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Abstract—QUIC is a secure transport protocol developed
by Google and implemented in Chrome in 2013, currently
representing one of the most promising solutions to decreasing
latency while intending to provide security properties similar
with TLS. In this work we shed some light on QUIC’s
strengths and weaknesses in terms of its provable security
and performance guarantees in the presence of attackers. We
first introduce a security model for analyzing performance-
driven protocols like QUIC and prove that QUIC satisfies
our definition under reasonable assumptions on the protocol’s
building blocks. However, we find that QUIC does not satisfy
the traditional notion of forward secrecy that is provided by
some modes of TLS, e.g., TLS-DHE. Our analyses also reveal
that with simple bit-flipping and replay attacks on some public
parameters exchanged during the handshake, an adversary
could easily prevent QUIC from achieving minimal latency
advantages either by having it fall back to TCP or by causing
the client and server to have an inconsistent view of their
handshake leading to a failure to complete the connection.
We have implemented these attacks and demonstrated that
they are practical. Our results suggest that QUIC’s security
weaknesses are introduced by the very mechanisms used to
reduce latency, which highlights the seemingly inherent trade
off between minimizing latency and providing ‘good’ security
guarantees.

I. INTRODUCTION

The proliferation of mobile and web applications and their

performance requirements have exposed the limitations of

current transport protocols. Specifically, protocols like TLS

[1] have a relatively high connection establishment latency

overhead, causing user unhappiness and often resulting in

a decreased number of customers and financial losses. As

a result, several efforts [2], [3], [4], [5] have gone into

designing new transport protocols that have low latency as

one of the major design goals, in addition to basic security

goals such as confidentiality, authentication, and integrity.

One of the most promising protocols is QUIC [2], a secure

transport protocol developed by Google and implemented in

Chrome in 2013 [6]. QUIC integrates ideas from TCP, TLS,

and DTLS [7] in order to provide security functionality com-

parable to TLS, congestion control comparable with TCP,

as well as minimal round-trip costs during setup/resumption
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and in response to packet loss. Some of the major design

differences from TLS are not relying on TCP in order to

eliminate redundant communication and the use of initial

keys to achieve faster connection establishment. However,

the exact security and performance advantages and disad-

vantages of QUIC are not clear when compared to existing

protocols such as TLS and DTLS. Shedding light on this

problem is the main focus of our work.

The way to assess and compare security is by providing a

provable security analysis. However, while the importance of

provable security analysis for practical protocols is gaining

wider acceptance, it is still common for a protocol to be

deployed first and analyzed later. For example, the complete

provable security results for TLS remained elusive for many

years and have only recently been identified [8], [9], [10].

Not surprisingly, no formal guarantees of the provided

services existed for QUIC, with the exception of informal

arguments in its design specifications, before the recent

(concurrent) work by Fischlin and Günter [11] and our work.

Even though [11] assesses QUIC’s security, its results do

not overlap with ours and its analysis is limited to the key

exchanges rather than the entire protocol. We provide a

detailed comparison of these works in Section II.

Furthermore, even if certain security properties about a

protocol may be proven to hold, its usefulness in real-life

deployments can be undermined by attacks that prevent con-

nections from being established in the first place, especially

in ways that are more subtle than just dropping traffic, e.g.

TCP reset attacks against TLS. Such types of attacks have

gained notoriety since it became known that they have been

used for censorship by some governments to deter users from

viewing certain content on the Internet [12].

As QUIC has been deployed widely among Google

servers, and may eventually be deployed outside of Google,

it is critical to provide its provable security analysis and

to understand its performance guarantees in the presence

of attackers before it becomes more widely used. Under-

standing its performance guarantees is particularly important

considering that QUIC is envisioned mainly for web content

delivery and mobile applications.

OUR CONTRIBUTIONS. We provide the provable-security

analysis of QUIC and assess its performance guarantees in
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the presence of attackers. Our study is suitable for a general

class of performance-driven communication protocols that

employ an initial session key to enable data exchange even

before the final session key is set. We call such protocols

Quick Communications (QC) protocols. While QUIC is our

main focus, the recently announced version 1.3 of TLS [13]

also fits the QC framework.

One of our major contributions is the security model for

QC protocols. We designed a new model since the existing

security definitions were unsuitable. The Authenticated and

Confidential Channel Establishment (ACCE) model [8], [9]

which was used in proving TLS did not fit QUIC for several

reasons. First, TLS and its security model use one session

key, while QUIC uses two, and the data may start being

encrypted before the final session key is set. Therefore,

the model has to deal with key and data exchange under

multiple keys. Second, QUIC does not run on top of TCP

and implements many of the features provided by TCP itself.

This is done primarily for performance reasons, but QUIC

also adds some cryptographic protection, such as protection

against IP spoofing and packet re-ordering. Hence, it makes

sense to model additional attacks such as IP spoofing or

packet re-ordering. Also, we cannot analyze the key and data

exchange phases separately using the established security

definitions and then compose them to get a composition

result implying the security of the whole protocol, because in

QUIC these phases use common parameters (such as IV) and

can overlap (data can be exchanged while the final session

key is being set).

Our security definition is an extension of the ACCE

definition to fit QC protocols. We call our model QACCE

for Quick ACCE. We consider a very powerful attacker who

knows all servers’ public keys, can initiate and observe the

communications between honest parties, and can intercept,

drop, misorder, or modify the contents of the exchanged

packets. We also consider DoS attacks such as IP spoofing.

The adversary can adaptively corrupt servers and learn their

(long-term) secret keys and secret states. It can also, again

adaptively, learn parties’ initial and final session keys. The

adversary can also have partial knowledge of the data being

exchanged by the parties. Given such strong adversarial

capabilities, the attacker should not be able to prevent the

parties from establishing session keys (without the parties

noticing that something went wrong) and using these keys

to achieve data exchange with privacy and integrity. We note

that the sender authentication can only be achieved one-way,

as only servers hold public keys.

Our security model formally captures the different levels

of security guaranteed for data encrypted under the initial

and final session keys.1 While the attacker can cause honest

parties to agree on distinct initial keys (something which is

not possible in TLS), we still require that data exchanged

1The security goals were not formally stated in QUIC’s documentation.

under either key is protected. For the final session keys,

the security requirement is similar to that for session keys

in TLS: if one party sets the key, it is guaranteed that the

other party sets the same key, and moreover, that the key

is “good enough” to securely exchange data. Finally, we

also consider forward secrecy. Unlike TLS-RSA, currently

the most commonly deployed mode of TLS, QUIC provides

certain forward secrecy guarantees such that corrupting a

server during one time period does not let the attacker break

the security of the data sent in previous time periods. On

the other hand, because the initial keys, used for initial

data exchange, are derived using parameters that change

only once per time period, QUIC does not provide forward

secrecy guarantees against attackers that may corrupt the

server after, but in the same time period as, the data that

was sent. Thus, QUIC’s overall forward secrecy guarantees

are not as strong as those of TLS-DHE, a TLS mode

that has recently gained popularity. However, in practice,

TLS SessionTickets [14] are often used to minimize round

trips. Their use in some sense cancels the forward secrecy

guarantees provided by TLS because the SessionTicket key,

which must be retained for sufficiently long periods of

time for resumption to be effective, can be used to decrypt

previous communication. In addition to the formal model,

we provide extensive explanations and discussions to help

practitioners understand the security level we target.

