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Abstract—We introduce TinyGarble, a novel automated
methodology based on powerful logic synthesis techniques
for generating and optimizing compressed Boolean circuits
used in secure computation, such as Yao’s Garbled Cir-
cuit (GC) protocol. TinyGarble achieves an unprecedented
level of compactness and scalability by using a sequential
circuit description for GC. We introduce new libraries and
transformations, such that our sequential circuits can be
optimized and securely evaluated by interfacing with avail-
able garbling frameworks. The circuit compactness makes
the memory footprint of the garbling operation fit in the
processor cache, resulting in fewer cache misses and thereby
less CPU cycles. Our proof-of-concept implementation of
benchmark functions using TinyGarble demonstrates a
high degree of compactness and scalability. We improve the
results of existing automated tools for GC generation by or-
ders of magnitude; for example, TinyGarble can compress
the memory footprint required for 1024-bit multiplication
by a factor of 4,172, while decreasing the number of non-
XOR gates by 67%. Moreover, with TinyGarble we are
able to implement functions that have never been reported
before, such as SHA-3. Finally, our sequential description
enables us to design and realize a garbled processor, using
the MIPS I instruction set, for private function evaluation.
To the best of our knowledge, this is the first scalable
emulation of a general purpose processor.

Index Terms—Secure Function Evaluation, Garbled Cir-
cuit, Logic Design, Hardware Synthesis

I. INTRODUCTION

Secure function evaluation (SFE) allows two or more

parties to correctly compute a function of their respective

private inputs without exposure. The seminal result by

Yao introduced the GC protocol for addressing two-

party SFE [70]. The GC protocol allows to securely

evaluate a function given as a Boolean circuit that is

represented as a series of binary gates. The inputs and

outputs of each gate are masked such that the party

evaluating the GC cannot gain any information about the

inputs or intermediate results that appear during function

evaluation. The approach of obliviously evaluating a

Boolean circuit can also be generalized to multi-party

SFE [4], [26].

Contemporary literature has cited multiple important

privacy preserving and security critical applications that

could benefit from a practical realization of SFE, in-

cluding but not limited to: biometrics matching, face

recognition, image/data classification, electronic auctions

and voting, remote diagnosis, and secure search [1],

[8], [9], [22], [39], [58]. While GC was considered to

be prohibitively expensive and practically infeasible a

decade ago, today we are witnessing a surge of the-

oretical, algorithmic, and tool developments that have

significantly improved the efficiency and practicality of

the GC protocol, see [2], [36], [44], [54], [60].

The research on producing Boolean functions for SFE

can be roughly classified into two categories: optimiza-

tions of cryptographic constructs and protocols such as

[2], [3], [42], [44], [60], [72], and compiler/engineering

techniques including but not limited to [23], [32], [36],

[46], [47], [53], [54].

In the compiler/engineering realm two different ap-

proaches for circuit generation have been developed.

One approach is based on building a custom library for

a general purpose programming language such as Java

along with functions for emitting the circuit, e.g., [32],

[36], [53]. For better usability, these libraries typically

include frequently used modules such as adders and

multipliers. However, library-based approaches require

manual adjustment and do not perform global circuit

optimization. Moreover, their memory management gets

complicated when the number of gates is large thereby

affecting performance and scalability [32].

The second approach is to write a new compiler for a

higher-level language that translates the instructions into

the Boolean logic, e.g., [23], [46], [47], [54]. Although

compiler-based approaches can perform global optimiza-

tions, they often unroll the circuits into a large list of

gates. For example, the description of a circuit with one

billion gates has at least size 2 log2(10
9) · 109 ≈ 7 GB.

To reduce circuit description size, the compiler proposed

in [46], called PCF (Portable Circuit Format), does not

unroll the loops in the circuit until the GC protocol runs,

and therefore seems to have a better scalability than

the other compilers. As we elaborate in related work

(see Section VIII), the existing approaches, including the
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above proposals, have certain limitations when it comes

to real implementation.

A. Our approach

Our approach, TinyGarble, is based on synthesizing

and optimizing circuits for the GC protocol as sequential

circuits while leveraging powerful logic synthesis tech-

niques with our newly introduced custom-libraries.

Our solution simply views the circuit generation for

GC as an atypical logic synthesis task that, if properly

defined, can still be addressed by conventional hard-

ware synthesis tools. By posing the circuit generation

for Yao’s protocol as a hardware synthesis problem,

TinyGarble naturally benefits from the elegant algorithms

and powerful techniques already incorporated in existing

logic synthesis solutions, see, [6], [20], [55], [66]. This

view provides a radically different perspective on this

important problem in contrast to the earlier work in this

area that attempted to generate circuits by building new

libraries for general purpose languages such as Java [36],

[53], custom compilers such as [23], [46], or introduction

of new programming languages such as [54], [63].

TinyGarble introduces new techniques for minimizing

the number of non-XOR gates which directly results in

reduced computation and communication required for the

GC protocol. We do so by integrating the cost function

in the new custom libraries that we design and use within

our logic synthesis flow. This way, we are able to gain

up to 80% improvement in the number of non-XOR

gates for benchmark circuits compared to PCF [46]. The

TinyGarble methodology is automated, i.e., the savings

can be achieved for many functions synthesized by our

method, regardless of their sophistication.

One significant contribution of TinyGarble, which

differentiates it from the previous work, is expressing

the function in a very compact format, namely as a

sequential logic. The earlier work in this area mainly

described functions in a combinational format, where the

value of the output is determined entirely by the circuit

inputs. This input/output relationship can be expressed

by a (combinational) Boolean function and a directed

acyclic graph (DAG) of binary gates. The sequential

circuit description, on the other hand, allows having

feedback from the output to the input by adding the

notion of a state (memory). At each sequential cycle,

the output of the circuit is determined by the current

state of the system and the input. For each particular

sequential cycle, the relationship between the output and

the inputs for the given states can be determined as a

Boolean combinational logic.

The only previous work we are aware of which implic-

itly hinted at the possibility of having a more compact

representation is PCF [46]. It does so by embracing loops

and unrolling them only at runtime. A sequential circuit,

however, goes far beyond the loop embracing performed

at the software level. Not only does TinyGarble embrace

the high-level loops, it also enables the user to further

compact the functions by folding the implementation up

to its basic elements. For example, using TinyGarble,

user can compress the 1024-bit addition function into

only a 1-bit adder.

An important advantage of our sequential representa-

tion is providing a new degree of freedom to the user to

fold the functions to simpler computing elements; i.e., the

user has the freedom to choose the number of sequential

cycles needed for evaluation of the function–the size of

the combinational logic path between the states/inputs

and the outputs. The number of gates in the sequential

circuit can be managed by varying the number of cycles.

The memory footprint of the GC operation is directly

related to the number of gates in the sequential circuit; at

any moment during garbling, only the information corre-

sponding to the current cycle needs to be stored. Compact

sequential circuits yield a small enough memory footprint

that can fit mostly on a typical processor cache. This

helps us to avoid costly cache misses while accessing the

wire tokens during the GC protocol. Indeed, TinyGarble

can enable practicable embedded implementations with

a small memory footprint.

The sequential representation enables, for the first

time, implementation of a universal processor for private

function evaluation where the function is known only to

one party. We reduce private function SFE (PF-SFE) to

general SFE where the function is known by both parties.

Our implementation accepts assembly instructions of

the private function as input to the GC protocol. Since

a processor is inherently a sequential circuit, it was

infeasible to be realized with previous GC tools.

TinyGarble accepts inputs in two different formats:

a standard hardware description language (HDL), or a

higher level language as long as it is compatible with the

existing high level synthesis (HLS) tools, e.g., the C lan-

guage for SPARK [30] and Xilinx Vivado [19], or Python

for PandA [59], that converts the high level language to

an HDL. Beside user’s manual optimization, TinyGarble

performs various optimizations through standard HDL

synthesis tools to generate an optimized netlist, i.e., list

of gates, which is then transformed to be used with a

GC protocol implementation, e.g., JustGarble [2] or Half

Gates [72].

