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Abstract—J-PAKE is an efficient password-authenticated key
exchange protocol that is included in the OpenSSL library and
is currently being used in practice. We present the first proof
of security for this protocol in a well-known and accepted
model for authenticated key-exchange, that incorporates online
and offline password guessing, concurrent sessions, forward
secrecy, server compromise, and loss of session keys. This proof
relies on the Decision Square Diffie-Hellman assumption, as well
as a strong security assumption for the non-interactive zero-
knowledge (NIZK) proofs in the protocol (specifically, simulation-
sound extractability). We show that the Schnorr proof-of-
knowledge protocol, which was recommended for the J-PAKE
protocol, satisfies this strong security assumption in a model with
algebraic adversaries and random oracles, and extend the full J-
PAKE proof of security to this model. Finally, we show that by
modifying the recommended labels in the Schnorr protocol used
in J-PAKE, we can achieve a security proof for J-PAKE with a
tighter security reduction.

I. INTRODUCTION

In a password-authenticated key exchange (PAKE) protocol,

two parties who share only a password (i.e., a short secret)

communicate with each other to compute a cryptographically

strong shared secret key, using the password for mutual

authentication. The protocol should not allow an attacker to

obtain any information about the password through simple

eavesdropping, and only allow the attacker to gain information

about one password per protocol session in an active attack.

Basically, this implies that the attacker is not able to obtain

data with which to perform an offline dictionary attack, in

which the attacker would run through a dictionary of possible

passwords offline, checking each one for consistency with the

data. A very good introduction and discussion of this problem

may be found in Jablon [29] or Wu [47]. The seminal work

in the field was the development of Encrypted Key Exchange

(EKE) by Bellovin and Merritt [7], [8], and there has been a

great deal of work since then (for references see, e.g., [28]).

The J-PAKE protocol [24] is a PAKE protocol that has

started seeing wide usage. It is included as an optional protocol

in the OpenSSL library [39] (enabled using a config parameter

during install, see directory crypto/jpake), and has been used in

various products, such as Firefox Sync [16] and Nest products

[38] (as part of the Thread protocol [46]). Its popularity is

likely due not only to its easy description, straightforward

implementation, and practical efficiency, but also because it

seems to be based on a different paradigm than previous

practical PAKE protocols. Those protocols basically used the

password to obfuscate the inputs to a key exchange (e.g., the

gx and gy values in a Diffie-Hellman key exchange), whereas

the J-PAKE protocol uses ephemeral values like a standard

Diffie-Hellman key exchange, but then combines them with

a password in an extra round, such that use of the correct

password makes certain randomization factors vanish. The J-

PAKE designers call this the “juggling” technique and attribute

the first use of the idea to Hao and Zielinski [25]. Due to its

novelty, the designers of J-PAKE claim that it might be useful

in avoiding patent issues around other PAKE protocols.

The original J-PAKE paper claimed to give a proof of

security, but, as pointed out by Katz [31], the proof was not

in one of the well-known accepted models for authenticated

key exchange (e.g., the model from Bellare, Pointcheval, and

Rogaway [5]), and simply proved some ad-hoc properties in an

isolated setting, using implicit assumptions on the adversarial

model. Given its growing popularity, it is important to have

a better understanding of the security of this protocol, using

rigorous and explicit definitions and models. This is especially

true for PAKE protocols, since there are many subtleties

to their security, and many previous PAKE protocols, or

early versions of PAKE protocols (that did not have rigorous

security proofs) have been shown to be insecure [36], [41].

In this paper we present a proof of security for the J-PAKE

protocol in the well-known authenticated key exchange model

of Bellare, Pointcheval, and Rogaway [5], under the Decision

Square Diffie-Hellman (DSDH) assumption, along with other

assumptions described below. The DSDH assumption is sim-

ilar to and at least as strong as the Decision Diffie-Hellman

assumption, but it is not known whether it is strictly stronger.

We note that we could reduce this assumption to DDH and

Computational Square Diffie-Hellman (CSDH)1 by using the

random-oracle model.2

One interesting technique used in the J-PAKE protocol that

has not been used in previous PAKE proofs is the zero-

1Since there is a reduction from DDH to CSDH, we could say this is only
based on DDH. However, there is a quadratic loss in concrete security, so we
prefer to keep the assumptions separate.

2Bellare and Rogaway [6] introduced the random-oracle model in which
hash functions are modeled as random oracles, and argue that proofs in
such an ideal model provide evidence that when the ideal constructs are
instantiated properly (with strong cryptographic implementations), then the
protocol remains secure in practice.
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knowledge (ZK) proof of knowledge. Generally it is difficult

to argue about the security of ZK proofs of knowledge in

a concurrent protocol model. This is because for most known

ZK proofs of knowledge, and even non-interactive ZK (NIZK)

proofs of knowledge in the random-oracle model, rewinding

arguments have been used to prove the extraction property,

which is problematic in a concurrent setting since it can

cause an exponential expansion in simulation cost during

reduction arguments. We initially avoid this issue and assume

the use of NIZK proofs of knowledge that are simulation-

sound extractable [22], with non-rewinding extractors. We call

these SE-NIZK proofs. One could say that this proves the

security of J-PAKE in a rigorous model that captures the

standard intuition behind NIZK proofs of knowledge, and

more specifically, proves security under the DSDH assumption

and the assumptions necessary to prove the internal NIZK

proof of knowledge is simulation-sound extractable.

However, the NIZK proof of knowledge recommended by

the designers of J-PAKE (and used in the current implemen-

tations) is the Schnorr protocol [43], which seems to require

rewinding arguments to prove the extraction property, at least

in the standard computation model. Therefore, to provide

a rigorous proof of security of J-PAKE using the Schnorr

protocol, we turn to the algebraic model [40] (with respect

to a group G), in which an adversary is limited to perform

only group operations on group elements in G. It is similar

to the generic group model of Shoup [44], in which all group

operations are performed using an oracle, but is weaker as,

in particular, it makes no assumption on the representation

of group elements and does not imply by itself that, e.g.,

the discrete logarithm is hard. We show that in the algebraic

model, the Schnorr protocol can be seen as an SE-NIZK proof,

in any proof by reduction, with some restrictions (on the group

elements used by the proof) that our J-PAKE proof does in fact

satisfy. This proof relies on the Discrete Log (DL) assumption

in the random-oracle model. Putting this all together, we have

proven the security of J-PAKE using Schnorr in the algebraic

model and random-oracle model, under the DSDH assumption.

It is worth emphasizing that this is a proof of security that

matches the underlying implementation in OpenSSL, and this

is important in that it allows applications to use J-PAKE in a

way that exactly matches the security proof.3

Returning to the standard computation model, Groth, Os-

trovsky, and Sahai [23] and Groth [22] show how to achieve

SE-NIZK proofs in the common reference string (CRS model).

Garay, MacKenzie, and Yang [17] and MacKenzie and Yang

[37] show how to achieve non-malleable ZK proofs (which

are like SE-NIZK proofs but allowed to be interactive) which

trivially imply SE-NIZK proofs in the CRS and random-oracle

model, and require only a constant number of exponentiations

(but over multiple groups with larger non-prime moduli). Any

of these could replace the Schnorr proof of knowledge in the

3Applications do have some flexibility in how certain labels are chosen
within the protocol, which may affect the security. We discuss this after the
proof in Section VI.

J-PAKE protocol, though none of them would be nearly as

practical.

As a final result, we show that by slightly modifying the

labels used in the Schnorr proofs in the J-PAKE protocol, one

can obtain a simpler security proof, with tighter security reduc-

tions from known cryptographic assumptions. We recommend

using these modified labels in future implementations of the J-

PAKE protocol, if they don’t require backwards compatibility.

Other PAKE protocols. Many previous practical PAKE pro-

tocols have been proven secure in either the random-oracle

model or ideal-cipher model, e.g., [3], [5], [7], [10], [29],

[35], [36]. As shown in [15], [27], the ideal-cipher model

is equivalent to the random-oracle model, when the inputs

and outputs are binary strings. In practice, however, ideal

ciphers for group elements, as required in [5], [7], are difficult

to construct and can have an impact on the efficiency of

the schemes. In addition, a few PAKE protocols have been

proven secure without ideal assumptions. For instance, the

practical protocol of Katz, Ostrovsky, and Yung [32] only

relies on a reasonably short common reference string that is

produced before the protocol begins. This protocol has been

generalized and improved in several follow-up works, such

as [1], [12], [18], [21], [30], [33]. For these protocols, the

common reference string could be simulated using a random

oracle. The protocol of Goldreich and Lindell [19] does not

rely on a common reference string either, but is only proven

secure when protocols sessions are not run concurrently, and

does not seem practical. More recently, Goyal, Jain, and

Ostrovsky [20] improved the work of Goldreich and Lindell

by providing a protocol that is proven secure even when

protocols sessions are run concurrently. Their protocol also

does not seem practical. A detailed comparison of practical

Diffie-Hellman-based PAKE protocols can be found in Table I.

II. DEFINITIONS

Let κ be the cryptographic security parameter. Let G denote

a finite (cyclic) group of order p, where |p| ≥ 2κ. Let g be a

generator of G. We will assume the Decision Square Diffie-

Hellman (DSDH) assumption holds over G (see Section VI).

Let texp be the time required to perform an exponentiation in

G.

If Adv(A) denotes the advantage of some adversary in some

experiment, we write Adv(t) = maxA {Adv(A)}, where the

maximum is taken over all adversaries of time complexity at

most t.

