such alternative inputs are computed from an execution

trace; in our system one can use either the original (obfuscated)

trace or the simplified trace for this. Our experiments indicate

that, due to the effects of obfuscation, the original traces

are often much larger and more complex than the simplified

traces, and result in correspondingly larger and more complex

constraints whose solutions require more time and memory.

We found that, in many cases, the constraint solver (our ex-

periments used STP [32]) fails to find a solution for constraints

obtained from the original traces, e.g., because it runs out of

time or memory, but is able to solve those obtained from the

simplified traces. The process of deobfuscation is therefore

also helpful for exploring alternative behaviors in obfuscated

executables.
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   VirtualProtect

   GetProcAddress

   LoadLibraryA

   GetTickCount

   KiUserExceptionDispatcher

   __set_app_type

   __p__fmode

   __p__commode

   _controlfp

   _initterm

   __getmainargs

   GetStartupInfoA

   GetModuleHandleA

   SetErrorMode    FreeLibrary

   GetSystemDirectoryA

   lstrcat

   lstrcpy

   GetModuleFileNameA

   lstrcmpi

   VirtualProtect

   GetProcAddress

   LoadLibraryA

   GetTickCount

   KiUserExceptionDispatcher

   __set_app_type

   __p__fmode

   __p__commode

   _controlfp

   _initterm

   __getmainargs   GetStartupInfoA

   GetModuleHandleA

   SetErrorMode   FreeLibrary

   GetSystemDirectoryA

   lstrcat

   lstrcpy   GetModuleFileNameA

Original (cropped) Deobfuscated (cropped)

Fig. 10. Partial Control flow graphs for Win32/Kryptik.OHY Trojan before and after deobfuscation. The emulation-obfuscated portion of the program is
shown in green while basic blocks that perform code unpacking, i.e., write to memory locations that are subsequently executed as code, are shown in red.

As discussed in Section II-C, our threat model assumes

that the adversary knows our semantics-based approach to

deobfuscation. We recognize three ways in which an adversary

can try to reduce the effectiveness of our analysis. The first

is to leave the I/O operations of the input program unchanged

but entwine the obfuscation code with the original input-to-

output computation much more deeply in order to prevent the

obfuscation code from being simplified away. The second is to

introduce additional input/output operations into the program

along with (obfuscation) code that operates on the new input-

to-output flow of values that this gives rise to. The third

approach is to hide some of the computation performed by

the program.

With the first approach, entwining the obfuscation code

with the input-to-output flow of values of the original pro-

gram in a way that is semantically significant, but which at

the same time can be guaranteed to preserve the behavior

of the program being obfuscated, is a challenging problem

in general. The reason is that even simple transformations

can affect the observable behavior of the program, e.g., by

changing use/definition relationships, introducing arithmetic

overflow/underflow, or perturbing condition code settings. This

means that any such entanglement of the obfuscation code

will, at the very least, require sophisticated program analyses

that go well beyond the capabilities of today’s obfuscation

tools. Alternatively, instead of relying on general-purpose tools

capable of obfuscating arbitrary programs, the adversary could

try to hand-craft custom malware where the obfuscation code

is semantically integrated into the program logic. While such

an approach would reduce the efficacy of our approach, it

would also require a lot more time and effort for malware

writers and would not scale.

The second approach actually changes the program’s se-

mantics (i.e., its observable interactions with its environment).

Since deobfuscation must preserve program semantics, a deob-

fuscation tool cannot reasonably be expected to automatically

disregard some of the semantically significant operations of the

program. Thus, our approach will not be able to automatically

recover the logic of the original program in this case. However,

our ideas can be easily extended to deal with such obfuscations

interactively: the tool user can (optionally) specify some set

of input and/or output operations to be disregarded, and the

deobfuscation tool can simply not perform taint propagation

for the disregarded operations.

With the third approach, some of the logic of computation

can be hidden by performing the computation elsewhere, e.g.,
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on a remote host, where it cannot be observed. We note that

this would be a problem for every approach to automatic

deobfuscation that we are aware of, and believe that it is a

fundamental limitation of any automatic deobfuscation tool.

