
Forward Secure Asynchronous Messaging from
Puncturable Encryption

Matthew D. Green and Ian Miers
Department of Computer Science

The Johns Hopkins University

Baltimore, USA

[mgreen,imiers]@cs.jhu.edu

Abstract—In this paper we investigate new mechanisms for
achieving forward secure encryption in store and forward mes-
saging systems such as email and SMS. In a forward secure
encryption scheme, a user periodically updates her secret key
so that past messages remain confidential in the event that her
key is compromised. A primary contribution of our work is to
introduce a new form of encryption that we name puncturable
encryption. Using a puncturable encryption scheme, recipients
may repeatedly update their decryption keys to revoke decryption
capability for selected messages, recipients or time periods. Most
importantly, this update process does not require the recipients
to communicate with or distribute new key material to senders.
We show how to combine puncturable encryption with the
forward-secure public key encryption proposal of Canetti et al. to
achieve practical forward-secure messaging with low overhead.
We implement our schemes and provide experimental evidence
that the new constructions are practical.

I. INTRODUCTION

Asynchronous messaging services such as email and SMS

have become indispensable for personal and business com-

munications. In recent years, several messaging services have

begun to support end-to-end encryption in order to protect

content transmitted over insecure communications channels.

In this paper we address a specific drawback of many such en-

cryption schemes: they often fail to ensure the confidentiality

of past messages in the event that a user’s key is compromised.

The necessary property, known as forward secrecy, is vital to

protecting user confidentiality. This is particularly important

for messaging systems that use decentralized or cloud-based

delivery systems that may preserve older messages for indef-

inite periods of time.

While it is relatively simple to add forward secrecy to

interactive protocols such as TLS [23] or OTR [15], it is

far more challenging to achieve in asynchronous “store-and-

forward” messaging such as encrypted email, SMS, or in mes-

saging systems that offer delivery to offline users (e.g., Apple

iMessage and Google Hangouts). Indeed, none of the three

most popular encryption protocols for asynchronous messag-

ing, Apple iMessage [21], OpenPGP [17] and S/MIME [36],

provide a forward secrecy mechanism.

Addressing this problem is not trivial. Asynchronous mes-

saging systems do not mandate that senders and recipients be

online simultaneously, nor do they enforce two-way interaction

between parties. Messages may be delayed for substantial

periods due to delivery failures and connectivity issues, and

some extensions, such as “greylisting” for spam prevention in

email [28] and anonymous remailers/mixnets [22], intention-

ally introduce large delays in delivery.

Existing proposals for adding forward security to encrypted

email [39], [8], [40] add increased complexity and new points

of failure. They often require highly-available network in-

frastructure to distribute fresh key material to senders [39],

or force changes to client interaction, such as requiring an

initial message exchange prior to secure communications [33].

Beyond the added cost, such mechanisms are expensive to

scale and may fail against active attackers. As a concrete

example of these challenges, the TextSecure protocol used by

WhatsApp1 [4] implements an extremely fine-grained forward

secrecy mechanism in which the client uploads hundreds of

ephemeral keys to an online server that in turn distributes them

to senders [32]. Not only are storage costs substantial, but an

attacker can easily exhaust a given recipient’s pre-key supply,

which causes the mechanism to fail open.

In Eurocrypt 2003, Canetti, Halevi and Katz [18] proposed

an alternative approach that does not require changes to

the key distribution model. Their proposal defines a forward
secure public key encryption scheme (FS-PKE) in which users

may publish a short, unchanging public key via existing

key distribution infrastructure. The novel element of FS-PKE

is an efficient update procedure by which a user’s secret

key can, at time period T , be altered to revoke decryption

capability for any ciphertext encrypted during time period

T ′ < T . In principle, this can be used to achieve forward

security in existing messaging systems, under the relatively

mild requirement that parties share (loosely) synchronized

clocks.

Unfortunately FS-PKE has not been widely adopted. In part

this is because little work has been conducted to establish the

concrete performance characteristics of such a system. More

problematically, the Canetti et al. key update procedure is a

relatively blunt instrument: in removing decryption capability

for a given time period, a user necessarily loses access to

all messages sent during prior time periods. Thus the scheme

cannot provide fine-grained deletion of messages, e.g., remov-

ing access to individual messages or messages from a single

1TextSecure is the encryption protocol used by the WhatsApp communica-
tion network, which has over 600 million users worldwide.

2015 IEEE Symposium on Security and Privacy

© 2015, Matthew D. Green. Under license to IEEE.

DOI 10.1109/SP.2015.26

305

2015 IEEE Symposium on Security and Privacy

© 2015, Matthew D. Green. Under license to IEEE.

DOI 10.1109/SP.2015.26

305

sender. The practical consequence is that an implementation

that aims to preserve user experience must by either risk

updating the key before all messages have arrived – or it

must leave some messages exposed until the receiver can be

certain that it is safe to wind the key forward. When one

factors in clock drift and delivery latency, the result may be a

period ranging from hours to weeks during which data remains

vulnerable.

Our contributions. In this work we systematically explore

the problem of providing forward secrecy in asynchronous

messaging systems. Our overall goal is to develop public key

encryption that allows for fine-grained revocation of decryp-

tion capability only for specific messages, while minimizing

cost and storage requirements. As with the Canetti et al.
approach, our goal is to use short, unchanging public keys.

Unlike previous solutions, we require that the secret key update

procedure remove access at the level of individual ciphertexts

or message senders, while retaining the ability to decrypt all

other messages.

To achieve this goal, we employ two new ingredients. First,

we introduce a a new form of public-key encryption that sup-

ports revocation of individual messages. We refer to this new

encryption scheme as puncturable encryption. The primitive

can be thought of as a form of tag-based encryption [31] which

adds an efficient Puncture algorithm that, on input the current

secret key SK and a tag t ∈ {0, 1}∗, outputs a new secret key

SK′ that will decrypt all ciphertexts not encrypted under tag t.
Secret keys in this scheme can be repeatedly and sequentially

punctured at many different points, replicating the experience

of normal message deletion.

Second, we show how to merge puncturable encryption into

a variant of Canetti et al. FS-PKE, modified to allow fine-

grained revocation of specific time intervals without revoking

all previous intervals. By combining these approaches into a

unified scheme, we show how to implement practical forward-

secure public key encryption under reasonable workloads.

More specifically, our contributions are as follows:

1) We define puncturable encryption, propose security defi-

nitions for the primitive, and offer an efficient construc-

tion secure under well-studied assumptions in bilinear

groups. Our construction is based on a non-monotonic

Attribute Based Encryption (ABE) scheme due to Ostro-

vsky, Sahai and Waters [35], modified to realize a new

key update functionality. After n puncture operations,

our construction features O(1) public key, ciphertext size

and encryption cost, and O(n) secret key storage and

decryption cost.

2) To improve efficiency, we show how to compose punc-

turable encryption with an optimized FS-PKE construc-

tion due to Boneh et al. [12] that allows for revocation

of individual time periods. This combination realizes the

“best of both worlds”, allowing a user to instantly delete

selected messages with precision, while dramatically

reducing decryption cost over puncturable encryption

alone. The advantage of this approach is that total

decryption and key storage cost now grow linearly only

in the maximum number of messages received within
a given time period, and only logarithmically in the

number of time periods.

Interestingly, our results show that composing these

schemes is not simply a matter of running both in

parallel, but requires that they be carefully combined

such that the resulting keys provide collusion resistance
against an adversary who seeks to recombine keys from

different time periods.

3) Finally, we provide a software implementation of

the combined scheme both as a standalone library

libforwardsec and describe how to integrate it with

tools such as Gnu Privacy Guard [5]. We then use

the new tools to conduct experiments evaluating the

overhead of deploying puncturable and forward security

encryption under various simulated usage scenarios.

Outline of this paper. The rest of this paper is structured

as follows. In the remainder of this section we discuss the

intuition behind our constructions. In §II and §III we provide

background and formal definitions for the puncturable encryp-

tion primitive and in §IV present our main construction. In §V
we show how to combine puncturable encryption efficiently

with FS-PKE. In §VI, §VII, §VIII and §IX we describe the

implementation and evaluation of our proposals. In §X we

discuss other applications of these proposals. Finally, in §XI

we discuss related work.

A. Encryption Model

We now briefly explain the framework we use to describe

encryption in asynchronous messaging systems. An asyn-

chronous messaging network consists of a set of senders and a

set of recipients, all interacting via an insecure channel. For the

purposes of this work we will assume that senders have some

means to obtain a single authentic public encryption key for

each recipient they wish to communicate with. Instantiations

of this model include the existing OpenPGP infrastructure, as

well as systems like Apple iMessage [17], [21].

Conversations can be broken down into two types of mes-

sage: initial messages between a sender and recipient, and

optional interactive messages. In an asynchronous system,

each conversation consists of at least one initial message,

optionally followed by an interactive exchange between the

communicating parties. In this work we are primarily con-

cerned with the forward secrecy of initial messages, since the

forward secrecy of subsequent interactions may be achieved

by using an interactive “ratcheting” protocol such as OTR [15]

or TextSecure/Axolotl [32].

The approach we propose in this work is to attach to each

initial message a unique identifier, or “tag”, generated by the

encrypting party. Upon receiving this message, the receiving

party may – at its discretion – revoke decryption capability

for the received message via a secret key update. Since our

306306

puncturable encryption constructions support tags in the space

{0, 1}∗, the sender can use any unique string for the message

identifier. Example tags might include a GUID (which we

use in our experiments), or alternatively a concatenation of

sender ID and a monotonically-increasing message counter.