A. Random Oracle

In some cases, cryptographic hash functions will be modeled

as random oracles. Thus whenever a party computes a function

H(x), the party is actually sending a query x to the random

oracle designated for H , and that oracle returns H(x), where

H is a truly random function with domain {0, 1}∗ and range

{0, 1}κ or Zp depending on the case.
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TABLE I
COMPARISON OF PRACTICAL DIFFIE-HELLMAN-BASED PAKE PROTOCOLS PROVEN SECURE IN THE BPR MODEL [5]

Assumptionsa Complexity

Rounds / Flows CRS ROM ICM AAM Communicationb Timec

J-PAKE with Schnorr [24] 2 / 4 or 3 / 3 � �
DSDH or

(CSDH + DDH)
12 × G + 6 × Zp 28 exp (12 exp + 8 mexp)

EKE [5], [7] 1 / 2 � CDH 2 × G 4 exp + 2 memb + 2 enc

SPEKE [29], [35] 1 / 2 � DIDHd 2 × G 4 exp + 2 memb
PPK [10] 2 / 2 � DDH 2 × G 6 exp + 2 memb
SPAKE2 [3] 1 / 2 � CDH 2 × G 4 exp + 2 memb

GK-SPOKE [1], [21], [30] 2 / 2 � DDH + PRGe 6 × G 17 exp (4 exp + 7 mexp) + 6 memb
GL-SPOKE [1], [18], [32] 2 / 2 � DDH 7 × G 21 exp (4 exp + 7 mexp) + 7 memb
KV-SPOKE [1], [33] 1 / 2 � DDH 10 × G 30 exp (2 exp + 12 mexp) + 10 memb

a CRS: common reference string, ROM: random-oracle model, ICM: ideal-cipher model, AAM: algebraic-adversary model;
b G: group elements, Zp: scalars;
c exp: number of exponentiations; mexp: number of multi-exponentiations; memb: verification of the membership of a group element to the cyclic group G. For elliptic curve

with small co-factor, this only costs a small number of additions on the curve, but for subgroups of Zq (q being a prime larger than p, the order of the group G), this costs
an exponentiation (with exponent p− 1); enc: encryption with the ideal cipher; multiplications, hash evaluations, and PRG evaluations are omitted;

d DIDH: decision inverted-additive Diffie-Hellman assumption [35] (see Fig. 2 and the Appendix);
e PRG: pseudo-random generator.

B. Simulation-Sound Extractable Non-Interactive Zero-
Knowledge Proofs

We will assume the zero-knowledge proofs of knowledge

in the J-PAKE protocol are simulation-sound extractable non-

interactive zero-knowledge proofs (SE-NIZK) [22].

Informally, a SE-NIZK enables a prover to prove that some

word or statement x is in a given NP-language L , defined with

some witness relation R, i.e., L = {x | ∃ω, R(x, ω) = 1},
in a zero-knowledge and extractable way. If ω is such that

R(x, ω) = 1, ω is said to be a witness for x. Given, a witness

ω for x, the prover can generate a proof π
R← PK(x, ω, �) for

some label � (and maybe some implicit common reference

string or CRS σ). This proof can be checked by anyone by

running an algorithm VK(x, π, �). We insist that we introduce

an optional CRS for the sake of completeness, but that for

the instantiation of J-PAKE using Schnorr proofs, no CRS is

used.

In addition, knowing some trapdoor τ , it is possible to

simulate any proof for any word x (even outside L ) without

knowing a witness ω. And, knowing some other trapdoor ξ,

it is possible to extract from any valid proof π for any word

x, a witness ω for x. Simulation-sound extractability ensures

that the extraction works even if the adversary sees simulated

proofs (except for the simulated tuples (x, π, �) obviously).

Concretely, in this article, we only consider SE-NIZK proofs

for the language of discrete logarithms: x = (u, h) ∈ G2,

ω = r ∈ Zp, and

R((u, h), r) = 1 ⇐⇒ u = hr.

In other words, our SE-NIZK proofs are proofs of knowledge

of the discrete logarithm of u in base h.

Formal definitions can be found in Section VIII.

We should point out that we assume the extractor is straight-

line: no rewinding is authorized. This rules out using directly

Schnorr proofs, also known as Schnorr signatures [43], (which

are the most efficient NIZK for the discrete logarithm lan-

guage, in the random-oracle model) with a rewinding extractor

based on the forking lemma [42]. Nevertheless, in Section IX,

we show that Schnorr signatures can still be used in J-PAKE,

if we assume adversaries are algebraic. This, however, requires

a careful analysis and the introduction of a weaker form

of simulation-sound extractability, called algebraic-simulation-

sound extractability.

C. Computational Randomness Extractor

The last step of the original J-PAKE protocol consists in

deriving a secret key from a group element. In the original

paper, this is done by using a hash function implicitly modeled

as a random oracle. In this paper, we prefer to formally define

the requirements for this derivation function. More precisely

we suppose it is a (computational) randomness extractor [34],

for random group elements.

Note that if no randomness extractor is used in the J-

PAKE protocol, the protocol would still be secure4. The only

difference would be that the session key would be a random

group element G instead of a random bitstring in {0, 1}κ.

A computational randomness extractor for (uniform) group

elements is a function rExt : {0, 1}t×G→ {0, 1}κ, for some

non-negative integer t, such that, when s
R←{0, 1}t and u

R←G
(independent of s), then (s, rExt(s, u)) is computationally

indistinguishable from a uniform bit string in {0, 1}t×{0, 1}κ.

Formally, given a poly-time adversary A, we consider the

advantage Advcomp-ext
rExt (A) defined as:

Pr
[
s

R←{0, 1}t; u R←G : A(s, rExt(s, u)) = 1
]
−

Pr
[
s

R←{0, 1}t; k R←{0, 1}κ : A(s, k) = 1
]
.

As shown in [34], a hash function H modeled as a random

oracle gives a randomness extractor without seed (s = ⊥, t =
0, rExt(⊥, u) = H(u) ∈ {0, 1}κ) with Advcomp-ext

rExt (A) ≤
nro/p, with nro the number of queries to the random oracle.

4The proof would be the one in Section VI, without the last protocol P8,
and so would actually be slightly simpler.
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Considering a hash function to be a randomness extractor is

weaker than modeling it as a random oracle. However, if such

an assumption is not deemed acceptable, there exist various

alternative solutions: some with seeds such as the left over

hash lemma [26], and some without seeds, but specific to some

groups [13]. For further references on randomness extractors,

see [14].

III. MODEL

For our proofs of security we use a real-or-random variant

of the model of [5] with weak adaptive corruptions (corruption

queries do not reveal the internal state of the principals, but

reveal the password of the principal and can be made at

any point during the protocol) and forward secrecy In [2],

it is shown that this real-or-random variant is stronger than

the original find-then-guess model in [5]. The only difference

with [5] is that we allow multiple Test queries.

Protocol participants and long-lived keys. Participants in

the protocol are either clients and servers. Each client A holds

a password pwA chosen uniformly (and independently) at

random from a dictionary of size N . Each server B holds

a vector of the passwords of all clients, and when running the

protocol with some client A, uses the password pwA of A.

Users are modeled as probabilistic poly-time algorithms that

respond to queries. For any user U , we will let U denote both

the user, and the identifier for the user (e.g., to be used as

input to a function).

Execution of the protocol. A protocol P is an algorithm

that determines how principals behave in response to inputs

from their environment. In the real world, each principal is

able to execute P multiple times with different partners, and

we model this by allowing unlimited number of instances of

each principal. Instance i of principal U is denoted ΠU
i .

To describe the security of the protocol, we assume there is

an adversary A that has complete control over the environment

(mainly, the network), and thus provides the inputs to instances

of principals. Formally, at the beginning of the protocol,

a random bit b is chosen. The adversary is a probabilistic

algorithm with a distinguished query tape. Queries written to

this tape are responded to by principals according to P ; the

allowed queries are formally defined in [5] and summarized

here:

Send (U, i, M): causes message M to be sent to instance

ΠU
i . The instance computes what the protocol says to,

state is updated, and the output of the computation is

given toA. If this query causes ΠU
i to accept or terminate,

this will also be shown to A. To initiate a session between

users A and B the adversary should send a message

containing B to an unused instance of A, or a message

containing A to an unused instance of B.

Execute (A, i, B, j): causes P to be executed to completion

between ΠA
i and ΠB

j , and outputs the transcript of the

execution. This query captures the intuition of a passive

adversary who simply eavesdrops on the execution of

P . It could be simulated with Send queries, but having

separate Execute queries enable to state stronger security

results.

Reveal (U, i): causes the output of the session key held by

ΠU
i .

Test (U, i): causes the output of the session key ski
U , if b =

1; otherwise, a string is drawn uniformly from the space

of session keys and output.

Corrupt (U): causes the client U to output its password.

Partnering. A client or server instance that accepts holds a

partner-id pid , session-id sid (which is the transcript of the

whole protocol), and a session key sk. Then instances ΠA
i

and ΠB
j are said to be partnered if both accept, they hold

(pid , sid , sk) and (pid ′, sid ′, sk′), respectively, with pid = B,

pid ′ = A, sid = sid ′, and sk = sk′, and no other instance

accepts with session-id equal to sid .

Freshness. An instance ΠU
i is fresh unless either (1) a

Reveal (U, i) query occurs, or (2) a Reveal (U ′, j) query

occurs where Πj
U ′ is the partner of Πi

U , or (3) a Corrupt (U ′)
query occurs before ΠU

i defined its key ski
U , and a

Send (U, i, M) query occurred, where U ′ is any participant.

Advantage of the adversary. We now formally define the

authenticated key exchange (ake) advantage of the adversary

against protocol P . Let SuccakeP (A) be the event that A makes

only Test queries directed to fresh instances ΠU
i that have

terminated, and eventually outputs a bit b′, where b′ = b for

the bit b that was selected at the beginning of the protocol.

The ake advantage of A attacking P is defined to be

AdvakeP (A) def
= 2Pr

[
SuccakeP (A)

]
− 1.

The authenticated key exchange is considered secure if only

online dictionary attacks are possible. Concretely, this means

that, if passwords are uniformly and independently drawn from

a dictionary of size N :

AdvakeP (t) ≤ nse/N + ε,

where nse is the number of Send queries (to distinct instances

Πi
U ), and ε is negligible in the security parameter:

The following fact is easily verified.

Fact III.1. Pr(SuccakeP (A)) = Pr(SuccakeP ′ (A))+ε if and only

if AdvakeP (A) = AdvakeP ′ (A) + 2ε.

Both the model and our proofs can be extended (in a

straightforward way) when the password distribution is not

uniform but only has some min-entropy m. In this case, we

want that AdvakeP (t) ≤ nse/2
m + ε.

IV. J-PAKE PROTOCOL

Here we present the J-PAKE protocol from [24].

A. Informal version

Informally, Alice and Bob, who share a password pw, do

the following:

Round 1 Alice randomly generates gx1 , gx2 , Bob randomly

generates gx3 , gx4 , Alice and Bob send these values to each
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other, along with NIZK proofs for the exponents (denoted

π1, π2, π3, π4 respectively).