We then analyze the security of the cryptographic core of

QUIC, which we extracted from [2], [6], [15]. We prove that

QUIC satisfies our security model assuming strong unforge-

ability of the underlying signature scheme, security of the

underlying symmetric authenticated encryption scheme with

associated data, and the strong Diffie-Hellman assumption,

in the random oracle model. Due to lack of space we provide

the proof in the full version of this paper [16].

We also analyze QUIC’s latency goals in the presence of

attackers. We show that the very mechanisms used in QUIC

to minimize latency, such as unprotected fields on handshake

packets and the use of publicly available information on

both client and server sides, can be exploited by an adver-

sary during the handshake to introduce extra latencies and

possibly lead to DoS attacks. We implemented five attacks

against QUIC. Four of these attacks prevent a client from

establishing a connection with a server while the fifth is a

DoS attack against QUIC servers. In all cases, we found the

attacks easy to implement and completely effective. In many

cases, the client is forced to wait for QUIC’s ten-second

connection establishment timeout before giving up.

Our results suggest that the techniques that QUIC uses

to minimize latency may not be useful in the presence

of malicious parties. Although these weaknesses are not

completely unexpected, they are of significant concern to

the QUIC team at Google who have been developing a

dedicated monitoring infrastructure to try to address them

[17]. However, we have found that there may be fundamental
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limitations to effectively mitigating these weaknesses.

We note that similar types of attacks have been used

against TLS and TCP (recall that TLS runs on top of TCP).

However, TLS and TCP made no general promises about

their performance in the presence of adversaries. We find

that even if QUIC’s performance may not be perfect, it is

not worse than that of TLS in the worst case, and is much

better in the absence of adversaries.

To summarize, our contributions are:

• A security model for QC protocols that formally cap-

tures the different levels of security guaranteed for data

encrypted under the initial and final session keys in the

presence of a very strong adversary, Section VI;

• A provable-security analysis for QUIC under the con-

sidered security model, Section VII;

• A quantitative analysis of the performance properties

of QUIC under adversarial settings, Section VIII;

• A practicality demonstration of attacks, Section IX.

Our study has shed some light on QUIC’s security guar-

antees and weaknesses that would be useful for practitioners

and protocol developers. On a high level, our provable

security analysis study confirms the soundness of QUIC’s

security protection design. And by doing so, our study

details the exact level of security the protocol provides, e.g.,

for data encrypted under the initial and final session keys;

something which the protocol description did not specify in

sufficient detail. Our performance analysis results confirm

yet again that there is no free lunch: either practitioners

have to put up with the extra latencies inherent in setting

up TLS connections with TCP, or they have to figure out

how to deal with the additional security risks introduced by

the very mechanisms used to reduce those latencies. Similar

tradeoffs were observed with respect to a performance-

driven key exchange protocol proposed in [18]. Although

in principle QUIC outperforms TLS in terms of latency

when there are no attackers, there seems to be a fundamental

tradeoff between minimizing latency and providing ‘good’

security guarantees that practitioners should keep in mind

when considering whether to deploy and/or work to improve

QUIC or other performance-driven protocols such as TLS

1.3 and TLS with SessionTicket resumption.

FUTURE DIRECTIONS. It would be interesting to see if

analyses permitting machine-checked or even automatically-

generated proofs using systems like Coq, CryptoVerif [19],

EasyCrypt [20] or a type system by Fournet et al. [21] used

in TLS analyses [22], [23] could be applied to performance-

oriented protocols such as QUIC or TLS 1.3.

II. CONCURRENT AND INDEPENDENT WORK

In (concurrent) work, Fischlin and Günter [11] analyze

the key exchange of QUIC. They show that QUIC’s (multi-

stage) key exchange satisfies a reasonable notion of security.

However, this notion does not “compose” with the notions

for data exchange, meaning that even if one uses a secure

authenticated encryption scheme for data exchange, the

security of the QUIC protocol as a whole is not guaranteed.

For such a desirable composition to hold, QUIC has to be

slightly modified. Traditionally, it has proved very hard to

convince practitioners to change implementations unless a

serious attack has been deployed. While we believe Google

may be more agreeable to tweak the protocol to make it

suitable for modular analysis, until that happens, the security

of QUIC as a whole is not known.

Furthermore, the change proposed in [11] will not suffice

because the way authenticated encryption is used in QUIC

prevents its security from generically composing with secure

key exchange. Specifically, part of the nonce IV used for

encryption is not picked at random independently from

everything else but is derived in the same way as the party’s

secret keys, fixed, and not given to the adversary. To enable

a result about the composed security, Google would need

to modify its use of encryption. Although we fully support

complex protocol design that allows for modular security

treatment, we also realize that it is often done differently in

practice. So far, our analysis is the only one suitable for the

unmodified QUIC.

Another limitation of the analysis in [11] is that it does not

address packet-level attacks and IP spoofing. The security

model of [11] also does not consider time periods and

refreshments of the server configuration. The latter is treated

as the long term secret of the server, and the communication

of the public portion of it to the client is not considered;

i.e., they do not consider 1-RTT connections. Hence, while

[11] gives a good insight in the design of multi-stage

protocols in a way supporting modular security analyses, our

work captures more accurately the current implementation

of QUIC and the corresponding practical threats.

III. PRELIMINARIES

NOTATION AND CONVENTIONS. We denote by {0, 1}∗ the

set of all binary strings of finite length. If x, y are strings

then (x, y) denotes the concatenation of x and y from which

x and y are uniquely decodable. If κ ∈ N then 1κ denotes the

string consisting of κ consecutive “1” bits. If S is a finite set,

then s
$
← S denotes that s is selected uniformly at random

from S. All algorithms are assumed to be randomized and

efficient (i.e. polynomial in the size of the input). For any

n ∈ N, [n] denotes the set of integers {1, . . . , n}.

PKI. Whenever we use public keys, we also (implicitly)

assume that a public key infrastructure (PKI) is supported,

i.e. the public keys are valid, bound to users’ identities, and

publicly known. Thus, we omit certificates and certificate

checking of public keys in our analysis.

BASE PRIMITIVES AND ASSUMPTIONS.

Digital Signature Scheme. A digital signature scheme is

used in QUIC by servers to authenticate certain data, so we

define the primitive and its security here.
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A digital signature scheme SS = (Kg, Sign,Ver) with

associated message space MsgSp is defined by three algo-

rithms. The randomized key generation algorithm Kg takes

the security parameter λ and outputs a public–secret key

pair: (pk, sk)
$
← Kg(λ). The signing algorithm Sign takes

the secret key and message m ∈ MsgSp and outputs a

signature: σ
$
← Sign(sk,m). The verification algorithm Ver

takes the public key, a message and a signature and outputs

a bit b ∈ {0, 1} indicating whether the signature is deemed

valid or not: b← Ver(pk,m, σ).

For correctness, it is required that for every

(pk, sk) output by Kg(λ) and every m ∈ MsgSp,

Ver(pk,m, Sign(sk,m)) = 1.