On receipt of a message, the recipient can securely revoke

decryption capability for only that message by “puncturing”

the secret key on that tag. Our puncturable constructions

also support employing multiple tags per message. In this

case, the unique message ID may be supplemented with

additional meta-data such as the sender ID. This approach

allows receivers to revoke entire classes of message (e.g., all

messages from a given sender).

There are two limitations of our approach: (1) the cost of

decrypting a message with a given key increases linearly in the

number of punctures in that key and (2) an active attacker may

block messages from reaching the recipient, thus preventing

the recipient from revoking access to these messages. To

address these concerns, in Section V we propose to combined

puncturable encryption with forward secure encryption. In this

approach, the sender simultaneously encrypts each message

with both a time period and a unique message identifier. The

receiver may instantly perform both fine-grained revocation of

the messages it receives, but also possesses a coarse-grained

update mechanism to revoke messages older than a certain

time period in the past. We refer to the time period for which

the recipient can decrypt as the “decryption window”. This

dual approach is roughly analogous to the fine- and coarse-

grained revocation approach used in TextSecure [32], but does

not require distribution of pre-keys to the sender. Crucially for

efficiency, decryption time for a message arriving in interval

T is linearly only in the punctures done for interval T, not the

total number of punctures.

In Section IX we discuss choices for parameters such as

message ID format, time period interval length, and the size

of decryption windows.

B. Intuition: Puncturable Encryption

To explain the intuition behind our constructions, let us first

address some trivial solutions. We consider schemes in which

an encryptor attaches a “tag” such as a message identifier

(or time period identifier) to each message sent to a given

receiver. The goal of the system is to allow the receiver

to selectively revoke the ability to decrypt specific tags. In

systems with only a polynomially number of time periods

(or “tags”) T , it is simple to realize (inefficient) puncturable

encryption by generating a unique PKE keypair corresponding

to each “tag” a sender might encrypt under. Puncturing the

key is simply a matter of deleting the corresponding secret.

One can improve upon the O(|T |) public key size of this

construction using identity-based encryption to produce O(1)
sized public parameters for use as the public key, deriving IBE

decryption keys for all tags t ∈ T , and destroying the master

secret.

Unfortunately these simple approaches have secret key stor-

age that is linear in the total number of allowable tags, not the

current number of punctured tags. Not only is this inefficient, it

limits the maximum number of possible tags (or time periods)

to be at most polynomial in the security parameter. This clearly

rules out exponentially-sized tag spaces, for example, strings

such as sender addresses or unique message identifiers. A

smaller tag space raises the possibility of tag collisions, where

multiple messages from different senders are given the same

tag, and thus the second message cannot be decrypted.

To address these issues, we take a different approach. Rather

than deleting elements from an existing decryption key, we

desire a structure that allows us to add new restrictions on what

the key can decrypt. The logical building block for our con-

struction is a form of attribute-based encryption scheme that

supports non-monotonic access formulas. In such schemes,

decryption keys may comprise boolean formula containing

both positive and negated attributes, e.g., “NOT t”.

In and of itself non-monotic ABE is not sufficient to

construct puncturable encryption, since we must also support

the ability to add negations to an existing decryption key. A

critical observation here is that by formulating a key containing

only negations, some constructions can be modified to support

the creation of new negations within an existing key.

Our concrete proposal begins with an NM-ABE construc-

tion due to Ostrovsky, Sahai and Waters [35], which we

configure as a form of tag-based encryption supporting a fixed

number d of tags per ciphertext. To generate a key pair, a

user first produces parameters for an instance of the ABE

scheme, publishes the public parameters as her public key PK,

derives a decryption key from the master secret key MSK, and

destroys the master secret MSK.

At all times subsequent to initial key generation, the recipi-

ent’s secret key is an ABE decryption key embedding a policy

consisting of only negated attributes. To puncture a key at an

additional point t, the recipient updates her existing secret key

to derive a new key that also embeds the negation of t. This

is possible in the Ostrovsky et al. scheme due to the structure

of these negated key components. Specifically, within each

negated key component, Ostrovsky et al. embed one secret

share λ of the master secret α. Due to the nature of this

scheme, it is possible to re-share the value λ from any given

key component, by generating λ′ and mauling the original key

component to embed the share λ − λ′. Simultaneously, one

may create a new negated key component embedding share

λ′, and bound to the newly punctured tag t. This provides

our puncture algorithm, which can be operated an arbitrary

number of times.

Combining Puncturable Encryption with FS-PKE. As men-

tioned above, to ensure forward secrecy under active attack

and allow for more efficient decryption, we need to combine

Puncturable Encryption with FS-PKE.

The naı̈ve approach to combining the two schemes is simply

to operate FS-PKE in parallel with puncturable encryption,

307307

encrypting every plaintext across both systems.2 However this

approach is problematic. There is no obvious mechanism

for reducing the complexity of a punctured secret key after

winding the FS-PKE key forward – i.e., for removing NOT

gates. To solve this problem, during time period T we might

instead retain a copy of the initial unpunctured secret key for

use in time period T + 1. Unfortunately this poses a new

challenge: if an attacker compromises the recipient’s computer,

she will be able to combine this unpunctured secret key with

the FS-PKE secret key for time period T , and thus access

messages that should be inaccessible.

Our solution to this problem is to cryptographically bind

the secret keys for the FS-PKE scheme with those for the

punctured encryption scheme. Thus an attacker who obtains

the secrets for time period T and T + 1 cannot recombine

any portions of the key to obtain access to messages deleted

during the earlier time period. In §V we show how to achieve

this combination using an efficient FS-PKE derived from

a Hierarchical Identity-Based Encryption scheme of Boneh,

Boyen and Goh [12]. Given a maximum number of punctured

tags n, and a maximum number L of time periods, the

combined scheme gives O(1) sized ciphertexts and public key,

and O(log(L) + n) secret key storage and decryption cost.

More importantly, we implement this scheme and show that

its actual costs are quite practical.

II. BACKGROUND

Notation. Throughout this paper we will use the following

notation. Let negl(·) represent a negligible function. Let M
represent the set of valid plaintexts for a scheme, and let T
represent the set of valid tags.

A. Bilinear Maps

Let G and GT be two multiplicative cyclic groups of prime

order p. Let g be a generator of G and e : G × G → GT be

a bilinear map with the properties:

1) Bilinearity: for all u, v ∈ G and a, b ∈ Zp, we have

e(ua, vb) = e(u, v)ab.

2) Non-degeneracy: e(g, g) �= 1.

We say that G is a bilinear group if the group operation in

G and the bilinear map e : G×G→ GT are both efficiently

computable. In practice, we may also define bilinear groups

in the asymmetric setting, where a bilinear map is defined as

e : G1 × G2 → GT for G1 �= G2 and there is no efficient

isomorphism γ : G1 → G2. We will describe our schemes in

the symmetric setting, and in §VI will discuss the process of

translating to the asymmetric setting.

The schemes we present in this work are provably se-

cure under the Decisional Bilinear Diffie-Hellman Inversion

(DBDHI) (see e.g., [12]) and the Decisional Bilinear Diffie-

Hellman assumption (DBDH) [11] in bilinear groups. For

reasons of space we will omit a definition of these assumptions

here, and refer the reader to the cited works.

2This encryption would be combined: example, a user might split a message
M using a 2-of-2 secret sharing and encrypt each share under one of the two
schemes.

III. DEFINITIONS

In this section we provide the syntax and security definitions

for puncturable encryption.

A. Puncturable Encryption

A puncturable encryption scheme is a tuple of probabilistic

algorithms (PPKE.KeyGen,PPKE.Encrypt,PPKE.Decrypt,
PPKE.Puncture) with the following syntax:

PPKE.KeyGen(1k, d)→ (PK, SK0). On input a security

parameter k, and a maximum number of tags per cipher-

text d, output a public key PK and an initial secret key

SK0.

PPKE.Encrypt(PK,M, t1, . . . , td) → CT. On input a

public key PK, a plaintext M and a list of tags t1, . . . , td,

output the ciphertext CT.

PPKE.Puncture(PK, SKi−1, t) → SKi. On input a

secret key SKi−1 and a tag t, output a new secret key SKi

that can decrypt any ciphertext SK′ can decrypt, except

for ciphertexts encrypted with t.

PPKE.Decrypt(PK, SKi,CT, t1, . . . , td)→ {M}∪{⊥}.
On input a secret key SKi and a ciphertext CT, output a

plaintext M , or ⊥ if decryption fails.

We now define correctness and security for puncturable en-

cryption.

B. Correctness

Correctness is defined by the following experiment. On

input (k,M, n, d, t1, . . . , tn, t
∗
1, . . . , t

∗
d):

1) Compute (PK, SK0)← PPKE.KeyGen(1k, d)
2) If n > 0 then for i = 1, . . . , n compute SKi =

PPKE.Puncture(SKi−1, ti).
3) Set CT = PPKE.Encrypt(PK,M, t∗1, . . . , t

∗
d).

The scheme is correct if for all sufficiently large k; d > 0, n ≥
0 both polynomial in k; t1, . . . , tn ∈ T , t∗1, . . . , t

∗
d ∈ T \

{t1, . . . , tn}, M ∈M it holds that

PPKE.Decrypt(SKn,CT, t
∗
1, . . . , t

∗
d) = M

with probability 1 − negl(k) taken over the random coins of

the experiment.

Remark. We allow for a negligible correctness error due to

the fact that in our constructions, it is desirable for size of the

secret key to be independent of the length of the tag strings.

In practice this implies some negligible probability that two

different tags will collide.

C. Security

Security for puncturable encryption is defined by the IND-
PUN-ATK game, which we present in Figure 1. This game

incorporates both CPA and CCA variants. Intuitively, this is

similar to the indistinguishability definition for public key

encryption but adds the following new oracles.