Round 2 Alice sends α = (gx1+x3+x4)x2pw to Bob along

with an NIZK proof πα for the exponent x2pw. Bob sends

β = (gx1+x2+x3)x4pw to Alice along with an NIZK proof πβ

for the exponent x4pw.

Session Key Generation, Alice computes K =
(β/gx2x4pw)x2 , and Bob computes K = (α/gx2x4pw)x4 .

They both compute a session key sk = rExt(s,K), where

s is a public random seed in {0, 1}t. This is a slight

generalization of the original J-PAKE protocol, where there

was no seed (t = 0) and sk = rExt(⊥,K) = H(K), with H
being a hash function behaving as a randomness extractor.

B. Formal version

In Fig. 1, we present a fully specified version of the J-PAKE

protocol.

While the protocol is written symmetrically for users A
and B, clients and servers are disjoint, and thus only clients

generate X1, X2, α, and only servers generate X3, X4, β.

We do not need to suppose any ordering between flows

in each round. In particular, it is possible to merge the flow

(B,X3, X4, π3, π4) with the flow (β, πβ) to get a three-

flow protocol, although it seems it was not done in concrete

implementations [16], [39].

V. SECURITY ASSUMPTIONS

Here we state the assumptions we use for the remainder of

the paper. We assume we have a cyclic group G of prime order

p generated by element g. Relations between assumptions are

summarized in Fig. 2 on Page 6.

Discrete Logarithm (DL). An algorithm for the discrete

logarithm problem takes an element X = gx ∈ G, and

attempts to output its discrete logarithm x. Let A be an

algorithm with input X . Let AdvDL
G (A) be

Pr
[
x

R← Zp; X ← gx : A(X) = x
]
.

Computational Diffie-Hellman (CDH). For two values X =
gx and Y = gy , let DH(X,Y ) = gxy be the Diffie-Hellman

value corresponding to X and Y . An algorithm for the

Computational Diffie-Hellman takes two elements X and Y ,

and outputs the Diffie-Hellman value of X and Y . Let A be

an algorithm with input (X,Y ). Let AdvCDH
G (A) be

Pr
[
(x, y)

R← Z
2
p; X ← gx; Y ← gy :

A(X,Y ) = DH(X,Y )
]
.

Decision Diffie-Hellman (DDH). An algorithm for the Deci-

sion Diffie-Hellman takes three elements X , Y , and Z, and

attempts to distinguish whether Z is the Diffie-Hellman value

corresponding to X and Y , or is a random element of G. Let

A be an algorithm with input (X,Y, Z). Let AdvDDH
G (A) be

Pr
[
(x, y)

R← Z
2
p; X ← gx; Y ← gy; Z← DH(X,Y ) :

A(X,Y, Z) = 1
]

− Pr
[
(x, y, z)

R← Z
3
p; X ← gx; Y ← gy; Z← gz :

A(X,Y, Z) = 1
]
.

See [9] for a discussion on hardness of DDH over various

groups.

Note that DDH is random self-reducible. That is, from a

single DDH tuple (X,Y, Z) we can generate any number

of random independent DDH tuples with the same property

(either DH or random) by choosing a1, b1, b2
R← Zp, and

generating (Xa1gb1 , Y gb2 , Za1Xa1b2Y b1gb1b2).
Note also that DDH can be solved with one application of

CDH, and CDH can be solved with one application of DL so

AdvDDH
G (t) + 1/p ≥ AdvCDH

G (t) ≥ AdvDL
G (t).

Computational Square Diffie-Hellman (CSDH). For value

X = gx, let SDH(X) = gx
2

be the square Diffie-Hellman

value corresponding to X . An algorithm for Computational

Square Diffie-Hellman takes an element of G, and computes

the square Diffie-Hellman value. Let A be an algorithm with

input X . Let AdvCSDH
G (A) be

Pr
[
x

R← Zp; X ← gx : A(X) = SDH(X)
]
.

Note that CSDH is random self-reducible. That is, from a

single instance of CSDH we can generate multiple random

instances such that if we find the square of one, then we can

find the square of the original instance. Given an instance X ,

generate a new instance X ′ = Xgr for r
R← Zp. Then X ′ is a

random instance, where SDH(X) = SDH(X ′)X−2rg−r2 .

Since the CDH problem can be solved using 2 SDH values

of independently chosen elements [11], it is easy to show

that for t′ = t + O(texp), Adv
CDH
G (t) ≥ (AdvCSDH

G (t′))2, or

equivalently, AdvCSDH
G (t) ≤ (AdvCDH

G (t′))1/2, where texp is

the time for an exponentiation in G.

Decision Square Diffie-Hellman (DSDH). An algorithm for

Decision Square Diffie-Hellman takes two elements X and

Y , and attempts to distinguish wether Y is the square Diffie-

Hellman value corresponding to X , or is a random element of

G. Let A be an algorithm with input X . Let AdvDSDH
G (A) be

Pr
[
x

R← Zp; X ← gx; Y ← SDH(X) : A(X,Y ) = 1
]

− Pr
[
(x, y)

R← Z
2
p; X ← gx; Y ← gy : A(X,Y ) = 1

]
.

Bao et al. [4] show that AdvDDH
G (t) ≤ AdvDSDH

G (t′), for

t′ = t+O(texp).
Note that DSDH is random self-reducible. That is, from

a single DSDH tuple (X,Y ) we can generate any number

of random independent DSDH tuples with the same property

(either SDH or random) by choosing a, b
R← Zp, and generating

(Xagb, Y a2

X2abgb
2

).
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Public information: G, g, p, σ
R← Setup(1κ), s

R←{0, 1}t
Secret information: pw ∈ Zp, pw �= 0

Client A Server B

x1, x2
R← Zp x3, x4

R← Zp

X1← gx1 X3← gx3

X2← gx2 X4← gx4

π1
R← PK((X1, g), x1, A) π3

R← PK((X3, g), x3, B)

π2
R← PK((X2, g), x2, A) π4

R← PK((X4, g), x4, B)
〈A,X1,X2,π1,π2〉�
〈B,X3,X4,π3,π4〉�

Abort if X4 = 1 Abort if X2 = 1
Abort if VK((X3, g), π3, B) fails Abort if VK((X1, g), π1, A) fails
Abort if VK((X4, g), π4, B) fails Abort if VK((X2, g), π2, A) fails
α← (X1X3X4)

x2pw β← (X1X2X3)
x4pw

πα
R← PK((α,X1X3X4), x2pw, A) πβ

R← PK((β,X1X2X3), x4pw, B)
〈α,πα〉 �
〈β,πβ〉�

Abort if VK((α,X1X3X4), πα, A) fails Abort if VK((β,X1X2X3), πβ , B) fails

K← (βX−x2pw
4 )x2 K← (αX−x4pw

2 )x4

sk← rExt(s,K) sk← rExt(s,K)

Fig. 1. Generalized version of J-PAKE in which a random extractor is used to derive sk from K. The original J-PAKE protocol is a particular case where
t = 0, s =⊥, rExt(s,K) = H(K), and H is a hash function behaving as a randomness extractor.

DL

CDH DDH

DSDHCSDH

DTGDH

DIDHCIDH

CDH ≥ DL

CSDH ≥ DL

CIDH ≥ (DL)2

DDH ≥ CDH− 1/p

DSDH ≥ DDHDTGDH ≥
DDH

DDH ≥
DTGDH/3

C
S
D
H
≥

C
D
H

C
D
H
≥

(C
S
D
H
)2

DSDH ≥ CSDH− 1/p

C
S
D
H
≥

C
ID

H
−

1
/
p

DSDH ≥ DIDH− 1/p

DIDH ≥ CIDH− 1/p

Fig. 2. Relations between assumptions. DL, CDH, . . . correspond to the advantage of an adversary for these problems (AdvDL
G (t), . . . ). An arrow indicates

an implication, e.g., the arrow from CDH to DL means that, if CDH is hard, so is DL. A dotted arrow means there is an important loss in the reduction (here
a quadratic loss). Our proof for J-PAKE is either under DSDH (the strongest assumption), or under DDH and CSDH (slightly weaker assumptions) but in the
random-oracle model. CIDH and DIDH are used to prove the security of the SPEKE protocol [29], [35] (see Table I and the Appendix).
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Decision Triple Group Diffie-Hellman (DTGDH). For val-

ues X = gx, Y = gy , Z = gz , let TDH(X,Y, Z) = gxyz be

the triple Diffie-Hellman value corresponding to X , Y , and

Z. An algorithm for Decision Triple Group Diffie-Hellman

takes a triple of elements of G, their pairwise Diffie-Hellman

values, and an element W from G, and attempts to distinguish

whether W is the Triple Diffie-Hellman value corresponding

to X , Y , and Z, or is a random element of G. Let A be

an algorithm with input (X,Y, Z,DXY , DXZ , DY Z ,W ). Let

AdvDTGDH
G (A) be

Pr
[
(x, y, z)

R← Z
3
p; X ← gx; Y ← gy; Z← gz;

DXY ← DH(X,Y ); DXZ ← DH(X,Z);

DY Z ← DH(Y, Z); W ← TDH(X,Y, Z) :

A(X,Y, Z,DXY , DXZ , DY Z ,W ) = 1
]

− Pr
[
(x, y, z, w)

R← Z
4
p; X ← gx; Y ← gy; Z← gz;

DXY ← DH(X,Y ); DXZ ← DH(X,Z);

DY Z ← DH(Y, Z); W
R← gw :

A(X,Y, Z,DXY , DXZ , DY Z ,W ) = 1
]
.

Note that DTGDH is random self-reducible. That is, from

a single DTGDH tuple

(X,Y, Z,DXY , DXZ , DY Z ,W )

we can generate any number of random independent DTGDH

tuples with the same property (either TDH or random) by

choosing a, b1, b2, b3
R← Zp, and generating

(X ′, Y ′, Z ′, D′XY , D
′
XZ , D

′
Y Z ,W

′),

where

X ′←Xagb1 , D′Y Z ←DY ZY
b3Zb2gb2b3 ,

Y ′← Y gb2 , D′XZ ← (DXZ)
aXab3Zb1gb1b3 ,

Z ′← Zgb3 , D′XY ← (DXY )
aXab2Y b1gb1b2 ,

W ′←W a(DXY )
ab3(DXZ)

ab2(DY Z)
b1

Xab2b3Y b1b3Zb1b2gb1b2b3 .