To define security consider the experiment Expsuf
SS(A)

associated with an adversary A. First, a pair of keys is

generated: (pk, sk)
$
← Kg(λ). Then A is given pk, the

oracle Sign(sk, ·), and it has to output a message and a

forgery: (M,σ)
$
← ASign(sk,·)(pk). The adversary wins and

the experiment returns 1 iff Ver(pk,m, σ) = 1, m ∈ MsgSp

and σ was never output by the Sign(sk, ·) oracle. We say

that SS is strongly unforgeable against chosen message

attack (suf-cma) if AdvsufSS (A) = Pr
[
Expsuf

SS(A) = 1
]

is

negligible in λ, for all efficient algorithms A.

Authenticated Encryption with Associated Data. After

the parties using QUIC establish the shared key, they should

be able to use the secure channel to exchange data in a

secure manner. The secure channel is implemented by using

an authenticated encryption with associated data scheme,

which we now define. We adopt the definition of an au-

thenticated encryption with associated data scheme and its

corresponding security definition from [24].

An authenticated-encryption with associated-data scheme

AEAD consists of two algorithms AEAD = (E ,D) and

is associated with key space {0, 1}λ, nonce space {0, 1}n,

additional authenticated data space {0, 1}∗ and message

space {0, 1}∗. The key is generated via κ
$
← {0, 1}λ. E

is a deterministic encryption algorithm that takes inputs

key κ, nonce IV ∈ {0, 1}n, additional authenticated data

H ∈ {0, 1}∗ and plaintext m ∈ {0, 1}∗, and outputs

a ciphertext c. D is a deterministic decryption algorithm

that takes inputs key κ, nonce IV ∈ {0, 1}n, additional

authenticated data H ∈ {0, 1}∗, and ciphertext c, and

outputs either the plaintext m or ⊥.

For correctness, it is required that

D(κ, IV, H, E(κ, IV, H,m)) = m for all κ ∈ {0, 1}λ, IV ∈
{0, 1}n, H,m ∈ {0, 1}∗.

MESSAGE PRIVACY. To define message privacy let A be an

adversary and consider the experiment Exp
ind-cpa
AEAD (A). It first

generates the key κ
$
← {0, 1}λ and flips a bit b

$
← {0, 1}.

A has access to the encryption oracle E(κ, ·, ·, LR(·, ·, b)),
where LR(·, ·, b) on inputs m0,m1 ∈ {0, 1}

∗ with |m0| =
|m1| returns mb. At the end A outputs a bit b′, and we define

A’s advantage to be Adv
ind-cpa
AEAD (A) = 2Pr [ b′ = b ]− 1.

AUTHENTICITY. To define message integrity and authen-

ticity let A be an adversary and consider the experiment

Expauth
AEAD(A). It first generates the key κ

$
← {0, 1}λ. A

has access to oracle E(κ, ·, ·, ·). Expauth
AEAD(A) outputs 1

iff A outputs (IV, H, c) such that D(κ, IV, H, c) �= ⊥
and A did not query E(κ, IV, H,m) for some m that

resulted in a response c. We define Advauth
AEAD(A) =

Pr
[
Expauth

AEAD(A) = 1
]
.

We say that A is nonce-respecting, if it never repeats

IV in its oracle queries. We say that an AEAD scheme

is indistinguishable under chosen plaintext attack (ind-cpa-

secure) if Adv
ind-cpa
AEAD (A) is negligible in λ for any effi-

cient, nonce-respecting adversary A. We say that an AEAD

scheme is auth-secure if Advauth
AEAD(A) is negligible in λ for

any efficient, nonce-respecting adversary A. We say that any

AEAD is secure if it is ind-cpa- and auth-secure.

Strong Computational Diffie-Hellman (SCDH) As-

sumption. We define the SCDH assumption [25], on which

security of QUIC will rely. This assumption was commonly

used for analyses of other protocols, including TLS [9].

Consider the experiment ExpSCDH(A) associated with

an adversary A and security parameter λ. A is given

(g, q, ga, gb), where q is prime of size λ, g is a generator

of a cyclic group of order q, and a, b are picked uniformly

at random from Zq. A is also given access to verification

oracle V(g, ga, ·, ·), which returns 1 iff queried on gx, gax

for some x ∈ Zq. ExpSCDH(A) returns 1 iff A outputs gab.

We define AdvSCDH(A) = Pr [ExpSCDH(A) = 1 ]. We say

that the SCDH problem is hard if AdvSCDH(A) is negligible

in λ, for all efficient adversaries A.

IV. QUICK CONNECTIONS PROTOCOL DEFINITION

In this section we formally define a Quick Connections

(QC) protocol, which is a communication protocol between

a client and a server (the latter holds a public key and the

corresponding secret key). The parties first agree on an initial

session key, which can be used to exchange data until the

final key is set. After the final key is set, it is used for further

data exchange. The QC definition fits QUIC and is also

applicable to other protocols, such as TLS 1.3. This formal

definition is necessary for the provable-security analysis.

The protocol is associated with the security parameter λ,

a server key generation protocol Kg that on input λ returns

public and secret keys, an authenticated encryption with

associated data scheme AEAD = (E ,D) with key space

{0, 1}λ, header space {0, 1}∗, message space {0, 1}∗, an IV-

extraction function get iv that takes a key and a header and

outputs an IV ∈ {0, 1}n for each message to be encrypted or

decrypted via the associated AEAD, and a scfg gen function

that the server can use to update part of its global state

scfg. The server can maintain global state other than its

scfg. All global state is initially set to ε. We associate
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a protocol’s execution with the universal notion of time,

which is divided into discrete periods τ1, τ2, . . . . The keys

are generated via (pk, sk)
$
← Kg(λ). The input of each party

(representing what parties know at the beginning) consists

of the public key of the server pk and the list of messages

M send = M1, . . . ,Mm for some m ∈ N and where each

Mi ∈ {0, 1}
∗, that a party needs to send securely (M send

can also be ε). The server has an additional input: the secret

key. All parties can keep global state.

In our model, the client and server are given vectors of

messages as input. While in practice the messages that the

parties exchange may depend on each other, for simplicity

we chose not to complicate the protocol syntax. This deci-

sion has no implications on our overall security analysis.

Data is exchanged between the parties via packets that

must consist of source and destination IP addresses and

port numbers followed by the payload associated with the

protocol.2 Each party gets a 32-bit IP address associated

with 216 − 1 port numbers as part of its input. We say that

all received and sent packets by a client party belong to that

client party’s connection with a particular server party if the

source IP address and port number (as well as any other

protocol-specific source information included in packets) of

all packets received by that client party correspond to that

server and are the same as the destination IP address and port

number (as well as any other protocol-specific destination

information included in packets) of all packets sent by that

client party. We define a server party’s connection with a

particular client analogously.

Note that different protocols may establish connections

based on parameters other than just IP and port numbers

(e.g., cid in QUIC as will be described in Section V),

which is why our definition allows for other protocol-specific

parameters contained in packets to be included. The notion

of a connection is relevant to the notion of one party setting

a key with another party which we will establish below and

use in our security analysis.

The first packet of data is sent from the client to the server,

and we refer to this packet as the connection request.