Contributions. In brief, our contributions are as follows:

• Adaption of established HDL synthesis techniques

to compile and optimize a function into a netlist of

gates for use in secure computation protocols.

• Creation of new custom libraries and setting ob-

jectives/ constraints to repurpose standard synthesis

tools for minimizing the number of non-XOR gates
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in a circuit.

• Introduction of sequential circuit description for

achieving an unprecedented compactness in func-

tion representation and memory footprint.

• Providing a new degree of freedom to users to fold

the functions into a sequential circuit. The user can

achieve a small enough sequential circuit such that

the memory required for its secure evaluation fits

even in a typical processor cache. This helps to

avoid costly cache misses and reduces the CPU time

required for GC.

• Proof-of-concept implementation of benchmark

functions such as multiplication, and Hamming dis-

tance demonstrates up to 5 orders of magnitude sav-

ings in memory footprint and up to 80% efficiency

in minimizing the total number of non-XOR gates.

Furthermore, TinyGarble enables implementation of

large circuits that were not reported in earlier work,

such as SHA-3.

• Implementing the first scalable emulation of a

universal processor for private function evaluation

where the number of instruction invocations is not

limited by the memory required for garbling. This

design is uniquely enabled by the TinyGarble se-

quential description. Our design is a secure general

purpose processor based on the MIPS I instruction

set that receives as inputs the private function from

one party and the data from the other.

II. PRELIMINARIES AND BACKGROUND

In this section, we provide preliminaries and related

background on garbled circuits (Section II-A) and HDL

synthesis (Section II-B).

A. Background on Garbled Circuit
Yao introduced the GC protocol for 2-party Secure

Function Evaluation (SFE) in the 1980’s [70]. GC is

described as a circuit whose wires carry a string valued-

token instead of a bit. Consider two parties, Alice and

Bob, who want to evaluate a function f(·) without

revealing their inputs to each other. The function needs

to be represented as a combinational Boolean circuit. To

begin with, we assume the circuit consists of a single

gate with two input wires, wa, wb and one output wire

wc. Alice knows the value of input wa denoted by va
and Bob knows the value of input wb denoted by vb.

The gate is also represented by a four-entry truth table

G[va, vb]. There are two main phases in Yao’s protocol.

First, Alice encodes or garbles the circuit by generating

garbled tables. Second, Bob evaluates the output denoted

by vc without knowing anything about va other than what

can be deduced from the output and his own input.
The steps of Yao’s approach are described below.

1) For each wire wa, Alice selects one random bit ta
called type and two random (k − 1)-bit values Y 0

a

and Y 1
a , where k is a symmetric security parameter

(e.g., k = 128). The concatenations of the first

random string and the type X0
a = Y 0

a ‖ ta and

X1
a = Y 1

a ‖ t̄a are called token for semantic bit 0
and 1 respectively.

2) For each gate, Alice symmetrically encrypts the

respective output tokens with the four possible com-

binations of the input tokens. The resulting table of

ciphertexts is called garbled table.

3) Alice sends to Bob the garbled tables and the token

corresponding to her input value.

4) Bob obliviously receives the tokens corresponding

to his input through oblivious transfer (OT) [62].

5) Bob decrypts the corresponding entry in the garbled

table based on the received input tokens and gets the

output token.

6) Finally, Alice reveals the type of the output and Bob

determines its semantic value.

In general, the circuit consists of multiple gates. Yao’s

protocol for this case is described below.

1) Alice chooses tokens for all the wires, constructs the

garbled tables for each gate and sends these to Bob

along with the tokens corresponding to her inputs.

2) Bob obliviously receives the tokens corresponding

to his input values through oblivious transfer.

3) Using these tokens, Bob evaluates the circuit gate-

by-gate until he evaluates all gates.

4) Finally, Alice reveals the type of the outputs and

Bob determines their semantic values.

We assume the honest-but-curious model as the basis

for building a stronger security protocol. Generic ways

of modifying GC-based protocols such that they achieve

security against stronger malicious adversaries have been

proposed, e.g., [48], [50].

In our implementation, we make use of state-of-the-art

optimizations for garbled circuits as described below.

1) Free XOR [44]: In this method, Alice generates a

global random (k−1)-bit value R which is just known to

her. During garbling operation for any wire wa, she only

generates a token X0
a and computes the other token X1

a

as X1
a = X0

a ⊕ (R ‖ 1). With this convention, the token

for the output wire of the XOR gates with input wires wa,

wb and output wire wc can be simply computed as Xc =
Xa ⊕Xb. The proof of security for this optimization is

given in [44].

2) Row Reduction [58]: This optimization reduces the

size of the tables for the non-XOR gates by 25%. Here,

instead of generating a token for the output wire of a gate

randomly, the output token is produced as a function of

the tokens of the inputs. Alice generates the output token

such that the first entry of the garbled table becomes all

0 and no longer needs to be sent.

3) Garbling With a Fixed-key Block Cipher [2]:
This method allows to efficiently garble and evaluate
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non-XOR gates using fixed-key AES. In this garbling

scheme which is compatible with the Free XOR and Row

Reduction techniques, the output key Xc is encrypted

with the input token Xa and Xb using the encryption

function E(Xa, Xb, T,Xc) = π(K) ⊕ K ⊕ Xc, where

K = 2Xa ⊕ 4Xb ⊕ T , π is a fixed-key block cipher

(e.g., instantiated with AES), and T is a unique-per-gate

number (e.g., gate identifier) called tweak. The proof of

security is given in [2].

B. Background on HDL Synthesis

HDL synthesis refers to the process of translating an

abstract form of function (circuit) presentation to the

gate-level logic implementation using a series of sophis-

ticated optimizations, transformations, and mapping [6],

[20], [55], [66]. An HDL synthesis tool is a computer

program which typically accepts the input circuit in some

algorithmic form, logic equation, or even a table, and out-

puts an implementation suitable for the target hardware

platform. Classic commercial/open-source HDL synthe-

sis tools accept the input functions in the HDL format,

e.g., Verilog or VHDL [13], [16], [21], [29], [56], [59]

but newer ones also accept high level format, e.g., C/C++

[19], [30]. The common target hardware platforms for

the synthesized logic include Field Programmable Gate

Arrays (FPGA), Programmable Array Logic (PAL), and

Application-Specific Integrated Circuits (ASIC).

The input functions (circuits), regardless of their HDL

or higher level format, can be defined by the imple-

menter to be purely combinational logic that is fully

representable by Boolean functions, or they might be

sequential logic which is a more general format.

Typical practical implementations of a logic function

utilize a multi-level network of logic elements. The

tools translate the input to the implementation in two

steps: (i) Logic minimization; and (ii) logic optimization.

Logic minimization simplifies the function by com-

bining the separate terms into larger ones containing

fewer variables. The best known algorithm for logic

minimization is the ESPRESSO algorithm [7]; although

the resulting minimization is not guaranteed to be the

global minimum, it provides a very close approximation

of the optimal, while the solution is always free from

redundancy. This algorithm has been incorporated as a

standard logic function minimization step in virtually any

contemporary HDL synthesis tool.

Logic optimization takes this minimized format, fur-

ther processes it, and eventually maps it onto the avail-

able basic logic cells or library elements in the target

technology. Mapping is limited by factors such as the

available gates (logic functions or standard cells) in the

technology library, as well as the drive sizes, delay,

power, and area characteristics of each gate.

Newer generations of synthesis programs, referred to

as high level synthesis (HLS) tools, accept other forms

of input in a higher level programming language [12],

[14], [73], e.g., ANSI C, C++, SystemC, or Python.

HLS tools are also available in both open-source and

commercial forms, cf. [16], [19], [59]. The limitation

of the higher level languages is that the behavior of

the function is typically decoupled from the timing. The

HLS tools handle the micro-architecture and transform

the untimed or partially timed functional code into a

fully timed HDL implementation, which in turn can

be compiled by a classic synthesis tool. It is well-

known that the performance of the circuits resulting from

automatically compiled HLS code into HDL is inferior

to the performance of functions directly written in HDL.