On input any tag t ∈ T , the Puncture oracle updates

the secret key to revoke tag t. The adversary may query this

308308

Setup. On input a security parameter k and a maximum number of tags d, the challenger initializes two empty sets P,C and a counter
n = 0. It runs (PK, SK0)← PPKE.KeyGen(1k, d) and gives PK to the adversary.

Phase 1. Proceeding adaptively, the adversary can repeatedly issue any of the following queries:

• Puncture(t): The challenger increments n, computes SKn ← PPKE.Puncture(SKn−1, t) and adds t to the set P .
• Corrupt(): The first time the adversary issues this query, the challenger returns the most recent secret key SKn to the adversary and

sets C ← P . All subsequent queries return ⊥.
• Decrypt(CT, t1, . . . , td): If ATK = CPA the challenger returns ⊥. If ATK = CCA the challenger computes M ←

PPKE.Decrypt(SKn,CT, t1, . . . , td) and returns M to the adversary.

Challenge. The adversary submits two messages m0,m1 ∈ M along with tags t∗1, . . . , t
∗
d ∈ T . If the adversary has previously issued a

Corrupt query and {t∗1, . . . , t∗d} ∩ C = ∅, the challenger rejects the challenge. Otherwise the challenger samples a random bit b, and
returns CT∗ ← PPKE.Encrypt(PK,Mb, t

∗
1, . . . , t

∗
d) to the adversary.

Phase 2. This phase is identical to Phase 1 with the following restrictions:

• Corrupt() returns ⊥ if {t∗1, . . . , t∗d} ∩ P = ∅.
• Decrypt(CT, t1, . . . , td) returns ⊥ if (CT, t1, . . . , td) = (CT∗, t∗1, . . . , t

∗
d).

Guess. The adversary outputs a guess b′. The adversary wins if b = b′.

Fig. 1. IND-PUN-ATK security game for puncturable encryption, with ATK ∈ {CPA,CCA}.

oracle repeatedly throughout the game, each time producing a

new secret key. The Corrupt oracle provides the adversary

with the most recent state of the secret key held by the

challenger. The adversary may challenge on a pair of messages

and chosen tags t∗1, . . . , t
∗
d, subject to the restriction that

the adversary cannot corrupt the secret key unless she has

previously punctured at least one of the tags t∗1, . . . , t
∗
d. This

restriction prevents attacks in which the adversary may trivially

decrypt the challenge ciphertext.

The CCA variant of the game also adds a decryp-

tion oracle. The adversary may call this oracle at any

point on input (CT, t1, . . . , td) with the sole restriction that

(CT, t1, . . . , td) �= (CT∗, t∗1, . . . , t
∗
d), i.e., that she does not

query on the challenge ciphertext and tags. More formally:

Definition 3.1 (Security for puncturable encryption): A

puncturable encryption scheme is IND-PUN-ATK secure for

ATK ∈ {CPA,CCA} if for all p.p.t. adversaries A and for

sufficiently large k, it holds that A’s advantage in the IND-
PUN-ATK game is bounded by 1/2 + negl(k).

IV. CONSTRUCTIONS

We now present constructions that achieve, respectively,

CPA-secure and CCA-secure puncturable encryption under

reasonable assumptions in bilinear groups.

A. A CPA-secure construction

Figure 2 presents a CPA-secure construction of Puncturable

Encryption based on an Attribute-Based Encryption scheme

of Ostrovsky, Sahai and Waters (OSW) [35]. As discussed

earlier, the basic construction is an adaptation of the OSW

scheme, with the addition of a Puncture algorithm that, on

input a secret key SK and tag t outputs SK′ with an additional

component for the negation of tag t. Our key observation

is that individual secret key components can be “re-shared”

using only public parameters. This process is described in the

Puncture algorithm.

For space reasons we omit a proof of correctness and move

directly to our main security theorem for the security of the

CPA construction.

Theorem 4.1: The puncturable encryption scheme of Fig-

ure 2 is IND-PUN-CPA secure in the random oracle model

if the Decisional Bilinear Diffie-Hellman (DBDH) assumption

holds in G,GT .

The proof of Theorem 4.1 draws extensively from the proof

of [35], adding mainly the additional details of simulating the

Puncture algorithm. We sketch this proof in the full version

of this paper.of the full v.

B. CCA security

The puncturable encryption scheme presented in Figure 2

provides only CPA security. We now describe how to modify

this scheme to achieve CCA security. Our approach uses the

Fujasaki-Okamoto transform [24] which is commonly used to

efficiently transform a CPA-Secure scheme into a CCA-secure

one.

Let M′ ∈ {0, 1}� be a plaintext space and let

H1 : GT × M′ × T d → Zp and H2 : GT →
{0, 1}� be two independent hash functions. Given the

CPA-secure puncturable encryption scheme (PPKE.KeyGen,
PPKE.Encrypt,PPKE.Decrypt,PPKE.Puncture) from Fig-

ure 2 where PPKE.Encrypt uses random element s ∈ Zp, we

define a modified scheme (PPKE.KeyGen,PPKE.Encrypt′,
PPKE.Decrypt′,PPKE.Puncture) where PPKE.Encrypt′ and

PPKE.Decrypt′ are defined as follows:

PPKE.Encrypt′(PK,M, t1, . . . , td). First select a random

element Σ ∈ GT , compute s ← H1(Σ,M, (t1, . . . , td))
and compute CT′ ← PPKE.Encrypt(PK,Σ, t1, . . . , td)
using s as the encryption randomness. Now output CT =
(CT′, H2(Σ)⊕M).

PPKE.Decrypt(SKi,CT, t1, . . . , td). First

parse CT as (CT′, S) and compute Σ′ ←

309309

PPKE.Keygen(1k, d). On input a security parameter k and number of tags associated with a ciphertext d, choose a group G of prime
order p, a generator g and a hash function H : {0, 1}∗ → Zp. Chooses random exponents α, β ∈ Zp and set g1 = gα, g2 = gβ .
Finally sample r ∈ Zp and a degree-d polynomial q(·) subject to the constraint that q(0) = β. Define V (x) = gq(x). Letting t0 be a
distinguished tag not used during normal operation, output:

PK = g, g1, g2, g
q(1), . . . , gq(d) SK0 = [(sk

(1)
0 = gα+r

2 , sk
(2)
0 = V (H(t0))

r, sk
(3)
0 = gr, sk(4) = t0)]

The parameters g2, g
q(1), . . . , gq(d) allow any party to compute V (·) by interpolating in the exponent.

PPKE.Encrypt(PK,M, t1, . . . , td) On input the public parameters PK, a messageM to encrypt and a set of tags t1, . . . , td ∈ {0, 1}∗\{t0}.
Sample a random s from Zp and output

CT =
(
ct(1) = M · e(g1, g2)s, ct(2) = gs, ct(3,1) = V (H(t1))

s, . . . , ct(3,d) = V (H(td))
s
)

along with the tags (t1, . . . , td).

PPKE.Puncture(PK, SKi−1, t) On input an existing secret key SKi−1 and a tag t ∈ {0, 1}∗ \ {t0}. First parse SKi−1 as

[sk0, sk1, . . . , ski−1] and further parses sk0 as (sk
(1)
0 , sk

(2)
0 , sk

(3)
0 , t0). Next sample λ′ and r0, r1 at random from Zp and compute:

sk′0 =
(
sk

(1)
0 · gr0−λ′

2 , sk
(2)
0 · V (H(t0))

r0 , sk
(3)
0 · gr0 , t0

)

ski =
(
gλ

′+r1
2 , V (H(t))r1 , gr1 , t

)

It outputs the new key SKi = [sk′0, sk1, . . . , ski−1, ski].

PPKE.Decrypt(SKi,CT, t1, . . . , td) On input a private key SKi, a ciphertext CT and a set of tags t1, . . . , td associated with the ciphertext.
Parse the ciphertext CT as (ct(1), ct(2), ct(3,1), . . . , ct(3,d)) and parse SKi as [sk0, sk1, . . . , ski].

For j = 0, . . . , i parse ski as (sk
(1)
i , sk

(2)
i , sk

(3)
i , sk

(4)
i). Next compute a set of coefficients ω1, . . . , ωd, ω∗ such that (ω∗·q(H(sk

(4)
i)))+∑d

k=1(ωk · q(H(tk))) = q(0) = β. Finally compute

Zj =
e(sk

(1)
j , ct(2))

e
(
sk

(3)
j ,

∏d
k=1(ct

(3,k))ωj

)
· e(sk(2)

j , ct(2))ω∗

and output M = ct(1)/
∏i

j=0 Zj .

Fig. 2. A CPA-secure puncturable PKE scheme based on the ABE construction of Ostrovsky, Sahai, and Waters [35].

PPKE.Decrypt(SKi,CT
′, t1, . . . , td). Next

compute M ′ ← S ⊕ H2(Σ) and compute

s′ ← H1(Σ,M
′, (t1, . . . , td)). Finally, using

s′ as the randomness, compute CT′′ ←
PPKE.Encrypt(PK,Σ′, t1, . . . , td) and if CT′ �= CT′′

return ⊥. Otherwise return M ′.

Theorem 4.2: The puncturable encryption scheme

(PPKE.KeyGen,PPKE.Encrypt′,PPKE.Decrypt′,
PPKE.Puncture) is IND-PUN-CCA secure in the random

oracle model if the Decisional Bilinear Diffie-Hellman

(DBDH) assumption holds in G,GT .

The proof of Theorem 4.2 follows the well understood struc-

ture described by Fujaki-Okamoto [24]. For space reasons we

leave it to the full version of this work.