DTGDH is also random partial self-reducible, in that from

a single DTGDH tuple

(X,Y, Z,DXY , DXZ , DY Z ,W )

we can generate any number of random DTGDH tuples with

the same Y value by choosing a, b1, b3
R← Zp, and generating

(Xagb1 , Y, Zgb3 , (DXY )
aY b1 , (DXZ)

aXab3Zb1gb1b3 ,

DY ZY
b3 ,W a(DXY )

ab3(DY Z)
b1Y b1b3).

Steiner et al. [45] show that polynomial indistinguishability

of DDH implies polynomial indistinguishability of DTGDH,

and from their proof one can see that for t′ = t+O(texp),

AdvDTGDH
G (t) ≤ 3AdvDDH

G (t′).

VI. J-PAKE SECURITY

Here we prove that the J-PAKE protocol is secure, in the

sense that an adversary attacking the system cannot determine

session keys with advantage non-negligibly greater than that

of an online dictionary attack.

Theorem VI.1. Let P be the protocol described in Fig. 1,
using group G, and with a password dictionary of size N . Fix
an adversary A that runs in time t, and makes nse queries of
type Send to different instances, and makes nex, nre, nte, nco

queries of type Execute, Reveal, Test, Corrupt, respectively.
Then for t′ = O(t+ (nse + nex + nco)texp):

AdvakeP (A) = nse

N
+O

(
(nse + nex)

2

p
+ nseAdv

DL
G (t′)+

nseAdv
DSDH
G (t′) + (nex + n2

se)Adv
DDH
G (t′)+

AdvuzkNIZK(t
′, 2nse + nex) + AdvextNIZK(t

′, 2nse + nex)+

(nre + nte)Adv
comp-ext
rExt (t′)

)
,

where Advuzk and Advext are advantages for the security of
the SE-NIZK, formally defined in Section VIII.

Proof: Our proof will proceed by introducing a series

of protocols P0, P1, . . . , P8 related to P , with P0 = P .

We will bound the decrease in the advantage of A in each

successive protocol, and finally in P8, A will be reduced to a

simple online guessing attack that will admit a straightforward

analysis. We describe these protocols informally in Fig. 3.

We will assume the session key is simply the K value

instead of H(K), and use that for all Reveal and Test queries.

Since H(K) can be computed from K, this only strengthens

our proof.

To simplify our analysis, we use the following terminology

and shorthand. When we say an instance receives a value

that has a corresponding NIZK proof, this implies that the

instance was ready to accept that value and that the NIZK

proof was valid. Otherwise, the instance simply rejects. We

say a client (resp. server) instance is a matching instance if

it has a buddy instance with the same X1, X2, X3, X4 values

and also the same β (resp. α) value. We say a client (resp.

server) instance is a swapping instance if it has a buddy
instance with the same X3, X4, β (resp. X1, X2, α) values, but

flipped X1, X2 (resp. X3, X4) values We say a client (resp.

server) instance is an almost matching/swapping instance if

it is a matching/swapping instance except for the value of

X4 (resp. X2). We say an instance is detached if it is not a

matching/swapping or almost matching/swapping instance.

For a detached instance, we say a Send query containing

α (resp. β) to corresponds to a password pw if for the

X1, X2, X3, X4 values of the instance receiving the Send
query, pw = DL(α,X1X3X4)/DL(X2, g) (resp. pw =
DL(β,X1X2X3)/DL(X4, g)). The exact way in which these

values are computed depends on the specific protocol and

will be explained later in the proof. For a matching/swapping

instance, we say the Send query containing α or β always
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P0 Original: The original protocol P .
P1 Simulate and Extract: Choose all passwords pw of clients randomly (and independently) and simulate

all Execute, Send, Reveal, Test, and Corrupt queries just like normal instances, except using the
simulator for the NIZK proof in Execute and Send queries, and running the extractor for the NIZK
proofs produced by the adversary, failing if the extraction fails.

P2 Force Uniqueness: If any instance chooses an X1, X2, X3, or X4 value seen previously in the execution
of the protocol, the protocol halts and the adversary fails.

P3 Disallow Trivial DL Attacks: Take two instances ΠA
i and ΠB

j that generate X1, X2 and X3, X4,
respectively. Then on any of the following situations, the protocol halts and the adversary fails.

1) Before sending a β query to ΠA
i , the adversary sends X ′

1, X
′
2 to ΠB

j where X1X2 = X ′
1X

′
2 but

X ′
1 �= X1 and X ′

1 �= X2.
2) Before sending an α query to ΠB

j , the adversary sends X ′
3, X

′
4 to ΠA

i where X3X4 = X ′
3X

′
4 but

X ′
3 �= X3 and X ′

3 �= X4.
3) Before sending an α query to ΠB

j , the adversary sends X ′
3, X

′
4 to ΠA

i and X ′
1 to ΠB

j , where
X1X

′
3X

′
4 = X ′

1X3X4, but X ′
1 �= X1.

4) Before sending a β query to ΠA
i , the adversary sends X ′

1, X
′
2 to ΠB

j and X ′
3 to ΠA

i , where
X1X2X

′
3 = X ′

1X
′
2X3, but X ′

3 �= X3.

P4 Check Password Guesses: If before a Corrupt query, the adversary makes a Send query to an instance
corresponding to a correct password pw using an α or β value such that the instance is not a matching
instance or swapping instance, the protocol halts and the adversary succeeds.

P5 Randomize Session Keys For Wrong Password Guesses: In any instance that is not a matching or
swapping instance, and whose Send query (for α or β) corresponds to an incorrect password, set K
randomly.

P6 Randomize Session Keys For Paired Instances: In any matching or swapping instance, set K randomly
(with matching buddies getting the same K).

P7 Randomize α and β: If a Corrupt query has not occurred, generate α and β values randomly in all
instances. For an instance that is not a matching nor swapping instance, and whose Send query (for α
or β) corresponds to the correct password (i.e., after a Corrupt query), compute K as the other party
would have.

P8 Randomize sk: In any instance in which K is set randomly, set sk randomly (with matching buddies
getting the same sk).

Fig. 3. Description of protocols P0 through P8

corresponds to the correct password pw. For an almost match-

ing/swapping instance, we say the Send query containing α
or β always corresponds to an incorrect password. Note that

in P8, the passwords aren’t used anymore in any simulations,

except for checking passwords in P4. It is easy to see that this

is equivalent to a protocol with a password guessing oracle,

that is queried at most once per non-matching instance (since

we know the discrete logs of all values). Then it is trivial

to show that when the passwords are chosen randomly (and

independently) from a set of size N the probability of an

attacker succeeding is at most nse/N .

For each i from 1 to 8, we will bound the increase in

the advantage of A attacking protocol Pi−1 compared to the

advantage of A attacking protocol Pi.

Protocol P1 (simulate and extract). In this protocol, we

choose all passwords pw of clients randomly (and indepen-

dently) and simulate all Execute, Send, Reveal, Test, and

Corrupt queries just like normal instances, except using the

simulator for the NIZK proof in Execute and Send queries,

and running the extractor for the NIZK proofs produced by

the adversary, failing if the extraction fails.

Protocol P1 behaves exactly like P0, except for the simula-

tion of the NIZK proofs and failing on unsuccessful NIZK

extractions. From the unbounded zero-knowledge property,

and the simulation-sound extractability property of the NIZK,

AdvakeP0
(A) = AdvakeP1

(A) +O
(
AdvuzkNIZK(t

′, 2nse + nex)+

AdvextNIZK(t
′, 2nse + nex)

)
Note that in P1, the simulator obtains all adversarial values of

x1, x2, x3, x4, pw from the NIZK extractions.

Protocol P2 (force uniqueness). If any instance chooses an

X1, X2, X3, or X4 value seen previously in the execution

of the protocol, the protocol halts and the adversary fails.

Protocols P1 and P2 are only distinguishable if we hit the

“birthday paradox”.

AdvakeP1
(A) = AdvakeP2

(A) +O

(
(nse + nex)

2

p

)
.

Protocol P3 (disallow trivial DL attacks). Take two

instances ΠA
i and ΠB

j that generate X1, X2 and X3, X4,

respectively. Then on any of the following situations, Pro-

tocol P3 halts and the adversary fails.

1) Before sending a β query to ΠA
i , the adversary sends

X ′
1, X

′
2 to ΠB

j where X1X2 = X ′
1X

′
2 but X ′

1 �= X1

and X ′
1 �= X2.

2) Before sending an α query to ΠB
j , the adversary sends
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X ′
3, X

′
4 to ΠA

i where X3X4 = X ′
3X

′
4 but X ′

3 �= X3

and X ′
3 �= X4.

3) Before sending an α query to ΠB
j , the adversary sends

X ′
3, X

′
4 to ΠA

i and X ′
1 to ΠB

j , where X1X
′
3X

′
4 =

X ′
1X3X4, but X ′

1 �= X1.

4) Before sending a β query to ΠA
i , the adversary sends

X ′
1, X

′
2 to ΠB

j and X ′
3 to ΠA

i , where X1X2X
′
3 =

X ′
1X

′
2X3, but X ′

3 �= X3.

We will bound the advantage increase in each part using

reduction from DL. Take an instance of DL with value X .

For part 1, choose a random client instance ΠA
i and set

X1 = X and X2 = gx2 . Then if the adversary sends X ′
1, X

′
2

to an instance of B where X1X2 = X ′
1X

′
2 but X ′

1 �= X1

and X ′
1 �= X2, use x′1, x

′
2 obtained from extracting witness

from NIZK proofs (or from the simulation of an instance of

A), and compute the discrete log of X as x′1x
′
2/x2. Note that

ΠA
i can still be simulated perfectly since the discrete log of

X1 is never used except in an NIZK proof, which is already

simulated.

Part 2 is similar.

For part 3, choose a random client instance ΠA
i and set

X1 = X and X2 = gx2 . Then if the adversary sends X ′
3, X

′
4

to ΠA
i and X ′

1, X
′
2 (for some X ′

2) to an instance ΠB
j that

produced X3, X4, where X1X
′
3X

′
4 = X ′

1X3X4 but X ′
1 �= X1,

use x′1, x
′
3, x

′
4 obtained from extracting witnesses from NIZK

proofs (or from simulations of instances of A and B), and

compute the discrete log of X as x′1x3x4/x
′
3x
′
4. Note that

ΠA
i can still be simulated perfectly since the discrete log of

X1 is never used except in an NIZK proof, which is already

simulated.