Therefore, the main driver for the development of HLS

tools is user-friendliness and not performance.

III. GLOBAL FLOW

The global flow of TinyGarble is shown in Fig. 1. It

consists of the following four steps:

1) The input to the TinyGarble framework is a file

that describes a sequential or combinational function

written in an HDL like Verilog or VHDL. The

function can also be written in a high level language

like C/C++ and automatically translated to HDL

using an HLS tool. In the sequential circuit, the

degree of folding is specified by the user.

2) A standard HDL synthesis tool compiles the HDL to

generate a netlist file. The synthesis tool optimizes

the netlist based on the user defined objectives/con-

straints and a customized library.

3) The netlist is parsed and topologically sorted. If

the circuit is sequential, only its combinational part

is sorted. Then, the sorted netlist is saved in a

format compatible with any given GC framework

e.g., Simple Circuit Description (SCD) compatible

with JustGarble [2].

4) The circuit description is provided to both the gar-

bler and evaluator to securely evaluate the function

by the GC framework.

Fig. 2 shows examples of files at different steps of

TinyGarble’s flow for the Hamming distance function.

The hamming.c file contains the description of the func-

tion in the C language. The user inputs this function to

a HLS tool to generate the corresponding description in

Verilog. The resulting Verilog file is functionally similar

to the hamming.v file shown in the figure, but it may

look more complicated and be less efficient as it is

generated by an automated tool. A user can also write

the description directly in Verilog to have more control

on the circuit and therefore a more efficient netlist. The

hamming.v file is provided to an HDL synthesis tool

along with the TinyGarble custom libraries to generate

netlist hamming netlist.v. The netlist describes the same
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Fig. 1: Global flow of TinyGarble for both combinational and sequential synthesis. The inputs can be either a C/C++

program (translatable to HDL via a standard HLS tool) or a direct HDL description. TinyGarble is able to provide

circuit description for any given GC framework.

������ �	��
������ ���� 	� �� ���

���� ���� ���� 	� ��
������ ��� ��������

	��	�� ������� ��� �� ������� ����

!����

�"#$ ��
����

�"#$ �"% 	&��
���������

������ �	��
������ ���� 	� �� ���

���� ���� ���� 	� ��
������ ��������

'''
()) *�+������ '(�,�� '-./�����
'012����� '3����� ��

'''
4560 7�" '8	�� '9��� ':�;� ��
585(5 7," '8�;�� '9�,�� ':�,� ��
'''
���������

<
������"#	�+
��'�=
>�
� �	��
��	�+�
��#�= 	�

	�+�
��#�= �� 	�+�
��#�?= @��A
<��	��	"B.1"C52D0)8-D"	�+���� ����$	����

��	�
� 	�+�
��#�?= ��� $ ��
	�+�
��#�= �"$ 	&��

!�'���+�
����
���%%�

�"$ ����
E

��������	 ��������
 ��������������


Fig. 2: Sample files at the different steps of TinyGarble’s flow for Hamming distance function.

function as hamming.c and hamming.v but uses the logic

cells provided in the technology library. The technology

library contains 2-input-1-output logic cells to be com-

patible with front-end garbling tools [2], [54].

IV. GARBLING AND EVALUATING SEQUENTIAL

CIRCUITS

Sequential circuits can be used as a very compact

circuit description. In the following section we first

describe the concept of sequential circuits (Section IV-A)

using an example and then explain the modifications

required to garble/evaluate them.

A. Sequential Circuits

��

������ �������

(a) Combinational circuit

����
�����

�	���
�
�����

��

������	
���

�
��� �����

��

(b) Sequential circuit

Fig. 3: (a) Combinational circuit where outputs are

functions of only inputs. (b) Sequential circuit where

outputs are functions of inputs and present states.

Yao’s GC algorithm allows secure evaluation of a

Boolean circuit, i.e., an acyclic graph of binary gates

(e.g., AND, OR, XOR, etc.). In digital circuit theory,

such a circuit is called combinational circuit and defined

as a memory-less circuit in which outputs are functions

only of inputs, see Fig. 3a.

Another class of circuits in digital circuit theory are

sequential circuits in which unlike in the combinational

case, circuit outputs are functions of both inputs and

circuit states. Circuit states are kept in memory elements

such as Flip Flops (FF). The states can change at the end

of each clock cycle1.

As seen in Fig. 3b, a sequential circuit can be rep-

resented as an ensemble of a combinational circuit and

feedback loops with memory elements. At each clock

cycle, circuit inputs as well as the present states are fed

to the combinational part. Then, it generates the outputs

and next states which will be stored in the memory

elements for the next cycle. The initial value of the

memory elements are either a known constant value (0
or 1) or determined by an initial input value2.

Fig. 4 demonstrates an example of a combinational

and a sequential implementation for a 4-bit Adder with

1The clock signal oscillates between a low and a high state and its
(rising) edge is typically utilized to coordinate the memory updates.

2In digital hardware, FF initialization is usually done by reset or set
signals. In TinyGarble, we use a new signal for FF that determines the
initial value. It can be connected to a constant value or input wire.
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Fig. 4: Combinational and sequential design of a 4-bit

Adder. (a) HA circuit. (b) FA circuit. (c) Combinational

4-bit Adder using 1 HA and 3 FAs. (d) Sequential 4-bit

Adder using one FA.

inputs x = x3x2x1x0 and y = y3y2y1y0, producing

sum s = s3s2s1s0. Fig. 4a and 4b show the internal

combinational circuit of a half Adder (HA) and a full

Adder (FA) respectively. In Fig. 4c a combinational

Adder is built by cascading 3 FAs and one HA. Fig. 4d

represents a sequential implementation of a 4-bit Adder

which uses one FA and a one bit FF to save the carry bit

from the previous cycle. The circuit should be evaluated

in 4 cycles. At the first cycle the carry bit is z0 = 0.

Note that, in the combinational circuit we use three FAs

and one HA whereas in the sequential circuit, we have

to use one FA for 4 sequential cycles. This asymmetry

in the loop of Addition function introduces a very small

overhead in GC computation and communication time as

an HA circuit has fewer gates compared to a FA circuit.

However, the total number of gates for representing

the function is reduced approximately by a factor of 4

when using a sequential circuit (one FA for sequential

compared with three FA and one HA for combinational).

This helps to limit the memory footprint for garbling

and evaluation required for storing circuit description

and wire tokens (k-bit per wire, see Section II-A). In

a sequential circuit, the number of tokens that need to

be stored in memory at any moment is proportional to

the number of gates in the circuit. The wire tokens are

simply over-written at each sequential cycle. Only tokens

corresponding to FFs are kept for the next cycle.

Nearly all commercial circuits used in digital hardware

are designed in sequential format. There are multiple

reasons for preferring sequential circuit description over

combinational including the reduction in complexity,

area, power, and cost, as well as natural mapping of

finite state machine control functions into a sequential

format. Some of these reasons also provide a rationale for
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Fig. 5: Functionally equivalent unrolled sequential circuit

corresponding to Fig. 3b.

sequential description of a function in GC, including: (i)

reduction in size and memory footprint that is achieved

by introducing the state elements and feedback loop from

output to input; (ii) removing the need to perform costly

compile-time/runtime loop unrolling by embracing loops

within the sequential feedback loop; (iii) providing a

new degree of freedom for folding by the placement

of memory elements in the long combinational paths–

the placement can be done in accordance with the user’s

objective.

During the evaluation of a sequential circuit, the

combinational block is evaluated c times where c is the

number of sequential cycles that the circuit operates. We

can visualize this process as the unrolled combinational

representation of the sequential circuit as shown in Fig. 5.

The inputs of the unrolled circuit are the inputs of the

combinational block in all the cycles. The same holds

for the outputs, too. The present states at each cycle cid,

where 0 ≤ cid < c, are equal to the next states at the

previous cycle (cid − 1). The present states at cid = 0
are equal to the input initial value.