V. PUNCTURABLE FORWARD SECURE PKE

While puncturable encryption provides fine-grained control

over a recipient’s ability to decrypt ciphertexts, the secret key

size grows proportionally to the number of revoked ciphertexts

tags. This can become unwieldy after a large number of

punctures.

In this section we show how to mitigate this issue by com-

bining puncturable encryption with a forward-secure public

key encryption scheme [18] based on an efficient Hierarchical

Identity Based Encryption (HIBE) Scheme. In the modified

construction, senders encrypt under a time period T and a

list of tags (t1, . . . , td). Receivers may puncture their keys

within the current time period (or most recent n time periods),

eventually using the forward secure scheme to provide coarse-

grained security by winding the key forward. Crucially, in

winding the key forward they may eliminate the overhead of

storing the punctured key components for past time periods. In

this proposal, the total size of the key and cost of decryption

are linear in the number of punctures in only the current time

period(s), and logarithmic in the total number of time periods.

Intuitively, the security definition for this hybrid scheme

is similar to the one for puncturable encryption, with the

adversary gaining the additional capability to advance to the

310310

PFSE.Keygen(1k, d, �). On input a security parameter k, the number of tags per ciphertext d and a tree depth �, first select G,GT of order
p. Sample random α, β ∈ Zp and g3, h1, . . . , h� ∈ G, and set g1 = gα, g2 = gβ . Select a hash function H : {0, 1} → Zp and let t0
be a distinguished tag not used during normal operation. We will implicitly define PK = (PKPPKE ,PKPFSE) where:

PKPPKE = (g, g1, g2, g
q(1), . . . , gq(d)), PKPFSE = (g, g1, g2, g3, h1, . . . , h�)

Now sample r1, r2, r3 ∈ Zp and sample α1, α2 ∈ Zp with the restriction that α1 + α2 = α. Using α1 as the master secret key for the
HIBE scheme, compute HIBE keys corresponding to identities “0” and ”1” (i.e. the identities to the left and right of the tree root).

hskL = BBG.Keygen(PKPFSE , α1, 0), hskR = BBG.Keygen(PKPFSE , α1, 1)

Next, compute the initial PPKE share of the key using master key α2 and distinguished tag t0:

ppkesk∅ = [(gα2+r3
2 , V (H(t0))

r3 , gr3 , t0)]

Set D0 = (0, {hskL, hskR}, ppkesk∅). This initial tuple will be used as a “seed” to obtain the secret key for the first time period, as
follows:

(tsk1
∅,D1)← PFSE.NextInterval(D0)

Output PK and the initial secret key SK = (tsk1
∅,D1).

PFSE.Encrypt(PK,M, Tcur, t1, . . . , td). On input PK, a message M , a time period Tcur , a set of tags t1, . . . , td ∈ {0, 1}∗ \ t0, sample
s ∈ Zp and compute a HIBE identity T1, . . . , Tk = IndexToPath(Tcur, �). Now compute:

ct(1) = e(g1, g2)
s ·M, ct(2) = gs, ct(3,1) = V (H(t1))

s, . . . , ct(3,d) = V (H(td))
s, ct(4) =

(
hT1
1 · · ·hTk

k · g3
)s

Output ct = (ct(1), ct(2), ct(3,1), . . . , ct(3,d), ct(4)) along with Tcur, (t1, . . . , td).

PFSE.Puncture(PK, SK, t). On input the current secret key SK, parse SK = (tski
T,Di) where T represents the set of punctures in the

current time period. Further parse tski
T as (hski, ppkeskT) and compute:

ppkeskT∪{t} ← PPKE.Puncture(PKPPKE , ppkeskT, t)

Output tski
T∪{t} = (hski, ppkeskT∪{t}).

PFSE.NextInterval(Di). Parse Di as (i,HSKs, ppkesk∅) and extract the HIBE key hskP corresponding to time period i from HSKs and
derive its left and right keys as follows:

hskL = BBG.Keygen(hskP, 0), hskR = BBG.Keygen(hskP, 1)

Compute a new HSKs′ including the two new keys but without the parent (i.e. HSKs′ = (HSKs \ hskP) ∪ {hskL, hskR}) and set
D′ = (i+ 1,HSKs′, ppkesk∅).

Second, derive tski
∅ = (hsk′i, ppkesk

′
∅) the key for decrypting messages for time interval i by binding together the HIBE key hskP

for interval i with randomized version of the P-PKE key ppkesk∅. Parse hskP as (a0, . . .) and ppkesk∅ as (sk
(1)
0 , sk

(2)
0 , sk

(3)
0 , t0),

sample γ ∈ G, r ∈ Zp at random and compute

hsk′P = (a0 · gγ2 , . . .)
ppkesk′∅ = (sk

(1)
0 · g−γ+r

2 , sk
(2)
0 · V (H(t0))

r, sk
(3)
0 · gr, t0)

Output (tski
∅,D

′).

PFSE.Decrypt(tski
T, ct, t1, . . . , td). Parse tski

T as (hski, ppkeskT) and ct as (ct(1), ct(2), ct(3,1), · · · , ct(3,d), ct(4))

A← PPKE.Decrypt(ppkeskT, (1, ct(2), ct(3,1), . . .), t1, . . . , td) , B ← HIBE.Decrypt(hski, (1, ct(2), ct(4)))

Output M = ct(1)

A·B .

Fig. 3. Puncturable Forward Secure Encryption from puncturable encryption and Hierarchical Identity Based Encryption.

311311

secret key to the next time period, and to challenge on an

unpunctured key proved it precedes the corrupted interval. We

present the full definition in Appendix B.

FS-PKE and HIBE. The FS-PKE construction of Canetti et al.
uses a HIBE scheme as a building block. First, a maximum

number of time periods L is chosen, then a tree depth � =

log(L+ 2)� is calculated, and each time period 1, . . . ,L is

mapped to one node of a binary tree hierarchy of identities

using an in-order traversal.3 Each node of the tree corresponds

to a HIBE secret key. When a time interval is complete, HIBE

keys for the left and right subtrees are derived using the key

for current epoch, which is then deleted.

We can implement the HIBE scheme using any selective-

ID secure HIBE. In principle, we could even dual-purpose

the Ostrovsky et al. NM-ABE scheme from our puncturable

encryption construction to build a HIBE, using the key delega-

tion approach proposed by Goyal et al. [26]. However, such a

construction (and indeed many practical HIBE schemes) would

have ciphertext sizes and decryption times that are linear in

the identity length, and hence logarithmic in the number of

intervals. In contrast, Boneh, Boyen and Goh [12] proposed

an efficient construction that features constant-size ciphertexts

and decryption times and, interestingly, keys that decrease in

size linearly as the identity string grows.

Combining FS-PKE and Puncturable encryption. Intuitively,

our approach in combining the two schemes is to associate

with each time interval T a pair of secret keys (AT , BT) where

AT represents the key material for the FS-PKE at time T and

BT represents the puncturable encryption key material. The

element BT initially begins with no tags punctured, and will

be updated with each subsequent call to Puncture. Prior to

any punctures occurring, however, we also derive and store a

second pair of keys (AT+1, BT+1) for the next time period

where AT+1 represents the FS-PKE key for time period T+1,

and BT+1 is the empty puncturable encryption component.

Critically, each pair (Ai, Bi) must be bound together, such

that (1) both are required in order to decrypt a ciphertext, and

(2) an attacker who obtains (AT , BT), (AT+1, BT+1) cannot

recombine the keys in new combinations.

The process of updating a key from time period T to time

period T + 1 is therefore a matter of discarding the pair

(AT , BT) and using the pair (AT+1, BT+1) to derive another

bound pair (AT+2, BT+2) for the time period T+2.4 The user

applies subsequent puncture operations to BT+1. This process

may be repeated until the final time period.

As is typical of many IBE/ABE schemes, the HIBE scheme

of [12] makes use of a master secret α and a public parameter

g1 = gα. The puncturable encryption scheme of §IV also uses

a similar construction. Thus our approach is to initially share

a single master secret key α as α1, α2 where α = α1+α2. We

use α1 as the master secret for the HIBE scheme, and α2 as

3This description places the first time period at the node to the left of the
root of the tree.

4The user need not immediately discard the previous key and may, if she
chooses, retain keys for many time periods. This allows users to “hold the
door open” for any late-arriving ciphertexts.

the secret for the puncturable encryption. At each subsequent

time period, we can take the fresh keys for time period T +1
and produce a new pair of keys for time period T + 2 by

dynamically updating the sharing of the secret α. Crucially, for

both [12] and our scheme, α is embedded as a multiplicative

factor of the form gα. As a result this re-sharing can be

computed on any set of derived keys, even after the master

secret α has been destroyed.

Syntactically, a hybrid scheme combines the

existing PPKE.KeyGen,PPKE.Encrypt,PPKE.Puncture,
PPKE.Decrypt algorithms with the hierarchical key derivation

mechanism of a HIBE scheme. Thus PFSE is a tuple of 6

algorithms(PFSE.KeyGen, ,PFSE.Encrypt,PFSE.Puncture,
PFSE.Decrypt,PFSE.NextInterval) where

SKn+1 ← PFSE.NextInterval(SKn)

returns the derived key for the next interval by invoking

the HIBE scheme’s key derivation function. We present our

construction in Figure 3.

Theorem 5.1: The scheme of Figure 3 is secure in the sense

of Definition in figure C.1 in the random oracle model if

the Decisional Bilinear Diffie-Hellman Inversion (�-DBDHI)

assumption holds in G,GT .

We sketch a proof of Theorem 5.1 in the full version of this

paper.