The interactive protocol consists of four phases. Each

message exchanged by the parties must belong to some

unique stage, but the second and third stages may overlap:

Stage 1: Initial Key Agreement. At the end of this stage

each party sets the initial key variable ik = (ikc, iks, iaux),
where iaux ∈ {0, 1}∗ (initially set to ε) is any additional

information used for encryption and decryption.

Stage 2: Initial Data Exchange. In this stage, messages

from the input data list can be transmitted using the asso-

ciated AEAD scheme and the key ik. The server uses ikc
to encrypt and iks to decrypt, whereas the client uses iks
to encrypt and ikc to decrypt. At the end of this stage, each

2We ignore time to live (TTL), header checksums, and other header
information not directly relevant to our analysis.

party outputs the list of messages M iget = M1, . . . ,Mm′

for some m′ ∈ N and where each Mi ∈ {0, 1}
∗, (M iget can

also be ε), representing the messages the party received in

the initial data exchange phase.

Stage 3: Key Agreement. At the end of this stage,

each party sets the session key variable k = (kc, ks, aux),
where aux ∈ {0, 1}∗ (initially set to ε) is any additional

information used for encryption and decryption.

Stage 4: Data Exchange. In this stage, messages from

the input data list can be sent using the associated AEAD

scheme and the key k. The server uses kc to encrypt and ks
to decrypt, whereas the client uses ks to encrypt and kc to

decrypt. At the end of this stage, each party outputs the list

of messages Mget = M1, . . . ,Mm′′ for some m′′ ∈ N and

where each Mi ∈ {0, 1}
∗, (Mget can also be ε), representing

the messages the party received in the final stage.

We say that a party rejects a packet if it outputs ⊥, and

accepts it otherwise.

When a client (or server) party sets ik in Stage 1 corre-

sponding to a particular QC protocol execution instance, we

say that client (or server) party sets that ik with a particular

server (or client) party if every sent and received packet by

that client (or server) party in Stage 1 of that QC protocol

execution instance belongs to that client (or server) party’s

connection with that server (or client) party. We can define

an analogous notion for setting k with respect to Stage 3.

We will refer to parties that set ik’s in Stage 1 with each

other as each other’s peers.

The correctness of the protocol requires that the input data

of one party’s M send be equal to outputs of the other party’s

M iget,Mget. In other words, the protocol is correct if it

allows the parties to exchange the data that they intended to

exchange with their corresponding communication partners

in the protocol, while preserving the order of the messages.

V. THE QUIC PROTOCOL

In this section we present the QUIC protocol. Our de-

scription follows the definition for a QC protocol primitive.

In QUIC, the parties associate a connection ID cid with

the source and destination IP addresses and port numbers of

every packet corresponding to that connection. Every incom-

ing packet is checked to see if the source and destination IPs

and port numbers correspond to those previously observed

for that connection, and that connection is closed if they do

not match. For simplicity of presentation, we omit this check

in our description below.

Let AEAD = (E ,D) be an authenticated encryption

with associated data scheme, let SS = (Kgs, Sign,Ver)
be a digital signature scheme, and let λ be a security

parameter. The signature algorithms supported by QUIC

are ECDSA-SHA256 and RSA-PSS-SHA256. AES Galois-

Counter mode (GCM) scheme [26] is used as AEAD.

QUIC’s key generation protocol runs (pk, sk)
$
← Kg(λ),
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kstk
$
← {0, 1}128, and returns pk as the server’s public key

and (sk, kstk) as the server’s secret key.3

We assume that the server’s scfg is refreshed every time

period using the scfg gen function described below.4

scfg gen(sk, τt, λ):

q
$
← {primes of size λ}, g

$
← {generators of Zq}

xs
$
← Zq−1, ys ← gxs , pubs ← (g, q, ys), secs ← xs

expy← τt+1, scid←H(pubs,expy)
str← “QUIC server config signature”
prof← Sign(sk, (str, 0x00, scid,pubs,expy))
scfg

t
pub ← (scid,pubs,expy,prof)

scfg← (scfgt
pub,secs)

H is the SHA-256 hash function. Note that the generation

of scfg and the signing of its public parameters are done

independently of clients’ connection requests. Although in

QUIC there may be several distinct configuration parameters

scfg that are valid at any given time, we omit this detail in

our analysis, and we do not consider the problem of them

expiring during the initial or session key agreement stages.

QUIC supports two connection establishment schemes: 1-

RTT handles the case when the client tries to achieve a

connection with a server for the first time in a particular

time period. 0-RTT considers the case when the client is

trying to connect to a server that it has already established

at least one connection with in that time period.

A. 1-RTT Connection Establishment

We first describe the case when a client C is trying to

achieve a connection with a server S for the very first time

at the beginning of time period τt. The protocol follows the

four stages of the QC model and is presented in Figure 1.

Both C and S know that the current time period is τt.

C’s input message is Mc = (M1
c ,M

2
c , · · · ,M

u
c ), while S’s

input message is Ms = (M1
s ,M

2
s , · · · ,M

w
s ). S generates

keys (pk, sk)
$
← Kg(λ) and kstk

$
← {0, 1}128.

Initial Key Agreement consists of three packets m1,

m2, m3. C initiates a connection by sending the initial

connection-request packet m1 which contains a randomly

generated connection id cid, used later by both parties

to identify this session. Specifically, C runs c i hello(pk)

which outputs a packet with sequence number 1.
c i hello(pk):

cid
$
← {0, 1}64

return (IPc,IPs,portc,ports,cid, 1)

S responds with m2 by running s reject(m1). m2 contains

a source-address token stk that will be used later by C to

3In QUIC, kstk is derived using similar methods as the initial and
session keys and may depend on user-supplied inputs. Poorly chosen user
inputs could lead to IP-spoofing opportunities, but we do not address this
weakness because quantifying the predictability of user inputs is out of
scope. For simplicity, we assume that users setting up QUIC servers provide
unpredictable inputs, and treat kstk as a random string in our analysis.

4We ignore the optional server nonce used in the case of persistent time
synchronization problems, and such parameters as the server’s supported
algorithms for key generation, authenticated encryption with associated data
and congestion control as they are not pertinent to our security analysis.

Client(Mc, pkj) Server(Ms)

Mc = (M1
c ,M

2
c , · · · ,M

u
c ) Ms = (M1

s ,M
2
s , · · · ,M

w
s )

(1) Initial Key Agreement

m1 ← c i hello(pkj) m1

m2 m2 ← s reject(m1)

m3 ← c hello(m2) m3

ik ← get i key c(m3) ik ← get i key s(m3)

(2) Initial Data Exchange

for each α ∈ [ı] for each β ∈ [j]

sqnc ← α+ 2 sqns ← β + 1

mα
4 ← pak(ik, sqnc,M

α
c ) mβ

5 ← pak(ik, sqns,M
β
s )

m4 ← (m1
4, · · · ,m

ı
4) m4 m5 ← (m1

5, · · · ,m
j
5)

process packets(ik,m5) m5 process packets(ik,m4)

(3) Key Agreement

sqns ← 2 + j

m6 m6 ← s hello(m3, ik,sqns)

k ← get key c(m6,sqns) k← get key s(m6)

(4) Data Exchange

for each α ∈ {ı+ 1, . . . , u} for each β ∈ {j+ 1, . . . , w}

sqnc ← α+ 2 sqns ← β + 2

mα
7 ← pak(k,sqnc,M

α
c ) mβ

8 ← pak(k,sqns,M
β
s )

m7 ← (mı+1
7 , · · · ,mu

7 ) m7 m8 ← (mj+1
8 , · · · , mw

8 )

process packets(k,m8) m8 process packets(k,m7)

Figure 1. Summary of QUIC’s 1-RTT Connection Establishment

identify itself to S for this and any other additional sessions

in 0-RTT connection requests (which we discuss below). An

stk is similar to a TLS SessionTicket [14]. It consists of

an authenticated-encryption block of the client’s IP address

and a timestamp. To generate an stk, the server uses the

same E algorithm associated with the AEAD with kstk. The

initialization vector ivstk is selected randomly. stk can be

used by the client in later connection requests as long as it

does not expire and the client does not change its IP address.