During generation and evaluation of the garbled cir-

cuit, it must be ensured that the encryption tweaks T (see

Section II-A) for each gate is unique because otherwise

security is broken [32, Sect. 3.4]. In TinyGarble, to

ensure the uniqueness property, we set tweak T for each

gate to be the concatenation of the cycle index (cid)

and the unique gate identifiers (gid) in the combinational

part of the sequential circuit, i.e., T = cid||gid.3 As in

previous work, security and correctness of the GC gar-

bling/evaluation follow from the uniqueness of the tweak

T and the existing proofs of security and correctness, see

[2], [49].

V. HDL SYNTHESIS

As described in Section II-A, Yao’s protocol requires

the function to be represented as a Boolean circuit.

Previous work like FairPlay [54] and WYSTERIA [63]

used custom-made languages to describe a function and

generate the circuit for GC operations. In our TinyGarble

framework, the user may describe a function in a stan-

dard HDL like Verilog or VHDL. She may also write

3An alternative method would be to use a monotonic counter in the
circuit generation/evaluation routines which is increased by one for
each gate.
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the function in a high level language like C/C++ and

convert it to HDL using a HLS tool. TinyGarble uses

existing HDL synthesis tools to map an HDL to a list

of basic binary gates. In digital circuit theory, this list is

called a netlist. The netlist is generated based on various

constraints and objectives such that it is functionally

equivalent to the HDL/HLS input function. Exploiting

synthesis tools helps to reduce both number of non-

XOR gates in the circuit and the garbling time while

also making the framework easily accessible.

A. Synthesis Flow

In the first step, a synthesis converts functional de-

scription of a circuit into a structural representation

consisting of standard logical elements. Then, it converts

this structural representation into a netlist specific to the

target platform. In both steps, the synthesis tool works

under a set of user defined constraints/objectives like

minimizing the total delay or limiting the area. In the

following, we describe the details of these two steps and

how we manipulate the synthesis tools in each of the

steps to generate optimized netlists for SFE.

a) Synthesis library: The first step in the synthesis

flow is to convert arithmetic and conditional operations

like add, multiply, and if-else to their logical representa-

tions that fits best to the user’s constraints. For example,

the sum of two N-bit numbers can be replaced with an

N-bit ripple carry adder in case of area optimization

or an N-bit carry look ahead adder in case of timing

optimization. A library that consists of these various

implementations is called a synthesis library. We develop

our own synthesis library that includes implementations

customized for SFE. In this library, we build the arith-

metic operations based on a full adder with one non-XOR

gate [5] and conditional operations based on a 2-to-1

multiplexer (MUX) with one non-XOR gate [44].

b) Technology library: The next step is to map

the structural representation onto a technology library to

generate the netlist. A technology library contains basic

units available in the target platform. For example, tools

targeting Field Programmable Gate Arrays (FPGAs) like

Xilinx ISE or Quartus contain Look-Up Tables and Flip

Flops in their technology libraries, which form the archi-

tecture of an FPGA. On the other hand, tools targeting

Application Specific Integrated Circuits (ASICs) like

Synopsys DC, Cadence, and ABC, may contain a more

diverse collection of elements starting from basic gates

like AND, OR, etc., to more complex units like FFs.

The technology library contains logical descriptions of

these units along with performance parameters like their

delay and area. The goal of the synthesis tool in this

step is to generate a netlist of library components that

best fit the given constraints. For HDL synthesis, we

use tools targeting ASICs as they allow more flexibility

in their input technology library. We design a custom

technology library that contains 2-input gates as required

by the front-end GC tools. We set the area of XOR

gates to 0 and the area of non-XOR gates to a non-

0 value. By choosing area minimization as the only

optimization goal, the synthesis tool produces netlists

with the minimum possible number of non-XOR gates.

An additional feature of our custom technology li-

brary is that it contains non-standard gates (other than

basic gates like NOT, AND, NAND, OR, NOR, XOR,

and XNOR) to increase flexibility of mapping process.

For example, the logical functions F = A ∧ B and

F = (¬A) ∧ B requires equal effort in garbling/evalua-

tion. However by using only standard gates, the second

function will require two gates (a NOT gate and an AND

gate) and store one extra token for ¬A in the memory.

We include four such non-standard gates with an inverted

input in our custom library.

For synthesis of sequential circuits, the technology

library includes memory elements. These elements can

be implemented as FFs which are connected to a clock

signal. Although in conventional ASIC design FFs are

typically as costly as four AND gates, in our GC appli-

cation, FFs do not have any impact on the garbling/evalu-

ation process as they require no cryptographic operations.

Therefore, we set the area of FFs to 0 to show its lack

of impact on computation and communication time of

garbling/evaluation. Moreover, we modify our FFs such

that they can accept an initial value. This helps us remove

extra MUXs in standard FF design for initialization.

B. Offline Circuit Synthesis

In TinyGarble, we use HDL synthesis tools in an

offline manner to generate a circuit for a given functional-

ity. This offline synthesis followed by a topological sort

provides a ready-to-use circuit description for any GC

framework. This approach, unlike online circuit genera-

tion, does not require misspending time for circuit gener-

ation during garbling/evaluation. It also enables the use

of beneficial synthesis optimization techniques that were

previously infeasible for online generation. Moreover, the

synthesis tools have a global view of the circuit, unlike

previous work that manually optimized small modules of

the circuit. This allows more effective optimization for

any arbitrary function and set of constraints.

However, the offline approach has certain limitations

when it comes to generating circuits for extremely large

functions. Fortunately, the sequential description helps to

overcome most limitations as it generates more compact

circuits. Sequential circuits are radically smaller than

combinational ones with the same functionality. This

property allows synthesis tools to perform more effec-

tive circuit optimization. Moreover, the compatibility of

our sequential descriptions with standard synthesis tools
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simplifies the workflow of circuit generation for SFE

applications.

VI. PRIVATE FUNCTION EVALUATION

Two-party Private Function SFE (PF-SFE) allows se-

cure computation of a function fAlice(·) held by one

party (Alice) operating on another party’s data xBob

(Bob) while both the data and the function are kept

private. This is in contrast to the usual setting of SFE

where the function is known by both parties. PF-SFE

is especially useful when the function is proprietary or

classified.

It is well known that PF-SFE can be reduced to regular

SFE by securely evaluating a Universal Circuit (UC)

[65]. UC is a circuit capable of simulating any circuit

(function) f(·) given the description of f(·) as input [45],

[68]. More formally:

UC(fAlice(·), xBob) = fAlice(xBob).

Secure evaluation of UC completely hides the function-

ality of f(·), including its topology. Subsequent works

have shown how to allow PF-SFE while avoiding the

overhead of UCs [41], [57].

A UC is similar to a Universal Turing Machine (UTM)

[34], [67] that receives a Turing machine description

fAlice(·) and applies it to the input data (xBob) on its

tape [15]. One party provides the machine description

and the other one provides the initial data. The output

fAlice(xBob) resides on the tape after the operation is

completed. A general purpose processor is a special

realization of a UTM. It receives a list of instructions
fAlice(·) and applies them to the input data xBob in

memory.

A. Arithmetic Logic Unit

The core of conventional processors is the Arithmetic

Logic Unit (ALU) which receives two operands and an

opcode indicating the desired operation. ALU supports

an operation set consisting of operations like addition,

multiplication, XOR, etc. The ALU circuit consists of

multiple sub-circuits for these operations and a MUX

which selects one of their outputs. Secure evaluation of

an ALU, where the opcode comes from one party and

operands come from the other party, keeps the operations

private. Thus, ALU can be thought of as an emulator of a

simple UC in which the input function fAlice(·) is limited

to a single operation.

One can combine a number of ALUs to make a more

comprehensive UC that can support functions consisting

of multiple operations. Unfortunately, this approach is

not practical as the complexity of the circuit grows

linearly with the number of operations. On the other

hand, in conventional processors, ALUs are combined

with arrays of FFs, a.k.a., registers, in order to store

the intermediate values for supporting functions with

arbitrarily large number of operations. Since none of

the earlier implementations of GC explicitly supported

memory elements such as FFs, the ways to connect

the feedback loop around the ALU were rather limited.