A. CCA Security

As in construction of §IV-B, we can apply the Fujisaki-

Okamoto transform [24] to the scheme of Figure 2 to obtain

a CCA-secure construction. The details of this approach are

nearly identical to those given in §IV-B, with the following

small modifications. First, the hash function H1 now has the

profile H1 : GT ×M′ × Tcur × T d → Zp. Second, each of

the modified encryption and decryption algorithms each take

as input the time period Tcur as well as a list of tags, and

feed these values into H1. All of the remaining details are as

in §IV-B. We leave a formal proof for the full version of this

paper.

VI. IMPLEMENTATION

In this section, we present our implementation of punc-

turable forward secure encryption, with all technical details

needed for implementation.

A. Symmetric to Asymmetric Conversion

While our scheme is presented in the “symmetric” pairing

setting, where the bilinear map e is defined as e : G×G→ GT ,

in practice the most practical settings for pairing implementa-

tions use asymmetric bilinear groups G1,G2,GT where e is

defined by e : G1 × G2 → GT . In many of these settings,

there exists no efficiently computable isomorphism between

the groups G1,G2.

The setting we employ for our implementation uses 256-

bit Barreto-Naehrig curves [9]. Since the resulting bilinear

groups are asymmetric, we must transform our presented

312312

Key size(� = max ID length, l = ID length) Example l = 30(no punctures)

puncturable encryption + HIBE overhead - overlap normal split CRS

PK (2 + d)× |G1|+ (2 + d)× |G2| +(3 + �)× |G1|+ (3 + �)× |G2| −2× |G1| 4.02 kB 1.66 kB 0.42 kB

SK (3× |G2|+ |Zp|)× punctures +(2 + �− k)× |G1|+ (�− k)× |G2| N/A 14.02 kB 16.24 14.02 kB

CT |GT |+ (d+ 2)× |G1|) +|Gt|+ 2× |G1| −(|GT |+ |G1|) 0.5 kB 0.5 kB 0.5 kB
TABLE I

KEY SIZES FOR P-PKE, HIBE [13], AND THE COMBINED PFSE SCHEME. BECAUSE OF REDUNDANCIES IN THE TWO SCHEMES (E.G. THE GROUP

GENERATOR g), THERE IS SOME OVERLAP WE SAVE IN THE COMBINED SCHEME.

schemes into the asymmetric setting. There are many ways

to perform this transformation, and efficiency must be taken

into account when choosing one. This is because in the BN

setting, elements in G1 are on the order of 256 bits in our

case while elements in G2 are on the order of 1024 bits. As a

result, selecting group assignments involves tradeoffs. In effect

there are three different goals we can optimize for:

1) Ciphertext size. We attempt to put as many elements in

the ciphertext in G1 first.

2) Public key size. We attempt to put the public key

elements into G1 first.

3) Secret key size. We attempt to put the secret key

elements into G1 first.

For our implementation, we chose to optimize for minimal

ciphertext size. This seems appropriate, as secret key storage

does not appear to be a significant problem except on highly

constrained devices. We performed our group assignment

using the Autogroup tool [6], which employs an SMT solver

to optimize for appropriate assignments.

B. Polynomials, evaluation, and recovery coefficients

Our descriptions in Figures 2 and 3 omit several impor-

tant steps needed to implement the scheme. Specifically, our

implementation must (1) select the random polynomial q(x)
such that q(0) = β, (2) compute V (x) without knowledge

of the polynomial coefficients, and (3) compute the recovery

coefficients ω0 · · ·ωd, ω
∗ for decryption. While these details

are not technically novel, we present them in Appendix A for

completeness.

C. Mapping time intervals to a HIBE scheme

In [19], Canetti et. al. detail how to construct a forward

secure encryption system from a HIBE scheme by mapping

time intervals onto a binary tree using an pre-order traversal

and maintaining a stack of keys. Although we use the same

pre-order traversal mapping, we use a different algorithm

which requires only a dictionary and the ability to convert

an index into the tree to a location in the tree and vice-versa.

This leads to a simple and natural structure of a secret key as a

map from an interval to the key for that interval and we found

it easier to work with. The algorithm is defined in Listing 1.

def IntervalKeys(pk,sk,i):
path = indexToPath(i,L)#L=max tree depth
if len(path) != L:# then not a leaf node

lkey= hibe.keygen(pk,sk[i],path+[0])
rkey= hibe.keygen(pk,sk[i],path+[1])
return ((lkey,pathToIndex(path+[0),L),

(rkey,pathToIndex(path+[1],L))

Listing 1. Key Derivation for Update

D. Sterile keys

An elegant feature of the HIBE scheme of Boneh et. al

is that HIBE keys can be sterilized by deleting a few extra

elements. These keys can still be used to decrypt messages

associated with some identity, but they cannot be used to derive

new keys for child intervals.

The ability to sterilize keys gives an important freedom: in

PFSE interval sizes can be as short as we want. If we expect

latent messages to arrive, we can simply keep a sterilized

version of that interval around. This gives us the ability to keep

a decryption window around which still maintains forward

secrecy. Absent this, intervals could not be kept along and

the size of an interval would determine how much latency the

scheme can tolerate. This is not desirable as larger intervals

will incur more punctures and hence longer decryption times.

We leverage this in our implementation.

E. Software

Our implementation is approximately 4,000 lines of C++

including a C++ wrapper around the RELIC pairing library [7],

and extensive unit tests. Serialization is provided by the C++

Cereal [42] serialization library wrapping RELIC’s serializa-

tion routines for elliptic curve points. To improve performance,

we parallelize decryption using OpenMP [34] to parallelize

computation of Zj in the puncturable decryption routines.

VII. EXTENSIONS AND OPTIMIZATIONS

A. Outsourced decryption

One potential concern with our scheme is the cost of de-

crypting, especially on constrained devices such as embedded

systems and mobile phones. These concerns may be mitigated

if a cloud provider is available to provide computational assis-

tance. For example, there are well known techniques [27], [20]

for securely and privately outsourcing pairing computation and

ABE decryption to a third party (e.g. a cloud-based server).

Since pairings are the dominant cost in the decryption process,

and since decryption can be parallelized, this could allow

for a substantial reduction in on-device decryption cost. One

313313

application of such a scheme would be to implement forward

secure encryption within projects such as Google’s End-to-

End [2], using Google’s servers to perform pairing operations.

B. Outsourced key storage and updating

Key sizes in puncturable encryption can grow fairly large

(e.g., 900 kB for 1 message a second with up to 1000 seconds

of latency). However, not all of this material needs to be kept in

secure storage. Instead, the keys themselves can be encrypted

and stored in untrusted storage, provided that the decrypter

can securely store a short symmetric key, and that this key

can be erased and overwritten with a new key during updates.

This ensures that old keys cannot be recovered.

C. Size of public keys

When implementing puncturable forward secure encryp-

tionusing symmetric pairings, the HIBE public key contains

� random group elements. These constitute the bulk of the

public key material in puncturable forward secure encryption.

To reduce the size of the public key, these elements could

be selected using an appropriate hash function, and used as a

global constant (formally, a CRS). Alternatively, the same set

of � elements can be generated globally and shared across all

public keys.

Although transforming the scheme into the asymmetric

setting makes the scheme for faster and ciphertexts smaller, it

makes the situation worse in two ways. First, a corresponding

set of � elements must exist in both groups. This doubles the

size of the public key. Second, because each corresponding

element must have the same discrete log (respect to the

generator of each group), they cannot be generatedusng a hash

function. To generate each pair of elements, it is necessary to

pick a random exponent and raise the generator in each group

to that power. This requires trusted setup. In the asymmetric

setting, this leaves us with a 4.2 kB public key as seen in table

I. There are three options for reducing the size of these keys:

1) Move the elements in G2 into the secret key. We call

this the split approach. It increases public key size.

2) Assume trusted set up and generate them as a common

parameters.

3) have each user participate in generating the parameters.

The third option holds some potential. A naive approach is to

have all users generate gr1, g
r
2 for each component, prove they

are each raised to the same base. and simply take the product

of each. It’s possible to optimize this so that the common

parameters are progressively updated as users register and we

need not require all users participate in a single setup protocol

at the start.

D. Decryption window

Many forward secrecy applications require the ability to

maintain decryption capability for some number of time inter-

vals in the past. In our scheme it is possible to store multiple

keys. For example, a recipient may retain keys that allow

for decryption of messages received during the past n time

periods. Moreover, with the ability to sterilize keys, these

keys can be altered into a form that does not allow for the

creation of keys for subsequent time periods. Thus a recipient

can selectively “knock out” the keys for specific time periods,

and/or puncture specific message identifiers within those time

periods, while retaining the keys for previous time periods.

The size of the window is an application choice balancing 1)

the need to decrypt latent messages 2) the cost of increased

key storage and 3) the risk that an attack might intentionally

delay a target message until after they compromise the system

and extract keys needed to decrypt it .

VIII. RECOMMENDED USAGE

Given all of these ingredients, we now have a system that

can be used to implement forward secrecy in asynchronous

messaging networks. The overall approach we propose is as

follows. Each recipient generates a public key for a the hybrid

P-PKE scheme, and delivers these keys via the key server.

Each party now maintains an open decryption window allow-

ing that party to receive messages with timestamps > (p−n)
where p is the current time period and n is the number of time

intervals in the decryption window.

In practice, the recipient may implement this by retaining

the keys corresponding to the n most recent time periods,

using the optimization for retaining keys described in §VII-D.

When a new message arrives marked with time period T , the

recipient identifies the time period key corresponding to T .

If that key is still available, it uses the key to decrypt the

message. Next, the recipient may puncture the corresponding

key with the message’s unique identifier. At the same time, the

recipient’s software derives and sterilizes keys as appropriate

(this can either be done on the receipt, one per time interval, or

in some batched aggregated process, depending on processing

and power requirements.) Periodically, the client eliminates

old time period keys that are no longer within the decryption

window.