Part 4 is similar.

AdvakeP2
(A) = AdvakeP3

(A) +O
(
nseAdv

DL
G (t′)

)
.

Protocol P4 (check password guesses). If before a Corrupt

query, the adversary makes a Send query to an instance

corresponding to a correct password pw using an α or β
value such that the instance is not a matching instance

or swapping instance, the protocol halts and the adversary

succeeds.

Note that to determine if a Send query corresponds to a

correct password pw, it is only necessary to know either the

2 discrete logs (of α and X2, or β and X4) or one of the

discrete logs and the password pw. For instance, with just pw
and the discrete log y of α we can check if gy/pw = X2. Also

note that for an NIZK proof generated by the adversary, this

value y can be extracted by the NIZK extractor and verified.

In every protocol and reduction argument used before P8, we

will know pw, and at least one of the discrete logs for every

Send query of interest, and in P8, we will know all discrete

logs for any Send query of interest.

Note that in P4, the advantage of the adversary can only

increase.

AdvakeP3
(A) ≤ AdvakeP4

(A).

Protocol P5 (randomize session keys for wrong password
guesses). In any instance that is not a matching or swapping

instance, and whose Send query (for α or β) corresponds

to an incorrect password, we set K randomly.

At this point we may assume that for a Send query with

α or β, the recipient is either matching or swapping, the

query corresponds to an incorrect password guess, or the query

corresponds to a correct password guess and either there has

been a Corrupt query or the simulation is halted.

We split this proof up and first examine a protocol P4.5

that only sets K randomly in the relevant instances of A. We

bound the advantage increase using a reduction from DSDH.

Use a hybrid argument and consider the ith instance of A,

where all previous instances set K randomly if necessary, and

all later instances use the normally computed K.

Given a DSDH instance (X,Y ), let ΠA
i set X1 = gx1

and X2 = X . When ΠA
i receives X ′

3, X
′
4 values, use x′3, x

′
4

values obtained from extracting witnesses from NIZK proofs

(or from the simulation of an instance of B), and set α =
(Xx1+x′

3+x′
4)pw. If that instance receives a Send query with

β, use the y value obtained from extracting a witness for β (or

from the simulation of an instance of B), and let pw′ = y/x4

be the password associated with the β value and compute

K = X(x1+x′
3)x

′
4pw

′
Y x′

4(pw
′−pw). Note that if x is the (un-

known) discrete log of X , then K would have been computed

by A as K = (βg−x′
4xpw)x = gx(x1+x′

3)x
′
4pw

′
gx

2x′
4(pw

′−pw),

which is the actual K value computed if Y = gx
2

, or if

pw′ = pw (which will always be the case for matching or

swapping instances). On the other hand, if Y is random and

this is an incorrect password guess (i.e., pw′ �= pw), then

K will be random since it will depend on Y , since x′4 �= 0
(because the protocol checks that X4 �= 1) and pw′− pw �= 0.

All that is left to show is that any instance ΠB
j that generates

X3, X4, and has received X ′
1, X

′
2, and that that receives a Send

query using this α may be simulated. If it doesn’t use this α,

then it can obtain the discrete log of α and satisfy P4. If it

uses this α, and X ′
2 �= X2, then it can obtain the discrete

log of X ′
2 and satisfy P4. If it uses this α and X ′

2 = X2,

then because the NIZK proof for α specifies X1X
′
3X

′
4, we

can assume X1X
′
3X

′
4 = X1X3X4. But by P3, this implies

X ′
1 = X1. But then X ′

3X
′
4 = X3X4, and again by P3, this

implies (X ′
3, X

′
4) = (X3, X4) or (X ′

3, X
′
4) = (X4, X3), i.e.,

it is matching or swapping. Therefore no password test is

necessary, so no discrete log is necessary.

The number of hybrids is bounded by the number of

different instances, which is bounded by nse. Therefore we

get the following bound.

AdvakeP4
(A) ≤ AdvakeP4.5

(A) + nseAdv
DSDH
G (t′).

Using a perfectly analogous argument, we can prove the

same bound on the advantage increase from P5 to P4.5.

Combining the two results above, we have

AdvakeP4
(A) = AdvakeP5

(A) +O(nseAdv
DSDH
G (t′)).
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Protocol P6 (randomize session keys for paired instances).
In any matching or swapping instance, we set K randomly

(with matching buddies getting the same K).

We bound the advantage increase in the advantage of the

adversary from P6 to P5 using a reduction from DTGDH.

Use a hybrid argument and consider the ith instance of A
(ΠA

i ) and jth instance of B (ΠB
j ), where all lexicographically

previous instances of A and B that are full-matching or

full-swapping set K randomly, and all lexicographically later

instances set K normally. We will proceed assuming Send
queries between these instances. For Execute queries, the

results hold by assuming they are matching Send queries.

Take a DTGDH instance (X,Y, Z,DXY , DXZ , DY Z ,W ).
For ΠA

i , set X1 = gx1 and X2 = X , and for ΠB
j , set X3 =

Y , X4 = Z. On a query (X ′
3, X

′
4) to ΠA

i with {X ′
3, X

′
4} =

{X3, X4}, set α = (DXY DXZX
x1)pw. For other queries to

A, compute α using either the x′3 and x′4 values obtained by

extraction from the NIZK proof, or from the simulation of

an instance of B, or the DXY and DXZ values. Similarly,

on a query (X ′
1, X

′
2) to ΠB

j with {X ′
1, X

′
2} = {X1, X2}, set

β = (DXZDY ZZ
x1)pw. For other queries to B, compute β

using either the x′1 and x′2 values obtained by extraction from

the NIZK proof, or from the simulation of an instance of A,

or the DXZ and DY Z values.

Now consider a Send query to ΠA
i with a value β. If

this is a matching or swapping instance with buddy ΠB
j ,

set K = (Dx1

XZW )pw. If W = TGDH(X,Y, Z), then this

simulates computing K normally, and if W is random, then

K is random.

Now for the other cases, if β is not from ΠB
j , then we

can extract the discrete log, and satisfy P4. If β is taken

from ΠB
j , X ′

3 = X3 and {X ′
1, X

′
2} = {X1, X2} for the

values X ′
1, X

′
2 received by ΠB

j , by P3. But because this is

not matching of swapping, X ′
4 �= X4, so the instance is

almost matching/swapping and the corresponding password

guess would be incorrect. Again this satisfies P4. Note that

in the case when the password guess is correct and we are

continuing (which because of P4 means there was a Corrupt
query), then we will know DL(X4, g), so we can compute K
as B would.

Now consider a Send query to ΠB
i with a value α. If

this is a matching or swapping instance with buddy ΠA
i ,

set K = (Dx1

XZW )pw. If W = TGDH(X,Y, Z), then this

simulates computing K normally, and if W is random, then

K is random.

Now for the other cases, if α is not from ΠA
i , then we

can extract the discrete log, and satisfy P4. If α is taken

from ΠA
i , X ′

1 = X1 and {X ′
3, X

′
4} = {X3, X4} for the

values X ′
3, X

′
4 received by ΠA

i , by P3. But because this is

not matching of swapping, X ′
2 �= X2, so the instance is

almost matching/swapping and the corresponding password

guess would be incorrect. Again this satisfies P4. Note that

in the case when the password guess is correct and we are

continuing (which because of P4 means there was a Corrupt
query), then we will know DL(X2, g), so we can compute K

as A would.

Because there are at most n2
se pairs of instances receiving

Send queries, and at most nex pairs of instances in execute

queries, we get the following bound.

AdvakeP5
(A) = AdvakeP6

(A) +O((nex + n2
se)Adv

DTGDH
G (t′)).

Protocol P7 (randomize α and β). If a Corrupt query

has not occurred, we generate α and β values randomly in

all instances. For an instance that is not a matching nor

swapping instance, and whose Send query (for α or β)

corresponds to the correct password (i.e., after a Corrupt
query), compute K as the other party would have.

First consider generating only the α values randomly.

Use a hybrid argument and consider the ith instance of A
(ΠA

i ), where all previous instances use random exponents in

place of x2pw to compute their α values and all later instances

use actual α values.

We reduce from DDH. If the attacker succeeds in the

protocol, we let the DDH attacker guess b = 1 (i.e., a valid

DDH instance). Take a DDH instance (X,Y, Z). Let ΠA
i set

X1 = X , X2 = Y . On a Send query with X ′
3, X

′
4, use x′3, x

′
4

values obtained from the NIZK extractor, or from a simulation

of B, and compute α = (ZX
x′
3+x′

4
2 )pw. On a Send query with

β, use the y value obtained from the NIZK extractor to satisfy

P7, and complete the simulation of A. For other instances of

A which receive Send queries with β corresponding to the

correct password, use the x′3, x
′
4, y values obtained from the

NIZK extractor, or from the simulation of B to compute K as

B would. This is critical when α is random, to ensure that the

instance computes the same K as the adversary would. Given a

real DDH tuple, this will be equivalent to P6. Given a random

tuple, this will be equivalent to the hybrid protocol. If the

adversary succeeds in the protocol, output b = 1, otherwise

output b = 0.

To show that it is equivalent, we must show that we

can determine correct password guesses for Send queries

that do not correspond to matching, swapping, or almost

matching/swapping instances. Consider a Send query to ΠB
j

with a value α, where ΠB
j is not matching, swapping, or

almost matching/swapping. If α is not from ΠA
i , then we

can extract the discrete log, determine whether it is correct

or not and satisfy P4. Note that if the password guess is

correct and we are continuing (which because of P4 means

there was a Corrupt query), then we will know DL(X2, g), so

we can compute K as A would. If α is taken from ΠA
i , then

X ′
1 = X1 and {X ′

3, X
′
4} = {X3, X4} for the values X ′

3, X
′
4

received by ΠA
i , by P3. So ΠB

j is a matching/swapping or

almost matching/swapping instance, and we set K randomly

in either case, by P5 and P6.

The reduction for generating random β values is analogous.

AdvakeP6
(A) ≤ AdvakeP7

(A) + 2nseAdv
DDH
G (t′).
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Protocol P8 (randomize sk). In any instance in which K is

set randomly, we set sk randomly (with matching buddies

getting the same sk).

This protocol is computationally indistinguishable from the

previous one, as rExt is a computational randomness extractor.

AdvakeP7
(A) ≤ AdvakeP8

(A) + (nre + nte)Adv
comp-ext
rExt (t′).