However, an explicit sequential description supported by

TinyGarble allows us to leverage conventional processor

architectures. Therefore, the TinyGarble methodology

not only provides a powerful method for generating

compact circuits with a low overhead for SFE, but

also paves the way for systematically building scalable

sequential circuits that can be used for PF-SFE.

The idea of using an ALU or a universal next-
instruction circuit in the GC protocol can also be found

in [51]. The objective of that paper was improving

efficiency of SFE where the function is known by both

parties, unlike PF-SFE where the function is private.

Nonetheless, instead of ALU they eventually decided to

use an instruction-specific circuit which leaks informa-

tion about the function but results in less effort for non-

private function evaluation.

B. Memory

The processor accesses the memory while executing an

instruction to read the instruction and data and write the

data back. If the memory is securely evaluated along with

the processor, the access patterns must be also oblivious

to both parties. On the other hand, if the memory is not

evaluated securely, the access patterns could be revealed

that in turn could reveal information about the function

to Bob and about the data to Alice. For example, the

instruction read pattern discloses the branching decisions

in the function which may leak information about the

data. Because of TinyGarble sequential methodology, the

memory can be easily implemented using MUX and

arrays of FFs. Thus, it can be included in the processor

circuit to be evaluated securely using the GC protocol.

However, inclusion of MUXs and FFs increases the

operation time and communication linearly with respect

to the memory size.

One alternative approach for hiding memory access

patterns is the use of Oblivious Random-Access Machine

(ORAM) protocols [27] which allows oblivious load/s-

tore operations with amortized polylogarithmic overhead

[25], [28], [51], [52]. For the sake of simplicity, we do

not use ORAM in this work. However, one can simply

connect our implementation of PF-SFE to an ORAM to

benefit from its lower amortized complexity. As another

alternate, [71] showed that algorithms can sometimes be

rewritten to use data structures such as stacks, queues,

or associative maps for which they give compact circuit

constructions of poly-logarithmic size.
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C. Secure Processor

We assume Alice provides the private function

fAlice(·) and Bob provides private data xBob. At the end

of the operation, only Bob learns the output fAlice(xBob).
Note that we are not considering the case where both

parties learn the output as that would allow Alice to learn

Bob’s private data with an identity function (f ≡ I). The

protocol is as follows:

1) Alice and Bob agree on an instruction set architec-

ture (ISA), its implementation (i.e., the processor

circuit), the maximum number of sequential cycles,

and the configuration of data xBob in the memory.

2) Alice compiles the function fAlice(·) according to

the ISA. Her input is the compiled binary of the

function.

3) Bob prepares his input based on the agreed config-

uration to initialize the processor memory.

4) Using any secure GC framework, Alice garbles

the processor circuit for the maximum number of

sequential cycles and Bob, after receiving his inputs

with OT, evaluates the garbled processor circuit for

the same number of cycles.

5) Alice reveals the output types such that Bob learns

the value of the output fAlice(xBob) stored in mem-

ory. This needs to be done only for agreed memory

locations containing the outputs such that Bob does

not learn intermediate values in the memory.

Because of secure evaluation using the GC protocol

in Step 4, no information about values in the circuit will

be leaked except the output. Without knowing internal

values in the processor circuit, none of the parties can

distinguish instructions or memory access patterns. In

the following, we demonstrate an implementation of a

processor supporting the MIPS (Microprocessor without

Interlocked Pipeline Stages) ISA, as an example of a gar-

bled processor for securely evaluating private functions.

D. MIPS

MIPS is a text-book Reduced Instruction Set Com-

puting (RISC) ISA [40]. The RISC ISA consists of a

small set of simplified assembly instructions in contrast

to Complex Instruction Set Computing (CISC) (e.g., x86

ISA) which includes more complex multi-step instruc-

tions [33]. We choose a RISC ISA processor instead of

CISC for the following main reasons: (i) lower num-

ber of non-XOR gates, (ii) simple and straightforward

implementation, and (iii) availability and diversity of

open-source implementations. Moreover, we choose a

single-cycle MIPS architecture (i.e., one instruction per

sequential cycle). Other architectures (i.e, multi-cycle

and pipelined) increase the performance of the processor

by parallelization. However, the GC protocol does not

benefit from such low level parallelization. The only

important factor for GC is the total number of non-XORs

which is smaller in the single-cycle MIPS. We follow

the Harvard Architecture which has distinct instruction

memory (IM) and data memory (DM) in order to separate

the parties’ inputs. IM is a Read-Only Memory (ROM)

that stores Alice’s instructions. DM is a Random Access

Memory (RAM) that is initialized with Bob’s input. The

parties’ inputs are connected to the initial signal inputs

of FFs in the memories. Bob’s outputs are connected

to the outputs of FFs in the specified address of DM.

The output address in DM is part of the agreed memory

configuration.

Fig. 6 shows the overall architecture of our 32-bit

MIPS processor. It is based on the Plasma project in

opencores [64]. We modified the circuit such that the

instruction ROM (IM) and the data RAM (DM) are

separated. The original Plasma processor supports all

the MIPS I ISA except unaligned memory access. In

our implementation, we also omit division instructions

because of their large overhead. Any arbitrary C/C++

function can be easily compiled to MIPS I assembly code

using a cross-platform compiler e.g., GNU gcc.

In 32-bit MIPS, the program counter (PC) is a 32-bit

register (array of FFs) that points to the instruction being

executed at the current cycle. The instruction is fetched

from IM based on the current PC value. The controller
unit is responsible for setting signals to perform the

instruction. In 32-bit MIPS, the register file consists of

32 registers of 32-bit each. In each cycle, at most two

registers can be read and at most one register can be

written back. ALU receives the read register(s) or a sign

extended immediate as operands. ALU also receives an

opcode from the controller unit. The output of ALU will

be either written back to the register file or fed to DM

as an address for load/store. The loaded data from DM

is written back to the register file. In each cycle, PC is

incremented by 4 to point to the next instruction in IM

or is changed according to a branch or jump instruction.

VII. EVALUATION

We use a variety of benchmark functions to evaluate

the performance and practicability of TinyGarble. In this

section, we first describe our experimental setup (Sec-

tion VII-A) and metrics for quantifying the performance

of TinyGarble (Section VII-B). We outline the perfor-

mance comparison of TinyGarble (with HDL synthesizer

and our custom libraries) on combinational benchmark

functions with PCF [46], one of the best known ear-

lier automated methodologies to generate circuits for

garbling in Section VII-D. TinyGarble’s performance in

generating sequential circuits for benchmark functions

using a standard HDL synthesis tool is demonstrated in

Section VII-E. Section VII-F shows the CPU time for

various numbers of sequential cycles which demonstrates

the effect of memory footprint reduction in garbling time.
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Fig. 6: Lite MIPS architecture. Alice’s and Bob’s inputs and the output are shown.

Section VII-G shows a comparison between TinyGarble’s

performance using an HLS tool (input written in C) and

using a conventional HDL synthesis tool (input given

in Verilog). Lastly, Section VII-H shows the result of

our garbled processor and implementation of Hamming

distance as a benchmark.

We also compare the performance of the commercial

logic synthesis tool with the academic, open-source tools

in Appendix A. We show that in most cases, the per-

formance of the open-source tool is comparable to the

commercial tool.

A. Experimental Setup

The circuit generations are all done on a system

with Linux RedHat Server 5.6, 8 GB of memory, and

Intel Xeon X5450 CPU @ 3 GHz. We use another

system with Ubuntu 14.10 Desktop, 12.0 GB of memory,

and Intel Core i7-2600 CPU @ 3.4GHz to assess the

timing performance of the sequential garbling scheme in

Section VII-F.

Two sets of HDL synthesis tool chains are used in

our experiments: one commercial and one open-source

(Appendix A). Our commercial HDL level synthesis tool

is Synopsis Design Compiler (DC) 2010.03-SP4 [13].