IX. PERFORMANCE EVALUATION

We provide two types of experiments: microbenchmarks

demonstrating performance of our hybrid (PFSE) scheme

and simulated results illustrating the cost of the schemes in

example usage scenarios.

A. Microbenchmarks

We conduct our experiments against three devices:

• A Desktop Intel Core i7-3770K CPU @ 3.5GHz with 32

GB of RAM running Ubuntu 14.04

• A 2013 Macbook air with an Intel Core i7-4650U CPU

@ 1.7GHz with 8GB of RAM running OSX 10.9.5

• An Android phone with a Qualcomm Snapdragon 801

SoC (a Kriat 400 ARM CPU) @ 2.5GHz with 3GB of

RAM running Cyanogen-mod 11.

All experiments resulted from conducting 50 timing samples

on a tree of depth � = 31 with ciphertexts supporting only

d = 1 tags. We implemented the CCA-secure variant of the

scheme described in §V-A. For these experiments less than

50 kB of memory was used with all keys stored in memory.

314314

0 5 10 15 20 25 30 35

Interval

0

50

100

150

200

250

300

T
im

e
(m

s)

NextInterval() performance vs. current interval

x86 Desktop
x86 ultrabook
ARM

0 20 40 60 80 100

Punctures

0

500

1000

1500

2000

T
im

e
(m

s)

Decrypt time vs. punctures

x86 Desktop multi-threaded
x86 Desktop single-threaded
x86 ultrabook
ARM

Fig. 4. Performance of PFSE (50 repetitions). Left, the cost of computing the next interval key as intervals advance. As later intervals have shorter HIBE
secret keys, this decreases. Right, the cost of decrypting a ciphertext given the number of punctures in a key. Since P-PKE secret keys get larger as they are
punctured, this increases.

While the goal of this section is to investigate the perfor-

mance of our hybrid scheme, our micro benchmarks illustrate

the performance of operations related to the two underlying

cryptographic components – forward-secure PKE and punc-

turable encryption. Recall that the puncturable encryption key

generation, encryption, and “puncture” operations all perform

independently of the current number of punctures previously

applied to a secret key. Even when combined with a HIBE

scheme to form a PFSE scheme, the cost of these operations

remains constant. They do, however, gain a dependency on

the total number of allowable time periods. Table II presents

microbenchmarks for these operations.

While PFSE.NextInterval is similarly independent of the

number of punctures n, it does depend linearly on the length

of the current interval key. As keys in the HIBE scheme

decrease in size as the identity gets longer (i.e. the key

for the first interval is the longest), the process of deriving

the next key gets faster. PFSE.Decrypt runs in time O(n)
independent of the ID length, the current interval, or even

the total number of intervals. However, it does depend on the

number of punctures. See Figure 4 for results showing the

performance of interval updates and decryption. 5 We note that

since decryption depends on number of punctures × number of
tags, Figure 4 also shows the effect of decryption with d ≥ 1
tags.

B. PFSE under real world conditions

There are two performance metrics we are concerned with:

the size of the secret keys and the amount of time we expect

to spend perform cryptographic operations necessary to read

messages. Performance of PFSE under real world conditions

is determined by 4 parameters:

1) The distribution of message arrivals. For our simula-

tions, we assume for simplicity that message arrivals are

modeled as a Poisson process with distribution λ. This

5Due to an implementation quirk, Keygen handles deriving both the children
of root and the grand-children. NextInterval therefore starts at interval three,
hence the discontinuity in the above graph.

(x86)Desktop (x86)Ultrabook ARM

Keygen 196.6± 1.7ms 368.4± 13.9ms 883.2± 56.3ms

Encrypt 5.49± 0.1ms 9.9± 1.3ms 22± 0.9ms

Decrypt 13.82± 0.01ms 24.8± 2.4ms 55.5± 1.3ms

Puncture (Initial) 15.6± 0.1ms 28.8± 2.5ms 68.4± 1.6ms

Puncture (subsequent) 9.8± 0.1ms 18.3± 2.2ms 42.2± 0.7ms
TABLE II

MICRO-BENCHMARKS FOR PFSE WITH 232 − 2 INTERVALS AND d = 1
TAGS PER MESSAGE. THIS INDEPENDENT OF THE STATE OF THE KEY.

assumption clearly does not accurately model bursty

communication like chat/SMS where there are many

replies – however, for such mechanisms one can use

a symmetric key ratchet to achieve forward security. As

the message rate increases, we expect performance to

decrease.

2) The duration of each time interval. The HIBE portion

of our scheme maps messages into time intervals for

which a specific key is needed to decrypt all messages

in that interval. The length of those intervals affects both

the size of keys (since for shorter intervals, we need

a deeper tree to span the same amount of time), the

number of expected punctures (for a fixed message rate,

longer intervals mean more messages per interval and

hence more punctures) and effort required to derive keys.

3) Number of intervals The maximum depth of the HIBE

scheme limits the total number of intervals PFSE sup-

ports. It also effects the performance of HIBE key

derivation.

4) The “window” of time in which we can decrypt
latent messages (all messages prior to this window
are permanently inaccessible). Window size affects the

amount of key material that needs to be stored. We

expect that the window size in deployed applications

will be determined by considerations such as message

delivery latency. Latency itself, assuming that it is inde-

pendent per message does not effect performance.

315315

Because the message rate is determined by the type of

traffic (e.g. email, sms, etc), and window size only effects

key storage, the only two means an application has to tune its

performance is through the selection of the interval size and

the total number of supported intervals. Combined, these two

parameters determine how long a key lasts before it needs to be

replaced. In practice, we expect that the amount of time before

a key is replaced will be determined by outside requirements.

In that case, application developers face a trade off: a key with

many short intervals or few long ones.

1) Simulating real world usage: To explore PFSE perfor-

mance under a variety of conditions, we define a simulation

parameterized by the three parameters given above. Our simu-

lation uses the data in desktop performance numbers in Figure

4 as a raw input to estimate the computational cost that will be

incurred using the cryptography. Results are shown in Figure 5

for the effect of interval size. We set experiments to run for a

fixed amount of time (100,000 seconds) and choose parameters

so that each public key covers 1 year worth of intervals (i.e.

the key with 1 millisecond long intervals has 1000 times as

many intervals as the key with 1 second long intervals.).

We subdivide our results into (1) the time spent deriving

HIBE keys, (2) the time spent puncturing keys, and (3) the

time spent decrypting ciphertexts. A the decrease in efficiency

for P-PKE is expected as intervals get larger (since we

have more punctures per interval and thus more time spent

decrypting). However, surprisingly, we notice a sharp increase

in time spent deriving keys as intervals get smaller.

The cause of this extra computation is partly due to an

increase in tree depth, as intervals get smaller. Primarily,

however, the effect is simply one of spacing: as the interval

size decreases, the distance (i.e., number of intervals) between

messages goes up. As a result, the number of keys we need to

derive increases logarithmically, and because key derivation

for each key depends linearly on its depth in the tree, the

total amount of work needed increases polylogarithmically as

intervals get shorter.

Given these results, how much storage do we expect? Table

III shows the maximum private key sizes measured given

various message rates. These are taken with a setup similar

to the simulated experiments described above but (1) run

against the real software with a window size of 1,000 seconds

with it aggressively deleting keys immediately once they were

outside the window and (2) with each interval getting E[x]
messages per interval (i.e. the expected number of messages

per interval) rather than a random X messages per interval

where X has a Poisson distribution. To ensure accuracy, the

experiment simulates 2000 seconds worth of traffic.

2) Recommended parameter choice and expected perfor-
mance: The experiments in Figure 5 suggest that the optimal

interval size occurs at the point where the recipient receives 1

message per interval.

The exact point of the trade of may very depending on

processor type and the relative efficiency of pairings used

in decryption, and point multiplication used primarily in key

derivation. Fine-grained tests on the current implementation

optimal interval length / message rate size(kB)

0.001 10.56

0.010 55.15

0.100 214.10

1.000 890.44

TABLE III
EXPECTED MAX KEYSIZE FOR OPTIMAL INTERVAL SIZE (I.E 1 MESSAGE

PER INTERVAL EXPECTED). WINDOW OF 1,000 SECONDS. KEYS SIZED TO

SPAN 1 YEAR.

confirm that 1 message per second is, at least on the test

desktop system, a local optimum. Based on our tests, we

believe we can deal with message rates of 1 a second and

expect decryption times per message of 20ms and with

99.99% probability, less than 100ms.

For one message per interval, it takes on average 50ms

to derive the next key on a desktop. Thus our total expected

time to decrypt a message, assuming we naively only derive

keys when we get a message6, is well less than 200ms.

Mobile benchmarks suggest a 4x increase in computational

cost, increasing the decryption time to under 800ms. Since

the dominant cost of this is key derivation, which we expect

to be batched and handled independent of message decryption,

the actual expected time to decrypt a message on our ARM

processor will be 55ms, and with 99.99% probability, less

than 500ms.

X. APPLICATIONS

In this section we discuss two applications and extensions

of puncturable encryption within existing systems.

A. Secure deletion

While the applications we considered in this paper are

all limited to messaging protocols, our techniques may be

applicable to other types of data storage as well. Where

the standard approach to eliminating sensitive information is

simply to delete local copies, secure deletion of files in cloud

based storage can be potentially more challenging.

For files written and read by a single user, secure deletion

can be accomplished trivially by encrypting each file with a

unique key and deleting this key when necessary. However,

systems with many writers and at least one reader (e.g.

file sharing, shared passwords in online password managers7,

and SecureDrop8 [41]), often require the use of public keys.

Unfortunately, in this setting there is no clear way to delete a

specific file without deleting the whole private key and losing

access to all of the data.