That concludes the proof.

VII. J-PAKE LABEL VARIANTS

In the proof of Theorem VI.1, the labels in the NIZK proofs

are the ones suggested in [24], namely, the label is the identity

of the principal who generated the proof. Since principals are

either server or client, this label implicitly indicates whether

the proof has been generated by a client or a server.

In the OpenSSL implementation [39] of J-PAKE (more

precisely, in programs s_client and s_server) and in the

Firefox Sync [16] implementation, the label is just “client” or

“sender” for the client and “server” or “receiver” for the server.

We could actually adapt our proof to these labels, in the case

where there is only a single server. However, when there are

many servers, the adversary can make a client A authenticate

to a server B1, while making the client believe it authenticates

to another server B2, if A uses the same password on B1 and

B2. The attack just consists in redirecting flows from A to B1

to B2.

Finally, if labels contained more information, such as

(A,X1, X2) for π1 and π2, (A,B,X1, X2, X3, X4) for πα,

and the corresponding data for the server’s labels, then the

proof would be simpler and tighter. In particular, protocol P3

would not be necessary anymore, and we could use random

self-reducibility of the DSDH assumption. If, in addition,

the server B only sends its first flow after receiving the

client’s first flow, then the proof would be even simpler

and tighter, by using partial random self-reducibility of the

DTGDH assumption. With these changes,

Theorem VII.1. Let P be the protocol described in Fig. 1
with modified labels as described above, using group G, and
with a password dictionary of size N , and where the first
flow of the server is sent after receiving the first flow of the
client. Fix an adversary A that runs in time t, and makes nse

queries of type Send to different instances, and makes nex,
nre, nte, nco queries of type Execute, Reveal, Test, Corrupt,
respectively. t′ = O(t+ (nse + nex + nco)texp):

AdvakeP (A) = nse

N
+O

(
(nse + nex)

2

p
+ AdvDSDH

G (t′)+

(nse + 1)AdvDDH
G (t′) + AdvuzkNIZK(t

′, 2nse + nex)+

AdvextNIZK(t
′, 2nse + nex) + (nre + nte)Adv

comp-ext
rExt (t′)

)
.

Finally, we note that if we set sk = H(K) where H
is a random oracle (or, in other words, if the randomness

extractor rExt is a random oracle), we could replace the

DSDH assumption with the CSDH assumption, and specifi-

cally replace AdvDSDH
G (t′) with nroAdv

CSDH
G (t′) in the theo-

rem above, where nro is the number of random oracle queries.

This follows from modifying the reduction in P5 to use the

adversaries random oracle queries to H to determine guesses

for the square Diffie-Hellman values.

VIII. SIMULATION-SOUND EXTRACTABLE

NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS

Before explaining how to extend the proof of security of

J-PAKE to use Schnorr proofs instead of SE-NIZK proofs, let

us first formally recall some definitions from [22], extended

to the case of labeled non-interactive proof systems.

A. Non-interactive proof systems

Intuitively a proof system is a protocol which enables a

prover to prove to a verifier that a given word or statement x
is in a given NP-language. We are interested in non-interactive

proofs, i.e., proofs such that the prover just sends one message.

More formally, let L be a language in NP with witness

relation R, i.e., L = {x | ∃ω, R(x, ω) = 1}. We

suppose R(x, ω) can be checked in poly-time. A labeled

non-interactive proof system for L is defined by a tuple

(Setup,PK,VK), such that:

Setup(1κ) outputs a common reference string (CRS) σ;

PK(σ, x, ω, �) takes as input a CRS σ
R← Setup(1κ), a word

x ∈ L , a witness ω for x (such that R(x, ω) = 1), and a

label � ∈ {0, 1}∗, and outputs a proof π that x is in L ,

for label �;
VK(σ, x, π, �) takes as input the CRS σ, a word x, a proof π,

and a label �, and outputs 1 to indicate acceptance and 0
otherwise;

and such that the following two properties hold:

Perfect completeness. A non-interactive proof is complete if

an honest prover knowing a statement x ∈ L and a

witness ω for x can convince an honest verifier that x
is in L , for any label. More formally, (Setup,PK,VK)
is said to be perfectly complete, if for all �, for all x ∈ L
and ω such that R(x, ω) = 1, for all σ

R← Setup(1κ), we

have VK(σ, x,PK(σ, x, ω, �), �) = 1;

Soundness. A non-interactive proof is sound if no poly-

time adversary A can prove a false statement with non-

negligible probability. Let AdvsoundNIZK (A) be:

Pr
[
σ

R← Setup(1κ); (�, x, π)
R←A(σ) :

VK(σ, x, π, �) = 1 and x /∈ L
]
≤ ε.

B. Simulation-Sound Extractable Non-interactive zero-
knowledge proofs (SE-NIZK)

An (unbounded) SE-NIZK (simulation-sound extractable

non-interactive zero-knowledge) proof is a non-interactive

proof system with two simulators Sim1 and Sim2, which can

simulate Setup and PK, but such that Sim2 does not need

any witness. More formally an SE-NIZK proof is defined by
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a tuple (Setup,PK,VK, Sim1, Sim2,Ext) such that (Setup,
PK,VK) is a non-interactive proof system, and:

Sim1(1
κ) generates a CRS σ and two trapdoors τ, ξ, such that

Sim2 can use τ to simulate proofs under σ, and Ext can

use ξ to extract witnesses from proofs;

Sim2(σ, τ, x, �) takes as input the CRS σ, the corresponding

trapdoor τ , a word x (not necessarily in L ), and a label

�, and outputs a (fake or simulated) proof π for x;

Ext(σ, ξ, x, π, �) takes as input the CRS σ, the corresponding

trapdoor ξ, a word x, a label �, and a valid proof π,

and extracts from π a witness ω for x if possible (and

otherwise outputs ⊥).

and such that it verifies the following property:

Unbounded zero-knowledge. An NIZK proof is

(unbounded) zero-knowledge if simulated proofs

are indistinguishable from real proofs. Let AdvuzkNIZK(A)
be:

Pr
[
σ

R← Setup(1κ) : APK(σ,·,·,·)(σ) = 1
]

− Pr
[
(σ, τ, ξ)

R← Sim1(1
κ) : ASim′(σ,τ,·,·,·)(σ) = 1

]

where Sim′(σ, τ, x, ω, �) = Sim2(σ, τ, x, �); we write

AdvuzkNIZK(t, nsim) = maxA {Adv(A)}, where the maxi-

mum is taken over all adversaries of time complexity at

most t and making at most nsim queries to Sim′ or PK.

Simulation-sound extractability. An NIZK proof is

simulation-sound extractable if Ext can extract a witness

from any proof generated by the adversary, even if the

adversary can see simulated proofs. Let AdvextNIZK(A) be:

Pr
[
(σ, τ, ξ)

R← Sim1(1
κ);

(x, π)
R←ASim2(σ,τ,·,·)(σ, ξ) :

VK(σ, x, π, �) = 1, ((x, �), π) /∈ S

and R(x,Ext(σ, ξ, x, π, �)) = 0
]

where S is the set of query-response pairs ((x, �), π)
for Sim2(σ, τ, ·, ·); we write AdvextNIZK(t, nsim) =
maxA {Adv(A)}, where the maximum is taken over all

adversaries of time complexity at most t and making at

most nsim queries to Sim2.

IX. ALGEBRAIC SIMULATION-SOUND EXTRACTABLE

NIZK AND SCHNORR PROOFS

Schnorr signatures [43] can be seen as the most efficient

NIZK proof (in the random-oracle model) for the discrete

logarithm language. However, while there exists an extractor

using rewinding for Schnorr signatures using the forking

lemma [42], no straight-line extractor (which can directly

extract the witness from the proof, as in our definition in

Section II-B) is known. Unfortunately, using rewinding ex-

tractors would induce an exponential blow-up in our security

reduction for J-PAKE (as it is the case in the proof for blind

signatures in [42]).

In this section, we show how to circumvent this problem

if we assume the adversary is algebraic. After recalling the

definition of algebraic adversaries, we first introduce the

notion of algebraic-simulation-sound extractable NIZK (which

is a weak variant of simulation-sound extractable NIZK). We

then show that Schnorr proofs are algebraic-simulation-sound

extractable NIZK proofs (in the random-oracle model), and

that the J-PAKE proof can be adapted to only require that

the NIZK proofs are algebraic-simulation-sound extractable

instead of simulation-sound extractable.

A. Algebraic Adversaries

Algebraic adversaries were introduced by Paillier and

Vergnaud in [40]. An adversary is algebraic (with respect

to G) if it is limited to perform group operations on group

elements in G, and no other operations. Operations on non-

group elements are not restricted.

This means that if the adversary only see groups elements

g1, . . . , gn, and if it outputs some group element h, then there

is a way to extract from the adversary λ1, . . . , λn ∈ Z
n
p such

that:

h = gλ1
1 · · · gλn

n .

We call (λ1, . . . , λn) the discrete logarithms of h in base

(g1, . . . , gn). This property even holds for group elements

given as inputs to the random oracle, if any.

Assuming the adversary to be algebraic is a weaker as-

sumption than using the (non-programmable) generic group

model [44]. In particular, all the proofs of this section are also

valid in the non-programmable generic group model.

A subtle point in all this section is that that the “adversary”

for the extractor Ext (or what generates the proof π) is not

simply the adversary of J-PAKE, but very roughly, a “part of”

the reduction from J-PAKE to some hard problem. This means

that we also need the reduction to be algebraic and we cannot

assume that the reduction knows the discrete logarithms of

(g2, . . . , gn) in base g1. Indeed, these values (g1, . . . , gn) will

often come from an instance of a hard problem such as DDH

or DTGDH.

A completely wrong but very tempting way to make our

proof work for Schnorr proofs would be to just forget about

the bases and to say that in the generic group model, by

controlling the group operation oracles5, Ext can extract the

discrete logarithm of any element. However, if that were true,

NIZK proofs would be useless (since we can compute the

discrete logarithm of any element without them) and could

be removed. But, clearly, the J-PAKE protocol without NIZK

proof is insecure.

What is going wrong is that this solution supposes that

Ext has full control over the group operation oracles, but the

reduction also needs control on these oracles to work properly.