We also use the Synopsis Library Compiler from the

DC package to interpret our custom technology library.

In Section VII-G, we utilize Xilinx Vivado HLS [19],

a commercially available HLS tool whose inputs are

written in the C/C++ programming language. We empha-

size that TinyGarble can operate with any commercial or

open-source sequential HDL-level (or HLS) synthesizer,

as long as the synthesizer is capable of performing state-

of-the-art logic optimization and mapping algorithms.

B. Performance Metrics

We use the following metrics to measure the efficiency

of TinyGarble for generating garbled circuits:

• Memory Footprint Efficiency (MFE ):

MFE =
q0
q
,

where q0 is the total number of gates in the reference

circuit and q is the total number of gates in the

circuit under evaluation. The maximum number of

tokens that need to be stored at any point during

garbling/evaluation as well as memory required for

storing circuit description is directly proportional

to the number of gates in both sequential and

combinational circuits. Thus, the total number of

gates is approximately proportional to the memory

footprint.

• Number of Garbled Tables (#GT ):

#GT = #nonXOR× c,

where #nonXOR is the number of non-XOR gates

in a circuit and c is the number of sequential cycles

that the circuit needs to be garbled/evaluated. In

free XOR-based GC schemes, each non-XOR gate

requires a garbled table to be generated by the

garbler and sent to the evaluator at each sequential

cycle. Thus, this metric is an estimate of both the

computation and communication time.

• Garbled Tables Difference (GTD (%)):

GTD =
#GT −#GT 0

#GT 0

× 100,

where #GT 0 is the total number of garbled tables

for the reference circuit and #GT is the total num-

ber of garbled tables for the circuit under evaluation.

When comparing a sequential with a combination

circuit, positive GTD shows an overhead (caused

by folding a circuit with an asymmetric loop, see

Section IV) in total computation and communication

time resulting from an excessive number of garbled

tables generated in the sequential circuits. However,

in general, negative GTD shows improvement in

the number of non-XOR gates and generated gar-

bled tables that results from logic synthesis opti-

mization.
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C. Benchmark functions

We evaluate TinyGarble’s circuit generation method on

various benchmark functions. Several of these functions

have been used in previous works, e.g., PCF [46]. In

the following, we introduce our benchmarks and explain

how we fold them into a sequential representation.

Sum. This function receives two N -bit inputs and

outputs an N -bit sum. The sum function is implemented

in N steps of one bit sums by keeping the carry bit. Thus,

it can be folded up to N times without any significant

overhead in number of garbled tables (#GT ).

Hamming Distance. This function receives two N -bit

inputs and outputs the log2(N)-bit Hamming distance

between them. The Hamming distance between two

numbers is the number of positions at which the cor-

responding bits are different. A possible combinational

implementation of the N -bit Hamming distance uses a

binary tree of adders that sums all 1-bit values from the

bit differences to a final Hamming distance consisting of

log2(N) bits [5]. This implementation cannot be folded

easily. However, we can fold this function into N -cycles

of one XOR and one log2(N)-bit adder. This causes an

overhead compared to the combinational circuit.

Compare (Millionaires problem). This function re-

ceives two N -bit unsigned input values and outputs a

greater than signal consisting of one bit that indicates

if the first input is greater than the second one. The

comparison function can be implemented in N steps of

subtraction by keeping the carry bit [43]. Thus, it can be

folded up to N times without any significant overhead.

Multiplication. This function receives two unsigned

N -bit inputs and outputs their unsigned N -bit product.

The multiplication function consists of N additions and

shifts. The shift operations result in an asymmetric

structure in this function. Thus, folding it up to N times

may increase the overhead.

Matrix Multiplication. This function receives two N×
N matrices consisting of 32-bit unsigned numbers and

outputs an N × N matrix equal to the product of the

input matrices. The N×N matrix multiplication function

consists of three N -cycle nested loops with a symmetric

structures. It can be folded up to N3 times without any

significant overhead.

AES-128. This function receives a 128-bit plaintext

and 128-bit round keys and outputs a 128-bit ciphertext

based on the Rijndael algorithm. The AES-128 function

consists of 10 rounds with almost symmetric structure.

Ideally, it can be folded up to 10 times without any

significant overhead.

SHA3. This function receives 576-bit inputs and out-

puts a 1600-bit number equal to the SHA3 hash of the

input. We implement the Keccak-f permutations[1600]

procedure for realizing this function. The SHA3 function

consists of 24 steps, each with a symmetric structure. It

can be folded 24 times without any significant overhead.

D. Combinational Garbled Circuit

To show the performance gain of using our custom

libraries, we compare TinyGarble combinational circuits

with circuits reported in PCF [46]. We choose PCF

because among the automated GC tools available at

the time of writing, it shows better results for most

of the benchmarks. In some other work like FastGC

[36], a number of benchmark circuits have been more

aggressively improved (compared to PCF) using ad-

hoc and mostly manual optimizations, but without a

generalizable methodology.

The comparison is shown in Table I. We compute the

garbled tables difference GTD (see Section VII-B) of

various benchmarks by using circuits reported in PCF

as reference (GTDPCF). It can be seen that the combina-

tional circuits generated by TinyGarble have non-positive

GTDPCF which means that the number of garbled tables

are less than or equal to that of PCF circuits. We

also compare the memory footprint by computing the

memory footprint efficiency MFE with PCF as reference

(MFE PCF). We observe that MFE PCF is larger than 1 (up

to 9.3). This means that even without using sequential

circuits, the memory footprint can be reduced by almost

an order of magnitude by using TinyGarble custom

libraries and standard HDL synthesis.

In case of Hamming distance, TinyGarble shows, on

average, 80% improvement in number of garbled tables.

Another automated tool CBMC-GC [23] reports better

result compared to PCF for Hamming 160 (non-XOR

4,738, total gates 20,356). However, TinyGarble shows

66% improvement in number of garbled tables compared

to CBMC-GC. In case of 256-bit and 1024-bit Multipli-

cation, and 8 × 8 and 16 × 16 Matrix Multiplication,

because of the huge (impractical) sizes, Synopsis DC

was unable to generate the entire combinational circuit.

This is because Synopsis DC is a tool developed for com-

mercial applications. The real-life applications are almost

always written sequentially, otherwise the design would

not be scalable or even amenable to offline compilation

onto a hardware circuit. We emphasize that our sequential

circuit (c > 1) provides the exact same functionality

while having a very small memory footprint compared

with the reference circuit.

Comparison with Hand-Optimized Circuits: The

netlists generated by the automated flow of TinyGarble

show similar performance as the hand-optimized netlists

in many cases. For example, [43] describe an N -bit

sum circuit with 5N gates of which N gates are non-

XOR and an N -bit comparison circuit with 4N gates

of which N gates are non-XOR. The circuits generated

by TinyGarble have about the same number of gates

for these two functions. Note that one can always add
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any hand-optimized module to the synthesis library of

TinyGarble.

E. Sequential Garbled Circuit

As described in Section IV, the user has the degree

of freedom to fold a combinational circuit and convert

it to a sequential one to reduce the memory footprint.

c denotes the number of sequential cycles required to

garble/evaluate the circuit. This value demonstrates the

amount of folding that is performed before the circuit

is input to the synthesizer. The user defines the value

of c and writes her own input function in an HDL or a

higher level language such that the function is evaluated

in c sequential cycles.

We use Memory Footprint Efficiency (MFE ), to eval-

uate the reduction in memory requirement. We use Tiny-

Garble combinational circuits (c = 1) as reference. The

ideal MFE for a circuit with c sequential cycles is c. We

also compare the memory footprints of sequential circuits

with combinational circuits reported in PCF (MFE PCF).

As explained in Section IV-A, the folding process may

introduce some overhead on the total number of garbled

tables. To assess this overhead, we compute the Garbled

Tables Difference (GTD) of the sequential circuit using

TinyGarble combinational circuits as reference. The ideal

GTD is 0%, which means that the total number of

garbled tables should be equal to those for a functionally

equivalent combinational circuit. We also compare the

number of garbled tables of sequential circuits with

combinational circuits reported in PCF (GTDPCF) to

show that even with the incurred overhead, the number

of garbled tables for sequential circuits is still less than

that of PCF for most cases.