With puncturable encryption, however, we can simple tag

the data as appropriate and puncture on the tag to delete the

file. There are several interesting options for use as tags:

6Unless the real message distribution has very low variance, this isn’t
recommended: A long gap for messages will effectively deffer key derivation
costs until a message arrives. Instead, keys should be derived once per interval
or in some batch process.

7Such a feature is provided by the cloud based password manager Lastpass.
8A system for securely communicating with journalists.

316316

Fig. 5. Total time spent decrypting out of 100,000 seconds on a x86 Desktop. Note, x-axis is log scale and tree depth was adjusted so that the key spanned
1 year.

Subject tags. Messages can be tagged with a subject identifier.

Once the subject has come to a close (e.g., “selecting a

Vice Presidential candidate”), all messages pertaining to the

discussion can be deleted.

Classification tags. Messages can be tagged with their classifi-

cation level (e.g. secret, top secret, etc). Negation can either be

done globally (e.g. in the case of loosing security clearance), or

per time interval to ensure sensitive information is not stored

for long periods of time.

Author. Messages/files from a given user can be deleted. For

example, a lawyer upon terminating their relation ship with a

client, or on the death of the client could securely delete all

work pertaining to the client to ensure confidentiality.

For data retention, none of these techniques need be applied

to the only copy of the data. Instead, copies can be made to

more secure archival system and negation used only to ensure

that keys used on a daily basis no longer have access.

B. Integration with Legacy Applications

Cryptographic tools for secure messaging, such as

GnuPG [5] are integrated into many pieces of software.

Even if developers wish to adopt forward security techniques

this, many encryption user interfaces are already designed

to interoperate with these legacy tools. Ideally, one could

bypass client software entirely and merely modify deployed

encryption tools such as GnuPG to use libforwardsec
without changing the API of the existing library. We detail

how to do this for simple forward security where message

tags are random.

Key generation and decryption can be handling opaquely

by the library by merely updating existing internal calls. For

forward security, tags can be selected randomly by the library

and so need not be specified in a call to encrypt. Public keys

for the forward secure system may be included as a new form

of subkey within existing OpenPGP keys, or they may be

treated as an auxiliary component that the tool can retrieve

from some external server. or, provided network access is

acceptable, from a key server. In the case of the later, if the

P-PKE key is signed by the legacy key, then the library can

provided opportunistic forward secure encryption even when

the sender is not aware the recipient supports it and only has

the recipients legacy key.

The legacy model does not, however, provide an obvious

solution to actually puncturing keys. The tool could automat-

ically puncture for specific messages each time it is asked

to decrypt a message. Alternatively we could modify GnuPG

with an additional command of the form --update-key
that on input either a time period T or tag t will update the

current state of the secret key.

XI. RELATED WORK

There are several types of related work we list in this

section.

Delegation for Attribute Based Encryption. Delegable or hi-

erarchical Attributed Based Encryption [30], [43], [37], allows

a user to modify a key embedding a given access policy into a

key embedding a more restrictive one. Our puncture procedure

can be considered a variant of delegation. Some work [37] has

been done on ciphertext delegation, where an untrusted party

can update a ciphertext to be accessible only under a more

restricted policy. To the best of our knowledge, however, no

scheme supports updating keys to add a negation (e.g. not tag

0xDEADBEEF) with only knowledge of that single key and

not the master key.

Revocable IBE. Another body of work [10], [37], [44] is on

revocable Identity Based Encryption. In this setting, a trusted

third party issues identities and then through some mechanism

(typically either directly updating users keys or posting some

public update information) updates only the keys of non-

revoked users. This setting does not deal with compromise

of the trusted authority and thus can’t be used for forward

secure encryption.

Forward security for messaging. In addition to the proposals

listed earlier in this paper, there are several additional propos-

als for forward secure messaging that have seen deployment,

such TextSecure and Pond [1], [3]. All of these schemes

317317

either rely on generating many keys, or, more frequently, using

interactive forward secure protocols.

Puncturable PRFs. . Puncturable PRFs , dating back to 1984

[25] have received recent attention [14], [16], [29] for use with

indistinguishability obfuscation[38]. They allow a PRF key to

be punctured so that the PRF can no longer be evaluated on a

specific point. Indeed puncturable encryption is intentionally

named in a similar vein. However the two are distinct. While

puncturable PRFs can be used to create puncturable symmetric

key encryption in the obvious way,9 it’s not immediately clear

how to use them for public key encryption. Moreover, all

existing constructions are either selectively secure 10 or require

indistinguishability obfuscation for instantiation.

XII. CONCLUSION

In this work we proposed puncturable encryption, a new

primitive that allows users to control which ciphertexts their

keys may decrypt. By combining this primitive with an effi-

cient FS-PKE scheme, we showed that the two schemes can be

used in practice in real messaging systems. This work leaves

several open question. One major question is whether punc-

turable encryption can be realized from alternative building

blocks besides Attribute-Based Encryption. In particular, it

is interesting to consider whether puncturable encryption can

be constructed from elliptic curve groups that do not support

pairings. A second set of questions deals with ways to improve

the efficiency of this scheme and make it more practical for

deployment, including specific techniques for outsourcing the

decryption of forward secure ciphertexts.

Acknowledgements. This work was supported by: The Air

Force Research Laboratory (AFRL) under contract FA8750-

11-2-0211; the U.S. Defense Advanced Research Projects

Agency (DARPA) and the Air Force Research Laboratory

(AFRL) under contract FA8750-11-2-0211; The National Sci-

ence Foundation under award EFRI-1441209; and the Office

of Naval Research under contract N00014-11-1-0470.

REFERENCES

[1] Forward secrecy for asynchronous messages. https://whispersystems.
org/blog/asynchronous-security/. Accessed: 2014-11-13.

[2] Google End-To-End. Available at https://code.google.com/p/
end-to-end/.

[3] Pond. https://github.com/WhisperSystems/TextSecure/wiki/ProtocolV2.
Accessed: 2014-11-13.

[4] Textsecure. https://github.com/WhisperSystems/TextSecure/wiki/
ProtocolV2. Accessed: 2014-11-13.

[5] The GNU Privacy Guard. https://www.gnupg.org/.
[6] Joseph A Akinyele, Matthew Green, and Susan Hohenberger. Using

SMT solvers to automate design tasks for encryption and signature
schemes. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 399–410. ACM, 2013.

9Though perhaps there is no obvious reason to do symmetric puncturable
encryption at all given fast symmetric key ratcheting.

10Like the Boneh et. al HIBE scheme, this can be converted to full security
via complexity leveraging at the cost of an exponential loss in security.
However, for puncturable encryption from prfs, this is exponential in the tag
space for messages (i.e. we loose at least 80 bits of security). For PFSE,
on the other hand, it is at worst exponential in the tree depth for the HIBE
component (i.e. we loose 32 bits if we support 232 time intervals).

[7] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for
Cryptography. http://code.google.com/p/relic-toolkit/.

[8] Adam Back and Ben Laurie. Forward Secrecy Extensions for OpenPGP.
Available at https://tools.ietf.org/html/draft-brown-pgp-pfs-01, August
2000.

[9] Paulo S.L.M. Barreto and Michael Naehrig. Pairing-Friendly Elliptic
Curves of Prime Order, volume 3897, pages 319–331. Springer Berlin
Heidelberg, 2006.

[10] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based
encryption with efficient revocation. In Proceedings of the 15th ACM
conference on Computer and communications security, pages 417–426.
ACM, 2008.

[11] Dan Boneh and Xavier Boyen. Efficient selective-ID secure Identity-
Based Encryption without random oracles. In EUROCRYPT, pages 223–
238, 2004.

[12] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based
encryption with constant size ciphertext. In Advances in Cryptology–
EUROCRYPT 2005, pages 440–456. Springer, 2005.

[13] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based
encryption with constant size ciphertext. In EUROCRYPT, pages 440–
456, 2005.

[14] Dan Boneh and Brent Waters. Constrained pseudorandom functions and
their applications. In Advances in Cryptology-ASIACRYPT 2013, pages
280–300. Springer, 2013.

[15] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record com-
munication, or, why not to use pgp. In Proceedings of the 2004 ACM
Workshop on Privacy in the Electronic Society, WPES ’04, pages 77–84,
New York, NY, USA, 2004. ACM.

[16] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures
and pseudorandom functions. In Public-Key Cryptography–PKC 2014,
pages 501–519. Springer, 2014.

[17] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. OpenPGP
Message Format. RFC 4880 (Proposed Standard), November 2007.
Updated by RFC 5581.

[18] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-
key encryption scheme. In EUROCRYPT ’03, pages 255–271, 2003.

[19] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing
chosen-ciphertext security. In CRYPTO, pages 565–582, 2003.

[20] Benoı̂t Chevallier-Mames, Jean-Sébastien Coron, Noel McCullagh,
David Naccache, and Michael Scott. Secure delegation of elliptic-curve
pairing. In CARDIS, pages 24–35, 2010.

[21] Apple Computer. iOS Security. Available at https://www.apple.com/
privacy/docs/iOS Security Guide Oct 2014.pdf, 2014 October.

[22] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion:
Design of a Type III Anonymous Remailer Protocol. In Proceedings of
the 2003 IEEE Symposium on Security and Privacy, SP ’03, Washington,
DC, USA, 2003. IEEE Computer Society.

[23] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard), August 2008. Updated by
RFCs 5746, 5878, 6176.

[24] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmet-
ric and symmetric encryption schemes. In CRYPTO ’99, volume 1666,
pages 537–554, 1999.

[25] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM (JACM), 33(4):792–807, 1986.

[26] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-
based encryption for fine-grained access control of encrypted data. In
ACM Conference on Computer and Communications Security, pages
89–98, 2006.