For simplicity, we take the range of validity of stk to be

bound by the time period during which it was generated or

set up. m2 also contains S’s current state scfgt
pub, which

contains S’s Diffie-Hellman (DH) public values with an

expiration date and a signature prof over all the public

values under the server’s secret key sk.
s reject(m):

ivstk
$
← {0, 1}96

stk← (ivstk, E(kstk,ivstk, ε, (IPc,current_times)))
return (IPs,IPc,ports,portc,cid, 1,scfg

t
pub,stk)

After receiving m2, C checks that scfgt
pub is authentic

and not expired. Note that we assume here that a proper PKI
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is in place, so C possesses the public key of S and is able

to perform this check. C then generates a nonce and its own

DH values by running c hello(m2). C then sends its nonce

and public DH values to the server in m3.
c hello(m):

abort if expy ≤ τt or
Ver(pk, (str, 0x00, scid,pubs,expy),prof) �= 1,
where str← “QUIC server config signature”

r
$
← {0, 1}160, nonc← (current_timec, r)

xc
$
← Zq−1, yc ← gxc , pubc ← (g, q, yc)

pkt info ← (IPc,IPs,portc,ports)
return (pkt info,cid, 2, stk,scid,nonc,pubc)

After this point, C and S derive the initial key material

ik by running get i key c(m3) and get i key s(m3) respec-

tively. The server has to make sure that it does not process

the same connection twice, so it keeps track of used nonces

with a mechanism called the strike-register or strike. The

client includes a timestamp in its nonc, such that servers

only need to maintain state for a limited amount of time, this

requires a clock sync between client and server. A server

rejects a connection request from a client if its nonc is

already included in its strike or contains a timestamp

that is outside the allowed time range called strikerng.

We consider strikerng to be bound by the time period

during which it was generated or set up.

ik = (ikc, iks,iv) consists of two parts: the two 128-bit

application keys (ikc, iks) and the two 4-byte initialization

vector prefixes iv = (ivc,ivs). C uses iks and ivs to

encrypt data that it sends to S, while using ikc and ivc to

decrypt data it receives from S, and vice versa. This stage

needs to take place only once per each time period τt for

which scfgt
pub and stk are not expired. We model the

HMAC with a random oracle in our analysis.
get i key c(m):

ipms← yxc
s

return xtrct xpnd(ipms,nonc,cid,m, 40, 1)
get i key s(m):

(ivstk, tk)← stk

dec← D(kstk,ivstk, ε, tk)
abort if either dec = ⊥, or first 4 bytes of dec �= IPc, or
last 4 bytes correspond to a timestamp outside allowed time,
or r ∈ strike, or τt /∈ strikerng, or

scid is unknown or corresponds to an expired scfg
t′<t
pub

or g, q of pubc are not the same as g, q of pubs

ipms← yxs
c

return xtrct xpnd(ipms,nonc,cid,m, 40, 1)
xtrct xpnd(pms,nonc,cid,m, �,init):

ms← HMAC(nonc,pms)
if init = 1, then str ← ”QUIC key expansion”
else, str ← ”QUIC forward secure key expansion”
info← (str, 0x00, cid,m,scfgt

pub)
return the first � octets (i.e. bytes) of
T = (T(1),T(2), · · · ), where for all i ∈ N,
T(i) = HMAC(ms, (T(i− 1),info, 0x0i)) and T(0) = ε

Initial Data Exchange consists of two packet sequences

m4 and m5. C and S exchange their initial data M1
c , . . . ,M

ı
c

and M1
s , . . . ,M

j
s encrypted and authenticated using AEAD

with ik by running pak(ik,sqnc,M
i
α) for each α in [ı] or

pak(ik,sqns,M
i
β) for each β in [j] respectively. sqnc and

sqns correspond to the sequence numbers of packets sent

by C and S respectively.

get iv in QUIC outputs the iv which is the concatenation

of either ivc and sqns when S sends a packet or ivs and

sqnc when C sends a packet. ivc and ivs are each 4 bytes

in length, while sqnc and sqns are each 8 bytes in length.

Thus, each iv is 12 bytes in length.

Note that the sequence numbers in QUIC are generated

per packet, always start with 1, and are independent of what

that packet is carrying. ı and j correspond to the maximal

number of message blocks that C and S can send prior

to the Key agreement stage. Upon receipt of packets from

S, C decrypts them and outputs their respective payloads

concatenated together in the order of their sequence numbers

with function process packets. S does the same with packets

it receives from C.
get iv(H,κ):

(kc, ks,ivc,ivs)← κ
if this is a client, then src← c and dst← s
else src← s and dst← c
(cid,sqn)← H
return (ivdst,sqn)

pak(κ,sqn,m):
(kc, ks,ivc,ivs)← κ
if this is a client, then src← c and dst← s
else src← s and dst← c
pkt info ← (IPsrc,IPdst, portsrc, portdst)
H ← (cid,sqn)
iv← get iv(H,κ)
return (pkt info, E(kdst, iv,H,m))

process packets(κ, p1, ..., pv):
(kc, ks,ivc,ivs)← κ
if this is a client , then src← c and dst← s
else src← s and dst← c
for each γ ∈ [v]
(Hγ , cγ)← pγ
ivγ ← get iv(Hγ , κ)
mγ ← D(ksrc,ivγ , Hγ , cγ)

return (m1, . . . ,mv)

Key Agreement consists of one message m6. Specifically,

S generates new DH values and sends its new public

DH values to the client by running s hello(m3, ik,sqn),

encrypted and authenticated using AEAD with ik.
s hello(m3, ik, sqn):

(ikc, iks, ivc, ivs)← ik

x̃s
$
← Zq−1, ỹs ← gx̃s , pũbs ← (g, q, ỹs)

H ← (cid,sqn)
e ← E(ikc, (ivc,sqn),H, (scfgt

pub,pũbs, stk))
return (IPs,IPc,ports,portc,H, e)

The client verifies the authenticity of the server’s new DH

public values upon receipt of this packet using ik and both

parties at this point can derive the session key material k by

running get key s(m6) and get key c(m6), which both use

the xtrct xpnd function defined earlier.
get key s(m):

pms← yx̃s
c

return xtrct xpnd(pms,nonc,cid, m, 40, 0)
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get key c(m):
(IPs,IPc,ports,portc, cid,sqn, e)← m
abort if D(ikc, (ivc,sqn), (cid,sqn), e) = ⊥
pms← ỹxc

s

return xtrct xpnd(pms,nonc,cid, m, 40, 0)

Data Exchange consists of two packet sequences m7

and m8. C and S will use k to encrypt and authenticate

their remaining data M ı+1
c , . . . ,Mu

c and M j+1
s , . . . ,Mw

s ,

respectively, instead of ik for the rest of this session.