Table II shows the number of total gates, non-XOR

gates, MFE , GTD , MFE PCF, and GTDPCF of the

benchmark circuits for various input widths. MFE , GTD
are computed with TinyGarble combinational circuits

(with c = 1) as reference. MFE PCF, and GTDPCF use the

circuits reported in PCF as reference. In the case of AES

128, we compare our implementation with the manually

optimized circuit reported in FastGC [36] because PCF

did not report it directly.

We provide a few highlights from Table II. TinyGarble

is able to decrease the size of the sum of two 1024-bit

numbers by 1,022.8 times (i.e., more than three orders

of magnitude) without affecting the number of garbled

tables (GTD) compared with its own combinational

circuit. For Hamming 16000, TinyGarble is able to

decrease the memory footprint by 7,345.5 times (i.e.,

about 4 orders of magnitude) while reducing the number

of garbled tables by 47.3% in comparison with the circuit

reported in PCF. In case of Mult 1024, TinyGarble

shrinks the memory footprint by a factor of 2,504.4
while reducing the number of garbled tables by 79.4%

when compared with the result in PCF. For a 16 × 16
matrix multiplication, a 4,434.1 more compact TinyGar-

ble solution with 6% less garbled tables compared with

PCF is available. By folding AES-128 10 times, the total

number of gates is reduce by a factor of 13.9 compared

to the FastGC circuit without any overhead in the number

of non-XORs. Observe that the savings are typically

more for larger bit-widths while extreme foldings can

introduce an increased overhead in number of garbled

tables due to the resulting asymmetry.

Because of the TinyGarble superior scalability, we are

able to implement functions that have never been re-

ported before, such as SHA-3, which can be represented

using 344,059 and 6,788 gates respectively.

F. Effect of Folding on Garbling Time

So far, we have only reported the overhead in terms of

garbled tables (GTD) that is a function of the number of

non-XOR gates. As explained in [2], if we see garbling as

a cryptographic primitive, its computation time (without

considering communication) will also be interesting. In

practice, smaller circuits which can fit entirely in the pro-

cessor cache result in fewer cache misses and therefore,

consume less CPU cycles for garbling. To better observe

the impact of cache speed-up for the compact circuits

resulting from TinyGarble, Fig. 7 depicts the CPU Time

(left y-axis) and the memory footprint of wire tokens

(right y-axis) versus c (x-axis) for the 32,768-bit Sum

function. As mentioned earlier, the memory footprint is

directly proportional to the total number of gates in the

sequential circuit.

This experiment is done using our sequential garbling

scheme based on JustGarble [2] that includes using

Free XOR, Row Reduction, and Fixed-key AES garbling

techniques (see Section II-A). We use an Intel Core i7

CPU @ 3.40GHz which supports the AES-NI instruction

set. The CPU cycle is measured as the average of 10, 000
trials using RDTSC instruction. For security parameter

k = 128 (the bit-width of wire token, see Section II-A),

we store 128-bit per tokens. For garbling in JustGarble,

we store 2 tokens, 2 32-bit input indexes, and an 8-bit

gate-type per gate. Thus, the memory footprint is approx-

imately 328-bit per gate in garbling operation. Folding

the circuit by a factor of c ∈ [1 : 32,768] constantly

decreases the memory footprint while the computation

effort remains almost constant. Interestingly, as can be

seen from the figure, the number of CPU cycles sharply

decreases by 1.6× just when we fold four times (c = 4)

compared to c = 1. This is because for c ≥ 4, the

memory space required for garbling completely fits in

the cache. The minimum CPU cycle per gate happens at

c = 2,048 for 3.2 KB memory footprint. This signifies

the fact that even for large functions, we can use the

sequential approach to fit the corresponding memory
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TABLE I: Comparison of TinyGarble combinational circuits with PCF. In case of AES 128, the result is compared

with FastGC.
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TABLE II: Comparison of TinyGarble sequential circuits with PCF and TinyGarble combinational circuits. In case

of AES 128, the result is compared with FastGC.
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space requirement into the cache and avoid the penalty of

cache misses, thus achieving a large reduction in garbling

time.
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Fig. 7: Garbling 32,768-bit Sum function. The CPU

time in number of cycles and the approximate memory

footprint in KBytes (y-axis) versus c (x-axis) are shown.

G. High Level Synthesis Tools

The design automation community has been working

on tools that work with higher-level languages and ab-

stractions than HDL. While a host of commercial and

academic HLS tools are available [16], [19], [30], [59],

we selected the Xilinx Vivado HLS for compiling C

code to HDL which can then be synthesized using a

conventional HDL synthesis tool. The HLS engine in

the Vivado suite is built upon the xPilot project [73].

Table III demonstrates a comparison between the per-

formance of the circuits generated using C input to the

HLS tool (C→Verilog) and a direct Verilog input. As can

be seen from the table, the resulting memory footprint

could increase by a factor between 1 and 4, while the

number of garbled tables varies in a range of 3 to 9

times. It is well known that writing the HDL level code

which contains the time information and more detailed

structural/behavioral description would yield much more

efficient circuits than the code written in a higher level

language.

H. Evaluation of MIPS

We implement general purpose processor for PF-SFE

using MIPS I where one user provide function descrip-

tion in assembly and the other provides the data. Support

of sequential circuits in TinyGarble enables us to use the

MIPS circuit description in Plasma project [64] without

major modifications. In the following, we provide the

result of MIPS implementation and its memory footprint

and communication load. Lastly, we present implemen-

tation of Hamming distance with variable input length as

a benchmark of private function application on MIPS.

1) MIPS Implementation: We used TinyGarble to

generate the netlist for the MIPS sequential circuit.

Table IV shows the total number of gates and non-

XOR gates for each module of the MIPS processor with

64 × 32bit DM and IM. The sum of non-XORs for

each module is 14,997. However, when the modules are

combined together to form the entire MIPS processor,

the synthesizer optimizes the circuit such that the total

number of non-XORs is reduced by 14.95% to 12,755.

The memory footprint for storing tokens during garbling

MIPS is approximately the size of two tokens times

the total number of gates which is 2 × 128 × 31,719bit

= 991 KB for token bit-width k = 128. The communica-

tion load between parties for invocation of one instruction

(one sequential cycle) is approximately the size of three

tokens times the number of non-XOR gates which is

3 × 128 × 12,755bit = 598 KB with Row Reduction

optimization.

TABLE IV: Number of total gates and non-XOR gates

in the MIPS implementation. The global optimization of

TinyGarble reduces the overall number of gates com-

pared to that of the sum of individual modules.

Modules Total gates Non-XOR

Controller 509 470
Bus 603 590
ALU 651 346
Shifter 1,362 1,092
Mult 2,147 1,792
Reg File 8,880 3,023
IM 6,048 2,016
DM 13,779 5,423
PC 309 245
Total 34,288 14,997

MIPS 31,719 12,755

Global
optimization

7.49% 14.95%

2) Benchmark: Hamming Distance: We implemented

the Hamming distance function as a proof-of-concept

for our secure MIPS. It counts the number of different

elements in two arrays A and B with variable length l.
For the hand-optimized assembly code shown in Fig. 8,

the function requires at most 7 + 9l sequential cycles

(instructions) to evaluate. Thus, based on Table IV,

this function requires overall 12,755 × (7 + 9l) non-

XOR gates. It has only 16 instructions and is stored in

16×32bit of the IM. The function requires that l, A, and

B are stored in addresses 0, [2 : l+1], and [l+2 : 2l+1]
of DM respectively. It will store the Hamming distance

of A and B in address 1.