So there is a conflict for the group operation oracles. The

introduction of bases for discrete logarithms is a way to solve

5In the generic group model, group element are represented by random
strings, and group operations are performed by calling some group operation
oracles.
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this conflict. We remark there is no such conflict with the

random oracle, because we suppose that the NIZK has full

control on it, and that it is not the same random oracle as the

one used in J-PAKE to derive the secret key sk.

B. Schnorr Proofs and Issues

Schnorr Proof for Discrete Logarithm. Let us recall

the Schnorr proof for the discrete logarithm language (see

Section II-B for notations). There is no setup and no CRS, but

a random oracle6 H : {0, 1}∗ → Zp. There is no trapdoor τ
and ξ: the trapdoor τ (for simulation Sim2) consists in being

able to program the random oracle and the trapdoor ξ (for

extraction Ext) consists in being able to extract the discrete

logarithms of all group elements. This input of the discrete

logarithms of all group elements for Ext is implicit in what

follows. When needed, we indicate the base which is used in

exponent of Ext, e.g., Ext(g1,...,gn)(σ, ξ, x, π, �).
The Schnorr proof for the word (u, h) = (hr, h) and label

�, with witness r = ω ∈ Zp is π = (z, e), with r′ R← Zp,

u′← hr′ , e←H(�, (u, h), u′) and z← r′−er mod p. Check-

ing a proof π = (z, e) for (u, h) and � consists in computing

u′← hzue and checking that e = H(�, (u, h), u′).
The simulator Sim2(σ, τ, x = (u, h), π, �) just picks e

and z at random in Zp, and then programs H such that

H(�, x, u′) = e, with u′ = hzue. Unbounded zero-knowledge

is straightforward: Advuzk ≤ (nro + nsim)/p, with nro the

number of queries to the random oracle and nsim the number

of queries to Sim′, since u′ is uniform in Zp, and H(�, x, u′)
is not already defined (and so can be programmed) with

probability at least 1− (nro + nsim)/p.

Issues. Ideally, we would like to prove that Schnorr proofs

are extractable when adversaries are algebraic, or in other

words, when the extractor Ext also takes as input the discrete

logarithms of all group elements of the proof and the word (in

some base (g1, . . . , gn)).
However, two issues arise. First, if the adversary knows the

discrete logarithms of g2, . . . , gn in base g1, and the extractor

does not, there seems to be no way to extract the witness. For

example, let us suppose that the base is (g1, g2, g3) with g1 =

g
R←G, g2← gα and g3← gβ , with α, β

R← Zp. Then, if the

adversary is able to compute α and β, it can pick s, s′ R← Zp,

set (u, h)← (gs2, g), u
′← gs

′
3 , e←H(�, (u, h), u′), z← s′β−

esα mod p, and π← (z, e). The fact the adversary is algebraic

only enables us to recover s, s′, and z, while the fact the proof

is valid only ensures that gz = u′u−e = gs
′

2 g−se
3 . Hence it is

not clear at all how to extract a scalar r such that u = gr.

Second, when doing a proof by games (or protocols as in

Section VI), we use various assumptions, and so the base

(g1, . . . , gn) (which basically depends on the assumption)

changes during the proof. While this is transparent for the

J-PAKE adversary, which never really sees (g1, . . . , gn) but

derived elements from this base (the elements of the potential

6This random oracle should be different from the one in the J-PAKE. We
recall that using prefixes enable to generate multiple random oracles from one
random oracle.

CRS and parameters, and the elements sent in the protocol),

this is not the case for the extractor Ext which explicitly needs

to be given the discrete logarithms of all group elements in

the base (g1, . . . , gn). So we need to ensure that Ext does not

change its behavior when we change bases. We will do it by

introducing a property called base indistinguishability.

C. Hard-Linear Distributions and Algebraic Simulation-
Sound Extractable NIZK

Let us first introduce the notion of a hard-linear distribution.

A hard-linear distribution D is a distribution of tuples in Gn

(for some n), such that, given G and (g1, . . . , gn)
R←D, it

is computationally hard to find (μ1, . . . , μn) �= 0n such that

gμ1

1 · · · gμn
n = 1. More precisely, let Advhard-lin

D (A) be

Pr
[
(g1, . . . , gn)

R←D; (μ1, . . . , μn)
R←A(g1, . . . , gn) :
gμ1

1 · · · gμn
n = 1

]
.

We also suppose in hard-linear distributions that g1 = g,

a random generator of G (this can be done without loss

of generality) and that there is a way to generate the base

(g1, . . . , gn)
R←D, such that the discrete logarithms ν2, . . . , νn

of g2, . . . , gn in base g1 = g are known.

Now to define algebraic-simulation-sound extractable

NIZK, we replace the simulation-sound extractability property

by the following two properties (where we assume for the sake

of simplicity, that σ, τ , and ξ do not contain group elements):

Weak algebraic simulation-sound extractability. It is simi-

lar to simulation-sound extractability except the extractor

is given the discrete logarithms of all group elements in

a base (g = g1), with g
R←G\{1} (n = 1). Formally, for

any poly-time algebraic adversary A, let Advw-a-ext
NIZK (A)

be

Pr
[
(σ, τ)

R← Sim1(1
κ); g

R←G;

(x, π)
R←A(g),Sim2(σ,τ,·,·),Ext(g)(σ,ξ,·,·,·)(G, g, σ, ξ) :

VK(σ, x, π) = 1, ((x, �), π) /∈ S

and R(x,Ext(g)(σ, ξ, x, π, �)) = 0
]

where S is the set of query-response pairs ((x, �), π) for

Sim2(σ, τ, ·, ·).
Base indistinguishability. A NIZK proof is base-

indistinguishable if everything is indistinguishable

when used with the base (g = g1) with g
R←G \ {1},

or with a hard linear base (g1, . . . , gn)
R←D. More

formally, for any poly-time algebraic adversary A, let
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Advbase-indNIZK,D,D′(A) be:

Pr
[
(σ, τ)

R← Sim1(1
κ); (g1, . . . , gn)

R←D :

ASim2(σ,τ,·,·),Ext(g1)(σ,ξ,·,·,·)(G, g1, . . . , gn, σ) = 1
]

− Pr
[
(σ, τ)

R← Sim1(1
κ); (g1, . . . , gn)

R←D :

ASim2(σ,τ,·,·),Ext(g1,...,gn)(σ,ξ,·,·,·)(G, g1, . . . , gn, σ)

= 1
]

where in the first case, (g1, . . . , gn) are generated such

that their discrete logarithms 1, ν2, . . . , νn in base g1 are

known, and so the discrete logarithm λ in base g1 of

any group element v ∈ G generated by A (needed by

Ext(g1)) can be computed from the discrete logarithms

(λ1, . . . , λn) in base (g1, . . . , gn) of v (these discrete

logarithms can be extracted from A, since A is algebraic

and only take as input the following group elements:

g1, . . . , gn): λ = λ1 + ν2λ2 + · · ·+ νnλn. In the second

case, no such transform is required since Ext(g1,...,gn) just

need the discrete logarithms in base (g1, . . . , gn), which

can be directly extracted from the algebraic adversary A.

Ext is assumed to return ⊥, when (x, π, �) comes from

a query-response pair of Sim2.

The resulting scheme is called an algebraic-simulation-
sound extractable NIZK. A priori, an algebraic-simulation-

sound extractable is not an SE-NIZK, but an SE-NIZK is

trivially algebraic-simulation-sound extractable even without

any condition on the bases.

D. Algebraic Simulation-Sound Extractability of Schnorr
Proofs

Weak Algebraic Simulation-Sound Extractability. Let us

first define the extractor Ext(g1,...,gn)(σ, τ, x, π, �) as follows:

it first checks the proof π (using VK), and returns ⊥ if this

proof is not valid. Otherwise, it gets the discrete logarithms
�λu = (λu,1, . . . , λu,n) ∈ Z

n
p for u (in base (g1, . . . , gn)) and

�λh = (λh,1, . . . , λh,n) ∈ Z
n
p of h, and returns r, such that

�λu = r �λh, if possible, and ⊥ otherwise. When the base is

(g = g1)
R←G \ {1}, if h �= 1, �λh ∈ Zp and �λh �= 0, therefore

r always exists and the extractor clearly always output the

correct answer. If h = 1 and u �= 1, then, with probability

1 − 1/p, H(�, x, u′) �= logu u
′, and so Advw-a-ext(A) ≤ 1 −

(1 − 1/p)nro ≤ nro/p, where nro is the number of random

oracle queries.

Base Indistinguishability. To prove base indistinguishability,

we first remark that when Ext does not return ⊥, it will

return the same value with (g1, . . . , gn) as with (g1), as it

always return either ⊥ or the correct discrete logarithm of u
in base h. With the base (g1), the extraction always works

(as seen previously in the proof of weak algebraic simulation-

sound extractability). Therefore, we only need to prove that

with any hard linear base (g1, . . . , gn), if π = (z, e) is a

valid proof for x = (u, h) and �, then the probability that

Ext(g1,...,gn)(σ, τ, x, π, �) returns ⊥ is negligible.

For that purpose, we write �λu, �λu′ , and �λh the discrete

logarithms of u, u′ = hzue, and h in base (g1, . . . , gn). For

any u, u′, h, and �, if �λu and �λh are not linearly dependent

(i.e., if we cannot extract the proof for (u, h)), there exists at

most one scalar e ∈ Zp, such that �λu′−e �λu and �λh are linearly

dependent. If H(�, (u, h), u′) R← Zp does not output that value

e, and π = (z, e) is valid for word x = (u, h) and label �,
then u′ = hzue and one can find �μ = �λu′ − z �λh − e �λu �= 0n

where gμ1

1 · · · gμn
n = 1. In other words, if we cannot extract the

witness from a valid proof π = (z, e) for word x = (u, h) and

label �, then with probability ≥ (1−1/p)nro ≥ 1−nro/p (the

probability that for any query to the random oracle, the output

is not the bad value e), we can extract a vector �μ breaking the

hard linear property of D. Hence:

Advbase-indNIZK,D (A) ≤ Advhard-lin
D (t′) + nro/p

with t′ = t+O(notexp), no the number of queries to the Sim2

and Ext oracles, and t the running time of A.