Similar to ik, k = (kc, ks,iv) consists of two parts: the

two 128-bit application keys (kc, ks) and the two 4-byte

initialization vector prefixes iv = (ivc,ivs). C uses ks
and ivs to encrypt data that it sends to S, while using kc
and ivc to decrypt data received from S, and vice versa.

B. 0-RTT Connection Establishment

If the client C has already had a connection with a server

S in the time period τt, then C does not need to send the

c i hello, but can instead initiate another connection request

with the server via a c hello packet containing the previously

obtained stk and scid, as well as new cid, nonc, and

pubc (which should contain its new DH ephemeral public

value). In this case, the c hello function will be:

c hello(stk,scfgt
pub):

cid
$
← {0, 1}64

r
$
← {0, 1}160, nonc← (current_timec, r)

xc
$
← Zq−1, yc ← gxc , pubc ← (g, q, yc)

pkt info ← (IPc,IPs,portc,ports)

return (pkt info,cid, 1, stk,scid,nonc,pubc)

Upon receipt of c hello, S verifies that the nonc is fresh

by checking it against its strike-register, that the stk is

valid, and that scid is not unknown or expired. If the

verification steps fail, S goes back to the 1-RTT case by

generating and sending the s reject as described in Section

V-A, and then the rest of the protocol is exactly the same

as described in Section V-A. If, however, these verification

steps succeed, the rest of the protocol is exactly the same

as in Section V-A, except that the packet sequence numbers

account for the fact that there are two fewer packets.

VI. SECURITY MODEL

We formally define the security model for QC protocols,

which is one of our main technical contributions. Our

model is an extension of the Authenticated and Confidential

Channel Establishment (ACCE) security model for TLS to

accommodate performance-driven protocols that do not run

on top of TCP and have two stages for key agreement and

data exchange. We call our model QACCE for Quick ACCE.

We consider a very strong attacker who can initiate

possibly concurrent rounds of a protocol between various

clients and servers and see the exchanged communication.

Moreover, an attacker can corrupt servers, control clients,

and drop or modify the packets exchanged by the honest

parties. Our definition targets the major security goal of a

communication protocol: secure channel, which means that

data is exchanged in a private and authentic manner and

cannot be re-ordered. The necessary goal of key security and

(unilateral) authentication is also captured by the definition.

Furthermore, the model addresses particular attacks such as

IP spoofing attacks.

After presenting the formal definition (with informal

explanations) we discuss the differences from the existing

security models and the reasons for them.

In Section VI-B we explain how our formal model cap-

tures server impersonation attacks, attacks on secure chan-

nel, and such malicious behaviors as eavesdropping, man-in-

the-middle attacks, forgeries, and DDoS attacks (e.g. due to

IP spoofing). We also explain the levels of forward secrecy

a protocol can provide. We hope our informal discussions

help make our analyses useful for practitioners.

A. Security Definition

SECURITY EXPERIMENT. Fix the security parameter λ and

a QC protocol Π with associated server key generation

protocol Kg, scfg gen, an authenticated encryption with

associated data scheme AEAD = (E ,D) with key space

{0, 1}λ and additional authenticated data (which we will

denote by H) space {0, 1}∗.

We define the experiment Exp
QACCE

Π (A) associated with

the adversary A. We consider two sets of parties, clients

and servers, C = {C1, . . . , C�} and S = {S1, . . . , S�}, for

parameter 
 ∈ N denoting the maximum possible number of

servers or clients. The experiment first generates server key

pairs (pki, ski)
$
← Kg(λ), kstk

$
← {0, 1}128, and scfgt

i

$
←

scfg gen(ski, τt, λ), for all time periods, for all i ∈ [
].
To capture several sequential and parallel executions of

the protocol we follow the standard approach and associate

each party Pi ∈ {C ∪ S} with a set of stateful oracles

π1
p,i, . . . , π

d
p,i, for parameter d ∈ N and p ∈ {c, s}, where

each oracle π
r∈[d]
p,i represents a process that executes one

single instance of the protocol at party Pi and p indicates

whether the party in question is a client or server. Intuitively,

each oracle πs
i of some party Pi ∈ {C ∪ S} models that

party’s IP address and a unique port number. We discuss

the importance of this part more in Section VI-B. The

experiment flips a bit b
q
p,i

$
← {0, 1} for each oracle π

q
p,i.

Each server oracle gets the corresponding scfgt
i at the

beginning of each time period. We assume that at each point

of the protocol’s execution each party (adversary included)

can tell what time period it is. We also assume that every

server oracle is aware what protocol stage it is in for every

client oracle that it is and/or has been exchanging messages

with. With this assumption we are not required to keep track

of the stages in the simulations in our proofs detailed in the

full version [16]. Even though the server keeps local state

and knows which stage it is in, it may have inaccurate view

of the stage of the protocol because it is not guaranteed to
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know the correct identity of the party it is talking with. We

refer to oracles that set ik with each other as peers.

The adversary A is given the public keys of all servers

pk1, . . . , pk� and can interact with all oracles of all parties

by issuing queries. The values in parentheses are supplied

by A, except when they are bold face. If the parameter in

parentheses is an oracle, e.g. π
q
p,i, this means that A needs

to supply the indices p, i, q specifying the oracle.

• connect(πq
c,i, π

r
s,j), for i, j ∈ [
], q, r ∈ [d].

As a result, π
q
c,i outputs the initial connection request

packet (first connection for that client party for that particular

time period) that it would send specifically to oracle πr
s,j

according to the protocol. The output of this query is not

delivered to the recipient oracle, but is just given to A.

This query allows the adversary to ask a client oracle

to start communicating with a particular server party for the

first time between those parties for a particular time period.

• resume(πq
c,i, π

r
s,j), for i, j ∈ [
], q, r ∈ [d].

This query returns ⊥ if ik corresponding to oracle π
q
c,i is not

set. Otherwise, π
q
c,i outputs the 0-RTT connection request

packet that it would send to an oracle πr
s,j according to the

protocol. The output is given to A, who can deliver it to the

destination oracle, modify it, or drop it.

This query allows the adversary to ask a particular client

oracle to request a 0-RTT connection with a particular

server party, if the client party corresponding to that oracle

has communicated before with that server in a particular

time period. Recall that every server party is aware of its

communication status with respect to every client oracle that

may contact it.

• send(πr
p,j ,m), for p ∈ {c, s}, j ∈ [
], r ∈ [d] and m ∈

{0, 1}∗.

As a result, m is sent to πr
p,j , which will respond with ⊥ if

the oracle is in data exchange phase. Otherwise, A gets the

response, which is defined according to the protocol.