VIII. RELATED WORK

We classify related work into compilers for GCs

(Section VIII-A), libraries for GCs (Section VIII-B),

GC implementations with hardware accelerators (Sec-
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TABLE III: Comparison of performance of the circuits generated using C input to HLS and a direct Verilog input

to the HDL synthesizer.
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1 #hamming d i s t a n c e
2 # between A and B w i t h l e n g t h o f l
3 hamming :
4 lw $9 , 0 ( $0 ) # l o a d l i n t o $9
5 s l l $9 , $9 , 2 #$9 = $9∗4
6 a d d i $2 , $0 , 8 #$2 := A
7 add $3 , $2 , $9 #$3 := B = A + l
8 # answer ; no need t o r e s e t
9 # a d d i $10 , $0 , 0

10 # l +=2 t o compare wi th end of A
11 a d d i $9 , $9 , 8
12 l oop : # done i f A==end of A
13 beq $2 , $9 , done
14 lw $4 , 0 ( $2 ) # l o a d ∗A
15 lw $5 , 0 ( $3 ) # l o a d ∗B
16 xor $6 , $4 , $5 #$6==0
17 beq $6 , $0 , same # go to A[ i ] ! =B[ i ]
18 a d d i $10 , $10 , 1 # answer ++
19 same : #A++ #B++
20 a d d i $2 , $2 , 4
21 a d d i $3 , $3 , 4
22 j l oop # jump back t o t h e t o p
23 done : # s t o r e answer
24 sw $10 , 4 ( $0 )
25 end : # w h i l e ( 1 )
26 j end

Hamming.s

Fig. 8: Hamming distance assembly code.

tion VIII-C), and GC implementations on mobile devices

(Section VIII-D).

A. Compiler for Garbled Circuits

The following tools compile high level function de-

scriptions into a Boolean circuit which can be used in

GC. The first realization of GCs was Fairplay [54] which

provides a custom high level procedural language called

SFDL (Secure Function Definition Language) that is

compiled into a circuit description language, SHDL (Se-

cure Hardware Description Language). Another compiler

is TASTY [31] which allows to combine garbled circuits

and homomorphic encryption. The compiler of [47] for

the first time showed scalability to circuits consisting

of billions of gates, e.g., a 4095x4095-bit edit distance

circuit with almost 6 Billion gates. The compiler of [23]

allows to use a subset of ANSI C as input language.

To reduce the memory overhead for storing large cir-

cuits and hence increase scalability, PCF [46] introduced

loops that, if given manually in the high level language,

are kept until the GC evaluation. In contrast to PCF,

TinyGarble allows to infer loops automatically and also

allows to optimize across multiple sub-circuits.

B. Libraries for Garbled Circuits

Instead of compiling circuits, FastGC [36] proposed

to use a library-based approach where circuits can be

programmed and easily integrated into high-level ap-

plications. Another GC library is VMCRYPT [53] that

allows to dynamically construct and deconstruct sub-

circuits. FastGC was extended in [32] to re-use the same

sub-circuits. Another library for secure computation is

ABY that allows the efficient combination of multiple

secure computation approaches [18].

In all these library-based approaches the circuits and

their decomposition into sub-circuits has to be specified

manually by the programmer, whereas we provide an

automated approach.

C. GC Implementations with Hardware Accelerators

The following works provide better performance by

implementing garbled circuits in hardware, on GPUs, or

using AES-NI available in recent CPUs. These works

can benefit from the compact representation generated

by TinyGarble.

Järvinen et al. [38] proposed a generic hardware ar-

chitecture for GC. They realized two FPGA-based proto-

types: a system-on-a-programmable-chip with access to

a hardware crypto accelerator targeting smartcards and

smartphones, and a stand-alone hardware implementation

targeting ASICs.

Recently, several accelerations of GCs using GPUs

have been proposed. Husted et al. implemented Yao’s

GC by using optimizations such as Free XOR, pipelin-

ing, and OT extension [37]. Pu et al. realized dynamic

programming based on GC to solve the Edit-Distance
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(ED) and the Smith-Waterman (SW) problems [61]. They

also used the same optimizations as [37] along with

permute-and-encrypt, efficient lookup-table design, and

compact circuits [61]. Frederiksen et al. implemented a

secure computation protocol with security against ma-

licious adversaries based on cut-and-choose of Yao’s

garbled circuit and an efficient OT extension for two-

party computation on GPUs [24].

Bellare et al. propose JustGarble in which they use

fixed-key AES for circuit-garbling [2]. They show their

implementation using AES-NI can efficiently garble and

execute a circuit far faster than any prior report.

D. GC Implementations on Mobile Devices

Our approach for generating compact circuit repre-

sentations is also beneficial when performing secure

computation on resource constrained devices such as

mobile devices which have a limited amount of main

memory. Secure computation on mobile devices using

garbled circuits was proposed in [35]. Also the protocol

described in [17], which uses a smartcard installed in

the mobile device, can benefit from our more compact

circuit representation. In [10], [11] the mobiles no longer

need to process circuits any more as GC generation and

evaluation is outsourced to cloud servers.

IX. CONCLUSION AND FUTURE DIRECTIONS

We present TinyGarble, an automated tool that can

generate highly compact and scalable circuits for Yao’s

garbled circuit (GC) protocol. We are the first to define

the circuit generation for GC as a sequential synthesis

problem, and to leverage the powerful and established

HDL synthesis techniques with our custom-libraries and

objectives. We improve the results of one of the best

automatic tools for GC generation, PCF [46], by several

orders of magnitude: for instance TinyGarble compacts

the 1,024-bit multiplication by 2,504 times, while de-

creasing the number of non-XOR gates by 80%; we

compress the 16,000-bit Hamming distance by a factor

of 7,345 times and with 47% less non-XOR gates.

Further, TinyGarble is able to implement functions that

have never been reported before, such as SHA-3. We

perform extensive benchmarking with both commercial

and open source hardware synthesis tools and compare

the results. Our approach strongly improves the existing

results towards practical secure computation with many

exciting applications. For instance, TinyGarble is an

enabling technology for performing GC operations on

mobile platforms, which is prohibitively expensive using

the prior techniques. Moreover, we introduce a scalable

secure processor for private function evaluation (PF-

SFE). The processor is based on the MIPS architecture

and the private function can be compiled using ubiq-

uitous tool, e.g., gcc. In future work we will investigate

the possibility of connecting Oblivious RAM (ORAM) to

our secure processor to benefit from its lower amortized

complexity for memory access. We are also working on

interfacing TinyGarble with other GC schemes, e.g., the

recently proposed Half Gates method [72].
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APPENDIX A

OPEN SOURCE LOGIC SYNTHESIS TOOLS

TinyGarble offers a generic methodology for gener-

ating GC that is transparent to the underlying logic

synthesis tool. To show this point, we demonstrate an

implementation of TinyGarble using the Yosys [69] and

ABC [56] logic synthesis tool chain for circuit genera-

tion. Both of these tools are open-source and available

online. We compare the performance of the commercial

HDL synthesis tool, i.e., Synopsys DC, with this open-

source synthesis tool chain. ABC is an academic package

developed at the University of California Berkeley. Yosys

is an HDL-based synthesis tool which calls ABC for its

technology mapping. The HDL inputs for describing both

sequential and combinational circuits are written in the

Verilog programming language.

We compare the performance of these open-source

tools to the commercially available Synopsys DC. The

results are presented in Table V. For comparison pur-

poses, we compute GTD and MFE using the netlists

generated by Synopsys DC as reference. For most of

the benchmarks GTDs are either very small or zero

which implies that the number of non-XOR gates in

circuits generated by Yosys and by Synopsys DC are

almost similar. In terms of memory footprint, different

tools perform better for different benchmark functions.

These results shows that TinyGarble is transparent to the

underlying logic synthesis tool as long as the tool is up

to date with respect to the known methods for logic

minimization and mapping. Since the logic synthesis

tools perform a series of optimizations, they may use

different (heuristic) algorithms for some of their internal

steps which could lead to slightly different results. A

user can choose between different synthesis tools based

on their performance and availability.

TABLE V: Comparison of circuit generation perfor-

mance between the commercial Synopsys DC and

Yosys+ABC open source logic synthesizer.
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