E. Update of the J-PAKE Security Proof

Overview. We first remark that our reduction for J-PAKE

is algebraic: in each protocol of the proof in Section VI,

instances are algebraic. To prove the J-PAKE security with

algebraic-simulation-sound extractable proofs, it is therefore

sufficient to exhibit which bases are used in each protocol

(which basically correspond to the group elements coming

from the assumptions used) and to show that all these bases are

hard-linear. Bases just consist of the group elements coming

from the hard problems used in the proof: DDH, DSDH, and

DTGDH (which can be replaced by three DDH).

More precisely, when we are doing a reduction from a

distinguisher between protocols Pi and Pi+1, to e.g., DDH,

what we do is, from a tuple (g1 = g, g2 = X, g3 = Y, g4 =
Z) ∈ G4, simulate instances of the protocol such that, if

Z = DH(X,Y ) (DDH tuple) then we simulate everything as

in Pi, while if Z is random (random tuple), then we simulate

everything as in Pi+1. So we just consider a protocol P+
i

which is as Pi except every group element is computed from

a DDH tuple (g1, . . . , g4) as in the reduction, and a protocol

P−i+1 which is as Pi+1 except every group element is computed

from a random tuple (g1, . . . , g4). In addition, we suppose

that in Pi and Pi+1, the extraction Ext is made in base

(g1), while in P+
i and P−i+1, the extraction is made in base

(g1, . . . , g4). Then the DDH assumption ensures that P+
i and

P−i+1 are indistinguishable (as in the original proof), while

the base indistinguishability from DDH tuples (g1, . . . , g4)
and random tuples (g1, . . . , g4) ensures that Pi and P+

i are

indistinguishable and P−i+1 and Pi+1 are indistinguishable,

assuming (as proved below) that these bases are hard-linear.

So finally: Pi and Pi+1 are indistinguishable under base

indistinguishability and DDH.

From the above discussion, we only need to prove that the

following bases are hard-linear:
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• (g1 = g, g2 = X = gx, g3 = Y = gy, g4 = Z) with

g
R←G \ {1}, x, y R← Zp, and Z = gxy in the one hand,

or Z
R←G on the other hand (for DDH);

• (g1 = g, g2 = X = gx, g3 = Z = gx
2

) with g
R←G\{1},

x
R← Zp, and Z = gx

2

on the one hand, or Z
R←G on the

other hand (for DSDH);

• (g1 = g, g2 = X = gx, g3 = Y = gy, g4 = Z = gz, g5 =

gxy, g6 = gxz, g7 = gyz, g8 = Z) with g
R←G \ {1},

x, y, z
R← Zp, and Z = gxyz on the one hand, or Z

R←G
on the other hand (for DTGDH).

Hard linearity of random bases. Let us first prove the hard

linearity of random bases (g1 = g, g2, . . . , gn)
R←D = (G \

{1})×Gn−1, under the discrete logarithm assumption, which

states it is hard to compute the discrete logarithm of a random

group element X ∈ G in base g, a generator of G.

The reduction first picks α2, β2, . . . , αn, βn
R← Zp, sets gi =

gαiXβi for i = 2, . . . , n, and gives it to the adversary for the

hard linearity problem A. Then A outputs (μ1, . . . , μn) �=
(0, . . . , 0), such that gμ1

1 · · · gμn
n = 1. If we take the discrete

logarithm of the previous relation

(μ1 + μ2α2 + · · ·+ μnαn) + (μ2β2 + · · ·+ μnβn)x = 0,

where x is the discrete logarithm of X in base g, i.e.,

the answer to the discrete logarithm instance X . Since

(μ1, . . . , μn) �= (0, . . . , 0), there exists i = 2, . . . , n such

that μi �= 0, and in addition, (β2, . . . , βn) are hidden to

the adversary (from an information theoretic point of view),

hence μ2β2 + · · · + μnβn = 0 with probability 1/p. And

when, μ2β2 + · · · + μnβn �= 0, the reduction can compute

x = −(μ1 + μ2α2 + · · ·+ μnαn)/(μ2β2 + · · ·+ μnβn).
Hence:

Advhard-lin
D (A) ≤ AdvDL

G (t′) + 1/p,

with t′ = t+O(ntexp), and t the running time of A.

Hard linearity of bases used in the proof. To prove the hard

linearity of the bases used in the proof, it is therefore sufficient

to prove that they are computationally indistinguishable from

random bases. Clearly, bases from DDH and DSDH are either

random or indistinguishable from random.

It remains to show that bases (g1 = g, g2 = X = gx, g3 =
Y = gy, g4 = Z = gz, g5 = gxy, g6 = gxz, g7 = gyz, g8 = Z)

with g
R←G \ {1}, x, y, z

R← Zp, and Z = gxyz on the one

hand, or Z
R←G on the other hand, for DTGDH are hard linear.

They are indistinguishable from (g1 = g, g2 = X = gx, g3 =
Y = gy, g4 = Z = gz, g5 = gx

′
, g6 = gy

′
, g7 = gz

′
, g8 =

Z), with g
R←G \ {1}, x, y, z, x′, y′, z′ R← Zp, with Z = gxyz

or Z
R←G respectively, under the DDH assumption (properly

randomized). When Z
R←G, this is a random tuple, otherwise

this is indistinguishable from a random tuple under DDH, so

finally, Advhard-lin
D (A) ≤ AdvDL

G (t′) + 1/p + 2AdvDDH
G (t′),

for D any of the two base distributions for DTGDH, and t′ =
t+O(ntexp).

Putting this all together, when the J-PAKE protocol is

instantiated with Schnorr proofs of knowledge, and we work

in a model with algebraic adversaries and random ora-

cles, we can plug the following bounds into Theorem VI.1

and Theorem VII.1:

AdvuzkNIZK(t
′, nsim) ≤ (nsim + nro)/p,

and

AdvextNIZK(t
′, nsim) = Advw-a-ext(t′, nsim) ≤ nro/p,

where nro is the number of queries to the random oracle

made by the adversary A. Technically we should also add

the advantage Advbase-ind each time the base changes, but

this only adds O(AdvDDH(t′) + AdvDSDH(t′) + AdvDL(t′) +
nro/p) = O(AdvDSDH(t′)) which is a term already present in

the original bound.
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APPENDIX

THE INVERTED-ADDITIVE DIFFIE-HELLMAN

ASSUMPTIONS (CIDH AND DIDH)

Here we recall two assumptions used in [35] to prove

the security of the SPEKE protocols (for the comparison in

Table I), and show some relations between these assumptions

and the other assumptions we consider in this paper. These

relations are summarized in Fig. 2.

A. Definition of CIDH and DIDH

Computational Inverted-Additive Diffie-Hellman (CIDH).
For two values X = gx and Y = gy , let IDH(X,Y ) =
gxy/(x+y) (or 1 if x+ y = 0) be the Inverted Additive Diffie-

Hellman value corresponding to X and Y . An algorithm for

the Computational Inverted-Additive Diffie-Hellman takes two

elements X and Y , and outputs the Inverted-Additive Diffie-

Hellman value of X and Y . Let A be an algorithm with input

(X,Y ). Let AdvCIDH
G (A) be

Pr
[
(x, y)

R← Z
2
p; X ← gx; Y ← gy :

A(X,Y ) = IDH(X,Y )
]
.

Decision Inverted-Additive Diffie-Hellman (DIDH). An al-

gorithm for the Decision Inverted-Additive Diffie-Hellman

takes three elements X , Y , and Z, and attempts to distinguish

whether Z is the Inverted-Additive Diffie-Hellman value cor-

responding to X and Y , or is a random element of G. Let A
be an algorithm with input (X,Y, Z). Let AdvDIDH

G (A) be

Pr
[
(x, y)

R← Z
2
p; X ← gx; Y ← gy; Z← IDH(X,Y ) :

A(X,Y, Z) = 1
]

− Pr
[
(x, y, z)

R← Z
3
p; X ← gx; Y ← gy; Z← gz :

A(X,Y, Z) = 1
]
.

B. Relations

Hardness of DSDH Implies Hardness of DIDH. Let

A be an adversary against DIDH. Then we can construct

an adversary B against DSDH as follows: B(X,Y ) picks
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z
R← Zp and outputs A(X ′, Y ′, Z ′) with (X ′, Y ′, Z ′) =

(gzX, gzX−1, (gz
2

Y −1)
1/(2z)

) (Z ′ = 0 when z = 0).

Indeed, if x
R← Zp, X = gx, and Y = SDH(X) = gx

2

, then

(X ′, Y ′, Z ′) = (gx
′
, gy

′
, gz

′
), with x′ = z+x, y′ = z−x, z′ =

(z2−x2)/(2z) = x′y′/(x′+y′). Therefore, Z ′ = IDH(X,Y ),
and X ′ and Y ′ are two independent uniform random group

elements in G, as (x, z) �→ (z+x, z−x) is a bijection of Z2
p.

Otherwise, if x, y
R← Zp, (X,Y ) = (gx, gy), then

(X ′, Y ′, Z ′) = (gx
′
, gy

′
, gz

′
), with x′ = z + x, y′ = z − x,

z′ = (z2 − y)/(2z). The function (x, y, z) �→ (z + x, z −
x, (z2 − y)/(2z)) is a bijection of Z3

p, if we exceptionally set

(z2 − y)/(2z) = y when z = 0. Therefore, (X,Y, Z) are

1/p-statistically close to the uniform distribution of G3.

Finally, we get:

AdvDIDH
G (A) ≤ AdvDSDH

G (B) + 1/p.

Hardness of DIDH Implies Hardness of CIDH. It is clear

that we have AdvDIDH
G (t) ≤ AdvCIDH

G (t) + 1/p.

Hardness of CSDH Implies Hardness of CIDH. The proof

is very similar to the one that DSDH implies DIDH. More

precisely, let A be an adversary against CIDH. Then we can

construct an adversary B against CSDH as follows: B(X)

picks z
R← Zp, computes Z ′ R←A(X ′, Y ′) with (X ′, Y ′) =

(gzX, gzX−1), and outputs Y = Z ′−2z
gz

2

.

With probability AdvCIDH
G (A), we have Z ′ =

IDH(X ′, Y ′) = (z2 − x2)/(2z), hence Y = gx
2

, where

X = gx, except if z = 0. Therefore, we get

AdvCIDH
G (A) ≤ AdvCSDH

G (B) + 1/p.

Hardness of CIDH Implies Hardness of DL. It is clear that

we have
(
AdvDL

G (t)
)2

≤ AdvCIDH
G (t), as knowing the discrete

logarithms of X and Y enables to compute IDH(X,Y ).
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