[27] Matthew Green, Susan Hohenberger, and Brent Waters. Outsourcing the
decryption of abe ciphertexts. In USENIX Security Symposium, page 3,
2011.

[28] Evan Harris. The Next Step in the Spam Control War: Greylisting.
Available at http://projects.puremagic.com/greylisting/whitepaper.html,
2003.

[29] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and
Thomas Zacharias. Delegatable pseudorandom functions and applica-
tions. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, pages 669–684. ACM, 2013.

[30] Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima,
and Brent Waters. Fully secure functional encryption: Attribute-based
encryption and (hierarchical) inner product encryption. In Advances in
Cryptology–EUROCRYPT 2010, pages 62–91. Springer, 2010.

318318

[31] Philip MacKenzie, Michael K. Reiter, and Ke Yang. Alternatives to
non-malleability: Definitions, constructions, and applications. In Moni
Naor, editor, TCC ’04, volume 2951, pages 171–190. Springer, 2004.

[32] Moxie Marlinspike. Forward Secrecy for Asynchronous Messages.
Available at https://whispersystems.org/blog/asynchronous-security/,
August 2013.

[33] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509
Internet Public Key Infrastructure Online Certificate Status Protocol -
OCSP. RFC 2560 (Proposed Standard), June 1999. Obsoleted by RFC
6960, updated by RFC 6277.

[34] OpenMP Architecture Review Board. OpenMP application program
interface.

[35] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based
encryption with non-monotonic access structures. In ACM CCS ’07,
pages 195–203, 2007.

[36] B. Ramsdell and S. Turner. Secure/Multipurpose Internet Mail Ex-
tensions (S/MIME) Version 3.2 Message Specification. RFC 5751
(Proposed Standard), January 2010.

[37] Amit Sahai, Hakan Seyalioglu, and Brent Waters. Dynamic credentials
and ciphertext delegation for attribute-based encryption. In Advances in
Cryptology–CRYPTO 2012, pages 199–217. Springer, 2012.

[38] Amit Sahai and Brent Waters. How to use indistinguishability obfusca-
tion: Deniable encryption, and more. In Proceedings of the 46th Annual
ACM Symposium on Theory of Computing, pages 475–484. ACM, 2014.

[39] B. Schneier and C. Hall. An improved e-mail security protocol. In
13th Annual Computer Security Applications Conference, pages 232–
238. ACM Press, 1997.

[40] Hung-Min Sun, Bin-Tsan Hsieh, and Hsin-Jia Hwang. Secure e-mail
protocols providing perfect forward secrecy. Communications Letters,
IEEE, 9(1):58–60, Jan 2005.

[41] Aaron Swartz and Kevin Poulsen.
[42] Randolph Voorhies and Shane Grant. cereal - A C++11 library for

serialization. http://uscilab.github.io/cereal/index.html.
[43] Guojun Wang, Qin Liu, and Jie Wu. Hierarchical attribute-based

encryption for fine-grained access control in cloud storage services. In
Proceedings of the 17th ACM conference on Computer and communi-
cations security, pages 735–737. ACM, 2010.

[44] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. Attribute based
data sharing with attribute revocation. In Proceedings of the 5th ACM
Symposium on Information, Computer and Communications Security,
pages 261–270. ACM, 2010.

APPENDIX A

POLYNOMIAL SELECTION AND INTERPOLATION

Our descriptions in Figures 2 and 3 omit several steps

needed to implement the scheme. Specifically, our imple-

mentation must (1) select the random polynomial q(x) such

that q(0) = β, (2) compute V (x) without knowledge of

the polynomial coefficients, and (3) compute the recovery

coefficients ω0 · · ·ωd, ω
∗ for decryption. We present these

details below for completeness.

Recall that a polynomial of degree d is uniquely defined by a

set of points (x0, y0), (x1, y1) · · · (xd+1, yd+1). The Lagrange

form of the polynomial allows the computation of a point x
on the polynomial using only d+ 1 points as follows:

q(x) = L(x, xc, yc) =

d∑

j=0

(yc[i] · l(x, j, xc))

where xc = [x0, · · · , xd+1] and yc = [y0, · · · , yd+1] and the

Lagrange basis polynomial l(· · ·)is

l(x, j, xc) =
∏

0≤<m<d
m �=j

x− xc[m]

xc[j]− xc[m]

In our case the arithmetic above is in Zp.

Using the Lagrange form of a polynomial, sampling a

random degree d polynomial q(x) = β consists of sam-

pling d random values r1, . . . , rd from Zp, setting points

(1, r1), (2, r2) · · · , (d, rd) and setting the final point as (0, β)
to ensure q(0) = β.

Lagrange interpolation does not directly yield a definition

of V (x) as we have only the public values gq(0), · · · , gq(d) to

work with. However, we can easily compute V (x) as:

V (x) = gq(x) = g
∑d

j=0 yj l(x,j,xc) =

d∏

i=0

(gq(i))l(x,j,xc)

where l(x, j, xc) is defined as above. This makes use only of

the public values gq(0), · · · , gq(d).
Although we defined Langrange interpolation for a sequen-

tial set of x coordinates,x0 = 1, x2 = 1, · · · , it works for

arbitrary points. The condition for the recovery coefficient—

find ω0, · · ·ωd, ω∗ such that

(ω∗ · q(H(sk
(4)
i))) +

d∑

k=1

(ωk · q(H(tk))) = q(0) = β

—is effectively asking for the coefficients necessary to

compute q(x) at 0 given points on the polynomial

(t0, q(t0)), · · · (td, q(td)). Since we only need the recovery

coefficients, we merely need th Legrange basies and thus

do not need the y cordinates at all. As a result, we can

compute ωi = l(ti, i, [t0, · · · , td, sk(4)]) and ω∗ = l(sk(4), d+
1, [t0, · · · , td, sk(4)]).

319319

APPENDIX B

HIBE CONSTRUCTION OF BONEH ET. AL

BBG.Setup(G, �, α). To produce parameters for a HIBE scheme at most depth l given secret α, select a random generator ĝ ∈ G and set
ĝ1 = ĝα̂. Next pick random elements ĝ2, ĝ3, ĥ1 · · · ĥ� ∈ G and output :

MPK = (ĝ, ĝ1, ĝ2, ĝ3, ĥ1, · · · , ĥ�); MSK = ĝ2
α̂

BBG.Keygen(ŝkID|k−1, suffix). To generate a a private key ŝkID|k for an identity ID||sufix = (I1, · · · , Ik) of length k ≤ �, using the
master secret key, sample a random r ← Zp and output:

ŝkID|k =
(
ĝ2

α̂ · (ĥI1
1 · · · ĥIk

k · ĝ3)
r, ĝr, ĥr

k, · · · , ĥr
l

)
= (a0, a1, bk, · · · , bl)

To derive a key incrementally given the parent key ŝkID|k−1, sample a random t ∈ Zp and output:

ŝkID|k =
(
a0 · bIkk · (ĥ

I1
1 · · · ĥIk

k · ĝ3)
t, a1·, ĝt, bk+1ĥ

t
k+1, · · · , b� · ĥl

t
)

BBG.Encrypt(P̂K, ID,M). To encrypt a message M ∈ GT under ID, pick a random s ∈ Zp and output:

ĈT =
(
e(ĝ1, ĝ2)

s ·M, ĝs, (ĥI1
1 · · · ĥIk

k · ĝ
3)s

)

BBG.Decrypt(ŝkID, ĈT) To decrypt a ciphertext ĈT = (A,B,C) output:

M = e(a1, C)/e(B, a0)

Fig. B.1. The HIBE construction of Boneh, Boyen and Goh [12].

APPENDIX C

IND-PFSE-ATK GAME FOR PFSE

Setup. On input a security parameter k, a maximum number of tags d, and a number of intervals � the challenger initializes two empty
sets P,C and counter n = 0, ex = 0. It runs (PK, SK)← PFSE.KeyGen(1k, d, �) and gives PK to the adversary.

Phase 1. Proceeding adaptively, the adversary can repeatedly issue any of the following queries:

• Puncture(t): The challenger computes SKn+1 ← PFSE.Puncture(SKn, t) and adds t to the set P .
• Corrupt(): The challenger returns the most recent secret key SKn to the adversary, sets C ← P and sets ex = b.
• Decrypt(CT, t1, . . . , td): If ATK = CPA the challenger returns ⊥. If ATK = CCA the challenger computes M ←

PFSE.Decrypt(SKn,CT, t1, . . . , td) and returns M to the adversary.
• NextInterval(): The challenger sets P = ∅, increments n and computes SKn+1 ← PFSE.NextInterval(SKn, n+ 1)

Challenge. The adversary submits two messages m0,m1 ∈M along with tags t∗1, . . . , t
∗
d ∈ T and an interval 0 ≤ i ≤ �. If the adversary

has previously issued a Corrupt query and {t∗1, . . . , t∗d}∩C = ∅ or ex ≤ i, the challenger rejects the challenge. Otherwise the challenger
samples a random bit b, and returns CT∗ ← PFSE.Encrypt(PK,Mb, i, t

∗
1, . . . , t

∗
d) to the adversary.

Phase 2. This phase is identical to Phase 1 with the following restrictions:

• Corrupt() returns ⊥ if {t∗1, . . . , t∗d} ∩ P = ∅ ∨ n ≤ i.
• Decrypt(CT, t1, . . . , td) returns ⊥ if (CT, t1, . . . , td) = (CT∗, t∗1, . . . , t

∗
d).

Guess. The adversary outputs a guess b′. The adversary wins if b = b′.

Fig. C.1. IND-PFSE-ATK security game for PFSE, with ATK ∈ {CPA,CCA}.

320320