In summary, for each of these cases we significantly raise

the bar for obfuscation of malicious code.

VI. RELATED WORK

The work that is philosophically closest to ours is that

of Coogan et al. [6], who use equational reasoning about

assembly-level instruction semantics to simplify away obfus-

cation code from execution traces of emulation-obfuscated

programs. While their goals are similar to ours, the technical

details are very different. The biggest difference between the

two is in the processing and simplification of execution traces.

The equational reasoning approach of Coogan et al. has some

significant drawbacks, the most important being that it is

difficult to control the equational simplification, making it hard

to separate out the different components of nested loops or

complex control flow. This makes it difficult for their approach

to extract the logic of the underlying computation into higher-

level structures such as control flow graphs or syntax trees.

By contrast, our approach offers a lot more control over the

deobfuscation process and allows us to recover higher-level

representations, such as control flow graphs, with a high degree

of precision, as illustrated by the data in Figure 9. Importantly,

Coogan et al. limit themselves to emulation-based obfuscation,

and provide data only for one level of emulation; by contrast,

we are able to handle multiple levels of emulation with good

results, and applies to other kinds of programs, e.g., ROPs.

Sharif et al. describe an approach [5] that works from the

outside in: it first reverse engineers the VM emulator; uses

this information to work out individual byte code instructions;

and finally, recovers the logic embedded in the byte code

program. This outside-in approach can be very effective when

the structure of the emulator meets the assumptions of the

analyzer. However, when the emulator uses techniques that do

not fit these assumptions the deobfuscator may not work well.

For example, this approach does not fully deobfuscate code

that has been obfuscated using Themida, which virtualizes the

unpacker routine for emulator instructions; for such programs,

it is able to automatically recover only the unpacker logic

(rather than that of the application), with further analysis then

done manually. We have recently seen similar characteristics

in code obfuscated with other emulation-based obfuscators

as well: e.g., a malware sample for Win32/Kryptik, whose

executable we obtained from virusshare.com, was found to

have been obfuscated using Code Virtualizer, with emulation-

obfuscation applied to just the top-level unpacker routine

rather than the application logic (see Figure 10). We conjecture

that this selective application of emulation-based obfuscation

may have been motivated by a desire to avoid the space and

time overheads that would result from applying this obfusca-

tion to the entirety of the code; nevertheless, this development

suggests that obfuscation-specific approaches that focus on

identifying and reverse-engineering the emulator may become

less effective in the face of selective application of obfuscation.

This approach may also not generalize easily to code that

uses multiple layers of emulation, since it may be difficult to

distinguish between instruction fetches for various emulators.

Some researchers have proposed static approaches for sim-

plifying (quasi-)interpretive code. Udupa et al. [33] discuss

techniques for deobfuscating code that has been obfuscated

using control flow flattening [34], which in some ways resem-

bles emulation-based obfuscation. Jones et al. [35] describe

a technique called partial evaluation for specializing away

interpretive code. The analyses and transformations described

in these works are static, which suggests that it may not be

straightforward to apply them to highly obfuscated malware

binaries, e.g., due to dynamic unpacking and self-modifying

code.

There is a significant and growing body of literature on

return-oriented programming, but most of it deals with attacks

[7], [8], [10], [11] or defenses [9], [36]–[38]. Lu et al. discuss

the conversion of ROP shellcode to semantically equivalent

shellcode that does not use ROP [9], but this work is specific

to ROP and not a generic technique.

VII. CONCLUSIONS

This paper describes a generic approach to deobfuscation

of executable code. Instead of making strong assumptions

about the obfuscation, e.g., the structure of the emulator, we

consider the semantics of the program in terms of the input-to-

output transformation it implements, and focus on identifying,

extracting, and simplifying the code that carries out this

transformation. We have evaluated our approach on emulation-

based obfuscation and return-oriented programs. Experiments

using sophisticated commercial obfuscation tools indicate that

our approach is effective in stripping out the obfuscation and

extracting the logic of the original code.
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