This query allows the adversary to send a specified

packet m to a specified destination oracle. Note that the

attacker must provide a header for the packet that specifies

the source and destination IP addresses and port numbers

as well as packet sequence numbers of its choice. The

destination oracle can check this information. The adversary

gets control of the resulting packet and can choose to modify,

drop, or deliver it to an oracle.

• revealik(πq
p,i), for p ∈ {c, s}, i ∈ [
], q ∈ [d].

As a result, A receives the contents of variable ik for

oracle π
q
p,i.

This query allows the adversary to learn the initial key

set by the oracle of its choice.

• revealk(πq
p,i), for p ∈ {c, s}, i ∈ [
], q ∈ [d].

As a result, A receives the contents of variable k for oracle

π
q
p,i.

This query allows the adversary to learn the final key set

by the oracle of its choice.

• corrupt(Si), for i ∈ [
].

A gets back ski and the current scfgt
i and any other

state of Si.

This query allows the adversary to corrupt the server of

its choice and learn its long-term secrets including scfgt
i

for the current time period.

• encrypt(πr
p,j ,m0,m1, H,init), for p ∈ {c, s},

j ∈ [
], r ∈ [d], m0,m1, H ∈ {0, 1}∗, and

init ∈ {0, 1}:

return ⊥ if |m0| �= |m1| or init = 1 and πr
p,j is

not in the initial data exchange stage or if init = 0
and πr

p,j is not in the data exchange stage

p′ ← {c, s} \ {p}
if init = 1

IV← get iv(ik,H), return ⊥ if IV was used

return (H, E(ikp′ , IV, H,mb
q

p,j
))

if init = 0
IV← get iv(k,H), return ⊥ if IV was used

return (H, E(kp′ , IV, H,mb
q

p,j
))

Above, ik, k, ikp′ , p′ belong to πr
p,j .

This query, unlike the previous ones, deals with the

initial and final data exchange phases (flag init specifies

which), while the previous ones concerned the initial and

final key exchange phases. It is designed to follow the stan-

dard approach of capturing message privacy under chosen-

message attack. It allows the adversary to obtain a randomly

chosen ciphertext out of the two messages provided by the

adversary. Just like in the security definition for AEAD,

the attacker can select the header H . For QUIC it means

that the adversary can specify the source and destination

IP addresses and port numbers as well as packet sequence

numbers of its choice. Unlike the AEAD security model,

however, we do not let the adversary select the IV because

in QUIC the IV depends on the secrets of a party and

is not under the attacker’s control. get iv is the function

that we require to produce initialization vectors used for

encryption and appropriate headers. The initialization vector

is not given to the adversary. The adversary is restricted to

providing H whose destination IP address and port number

correspond to πr
p,j and whose source IP address and port

number correspond to an oracle π
q
p′,i in the experiment, for

p′ ∈ {c, s} \ {p}.

• decrypt(πr
p,j , C, H,init), for p ∈ {c, s},

j ∈ [
], r ∈ [d], C, H ∈ {0, 1}∗, and init ∈ {0, 1}:

return ⊥ if init = 1 and πr
p,i is not in the initial

data exchange phase, or init = 0 and πr
p,j is not

in the data exchange phase, or (H, C) was output

before by encrypt(πr
p,j , ∗, ∗, ∗,init)

if init = 1
IV← get iv(ik,H),

222222



if D(ikp, IV, H, C) �= ⊥, return brp,j else return ⊥
if init = 0

IV← get iv(k,H),
if D(kp, IV, H, C) �= ⊥, return brp,j else return ⊥

Above, ik, k, ikp′ , p′ belong to πr
p,j .

This query also concerns the initial and final data ex-

change phases. It follows the standard approach to capture

authenticity for AEAD schemes. The adversary’s goal is to

create a “new” valid ciphertext. If it succeeds, it is given the

challenge bit and thus can win.

• connprivate(πq
c,i, π

r
s,j), for i, j ∈ [
], q, r ∈ [d].

As a result, the initial connection request is sent to πr
s,j .

The response, which is defined according to the protocol, is

sent to π
q
c,i and not shown to A. Any following response of

π
q
c,i is not shown to A.

This query is not part of the existing definitions. It

models IP spoofing attacks, which the previous models did

not consider. We explain its importance below when we

discuss A’s advantage.

After the adversary is done with queries it may output a

tuple (p, i, q, b), for p ∈ {c, s}.
Before we proceed with the security definition we define

the notion of a matching conversation [27] taking place

between a client and a server. The scope of this concept

is the initial and final key exchange phases only.

MATCHING CONVERSATIONS. For p ∈ {c, s}, p′ ∈ {c, s} \
{p}, i, j ∈ [
], q, r ∈ [d], we denote with R

q
p,i the sequence

of all messages used for establishing keys (during stages

1 and 3) sent and received by π
q
p,i in chronological order,

and we call R
q
p,i the message record at π

q
p,i. With respect

to two message records R
q
p,i and Rr

p′,j , we say that R
q
p,i

is a prefix of Rr
p′,j , if R

q
p,i contains at least one message,

and the messages in R
q
p,i are identical to and in the same

order as the first |Rq
p,i| messages of Rr

p′,j . We say that π
q
p,i

has a matching conversation with πr
p′,j , if the following two

conditions are both true:

• either p = c and p′ = s, or p′ = c and p = s;

• either Rr
p′,j is a prefix of R

q
p,i and π

q
p,i has sent the last

message(s), or R
q
p,i is a prefix of Rr

p′,j and πr
p′,j has sent

the last message(s).

Note that the notion of a matching conversation is not

sufficient to define peers because, unlike in TLS, communi-

cating parties in QUIC may set initial keys without having a

matching conversation. This is why throughout our analysis

the notion of peers is instead equivalent to the notion of one

party setting a key with another party.

MEASURES OF A’S ATTACK SUCCESS.

• The server impersonation advantage of A Advs-impΠ (A)
is the probability that there exists an oracle π

q
c,i such

that k of this oracle is set and there is no oracle πr
s,j

corresponding to a server party Sj such that π
q
c,i has a

matching conversation to πr
s,j , no revealik contained

ik possibly set in the optional initial key agreement stage

between π
q
c,i and πr

s,j , and Sj was not corrupted.

The above captures the attack when the adversary imper-

sonates an honest server and makes a client think it sets a

key shared with the server, but the adversary may have the

shared key instead.

• The channel-corruption advantage of A Advch-corrΠ (A)
is 2Pr

[
b = b

q
p,i

]
− 1,

where if p = s, then it must be the case that π
q
s,i has a

matching conversation with some client oracle πr
c,j , such

that the following conditions hold

1) if Si was corrupted, then no encrypt(πq
s,i, ∗, ∗, ∗, 1)

and encrypt(πr
c,j , ∗, ∗, ∗, 1) queries were made for

any ∗ after or during the same time period τt that Si

was corrupted,

2) if Si was corrupted, then no encrypt(πq
s,i, ∗, ∗, ∗, ∗)

and encrypt(πr
c,j , ∗, ∗, ∗, ∗) queries were made for

any ∗ after Si was corrupted, and

3) no revealik(πq
s,i) and revealik(πr

c,j) or

revealk(πq
s,i) and revealk(πr

c,j) queries returned

the key used to answer any encrypt(πq
s,i, ∗, ∗, ∗, ∗)

and encrypt(πr
c,j , ∗, ∗, ∗, ∗) queries for any ∗

respectively;

and if p = c, then let πr
s,j be peer of π

q
c,i. The following

conditions must be satisfied.

1) if Sj was corrupted, then no encrypt(πq
c,i, ∗, ∗, ∗, 1)

and encrypt(πr
s,j , ∗, ∗, ∗, 1) queries were made for

any ∗ after or during the same time period τt that Sj

was corrupted,

2) if Sj was corrupted, then no encrypt(πq
c,i, ∗, ∗, ∗, ∗)

and encrypt(πr
s,j , ∗, ∗, ∗, ∗) queries were made for

any ∗ after Sj was corrupted, and

3) no revealik(πq
c,i) and revealik(πr

s,j) or

revealk(πq
c,i) and revealk(πr

s,j) queries returned

the key used to answer any encrypt(πq
c,i, ∗, ∗, ∗, ∗)

and encrypt(πr
s,j , ∗, ∗, ∗, ∗) queries for any ∗

respectively.

The above captures the attacks in which information

about groups of messages exchanged between the client and

the server is leaked without the adversary corrupting the

server party (1) before or (2) during the same time period

as attempting the breach as well as without (3) revealing

the initial and session keys ik and k. Thus, we capture a

slightly weaker notion of forward secrecy by restricting the

adversary to corrupt the appropriate server only after the

time period when the adversary attempts the breach. We

explain this subtlety further in Section VI-B.

• The IP spoofing of A Adv
ips

Π (A) is the probability that

there exist oracles π
q
c,i and πr

s,j such that at some time

period τt A makes a send(πr
s,j ,m

′) query, πr
s,j does

not reject this query, Sj was not corrupted, m′ is not

an output resulting from any previous connection request

query (done via connect or resume queries), and the
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only other query A is allowed to make concerning π
q
c,i

during τt is the connprivate(πq
c,i, π

r
s,j) query.

This goal captures attacks in which the adversary wins if it

succeeds in having the server accept a connection request on

behalf of a client who either did not request connection to

that server or previously requested only an initial connection

but did not request any further connections in the same time

period. The adversary issues a connection query hoping it

gets accepted by the server, possibly preceded by the only

other allowed query in that time period: connection request

(connprivate) whose output it cannot see.

SECURITY DEFINITION. We say that a QC protocol Π is

QACCE-secure if its advantage Adv
QACCE

Π (A), defined as

Adv
s-imp

Π (A)+Adv
ips

Π (A)+Advch-corrΠ (A), is negligible

(in λ) for any polynomial-time adversary A.

B. Security Model Discussion

COMPARISON TO THE EXISTING MODELS. Existing models

do not fit QUIC. Namely, we could not simply compose

key exchange [28] and authenticated encryption definitions

because QUIC has additional initial key and data exchange

stages. The work [11] extended the key exchange definition

of [28] to treat multiple stages of key exchange, but QUIC

does not achieve their definition. Moreover, even with their

fix, the full security of QUIC will not follow from their

results because QUIC’s secure channel implementation is

not independent from the key exchange phases.

Therefore, similarly to recent analyses of protocols such

as TLS [8], [9] and EMV [29], [30] we chose to work with a

dedicated definition that assess the security of a protocol as

a whole. We followed the ACCE model for TLS but had to

modify it to accommodate for dealing with setting and using

the initial key, which was not present in TLS. Moreover,

QUIC handles novel security goals that TLS did not address,

such as some cryptographic protection for network packet

handling and protection against IP spoofing. We comment

on these in more detail below.

ON SECURING PACKETS. Any communication protocol that

does not run on top of TCP risks having its packets be

misordered and/or not delivered at all. QUIC, unlike TLS,

does not run on top of TCP but instead runs on top of

UDP, which does not provide any delivery guarantees. Since

QUIC adds cryptographic protection to some tasks usually

handled by TCP, it makes sense to capture this in our model.

Thus, in our security definition we allow the adversary to

intercept, delay, misorder, modify, and selectively drop any

communication between a client and a server. Our model

captures the fact that data in real life is transmitted in

packets and that the adversary could in principle modify

such packet fields as source and destination IP addresses

and port numbers. Specifically, we give the adversary the

ability to specify the precise oracles associated with certain

parties as subjects of its queries to send and/or receive

messages of the adversary’s choice. Our security model does

not, however, capture adversaries that simply drop (or delay

for an unreasonably long time) all possible traffic because

mitigating such attacks would require more sophisticated

protocols than those captured by our QC protocol model

that could detect and avoid failures.

ON SERVER IMPERSONATION. The server impersonation

goal in our model captures attacks in which the adversary

attempts to convince the client to set a session key that

is in any way inconsistent with the key set by the server.

That is, when using a secure protocol, a client knows that

the final session key is shared only with the server the

client talked to and no one else. We do not capture attacks

of the same type with respect to initial keys in this goal.

This is because it may not be possible in general, since

the client may have to derive the initial key from the

semi-permanent scfg that could be used for many client

connection requests while it persists. This would allow, for

example, the adversary to replay the values of scfg to

clients that have not yet contacted the corresponding server,

which could lead to some clients establishing an initial key

without the server being aware of their connection request.

This weakness may also be relevant to TLS variants that

allow for stateless connection resumption, and we discuss it

in more detail in Section VIII. Although for simplicity we do

not to address this directly in our analysis, the requirement of

having a matching conversation captures the basic mandate

that the communicating parties may need to agree not

only on the session key, but also on any other important

communication parameters such as congestion control, key

generation, encryption algorithms, etc. Thus, in principle,

this goal not only captures the traditional man-in-the-middle

attacks, but also more subtle attacks where the adversary

may be interested in degrading the communication security

and performance due to parties having inconsistent views

of session parameters. For example, when the two parties

disagree on congestion-avoidance parameters, a server may

end up sending content at much lower or higher rates than

requested by the client.

ON CHANNEL SECURITY. The channel corruption goal in

our model captures the expected goals of data authenticity

and confidentiality with forward secrecy, in a way that

is similar to the models used to analyze TLS but with

a few crucial additions that we detail below. The goal

of authenticity implicitly captures attacker’s misordering,

selectively delaying, and dropping certain content as well

as positive ACK attacks, all of which involve the adversary

sending something on behalf of a participating party. The

content of any packet that is dropped or delayed beyond a

certain time threshold (possibly dictated by the congestion-

avoidance parameters that may be optionally negotiated by

the communicating parties that we discuss below) could be

retransmitted unless its receipt is positively acknowledged by

the receiver. Thus, to prevent content delivery an adversary
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could in principle positively acknowledge the receipt of

packets on behalf of the receiver, which is captured by

the authenticity goal in our model. This security goal also

captures positive ACK attacks, which involve the adversary

or a rogue receiver sending acknowledgments for content

that was not actually received to cause the sender to send too

much content and overwhelm the resources of intermediate

and/or receiving network(s).

ON FORWARD SECRECY. A QACCE-secure protocol guar-

antees that the final session keys are forward secure, i.e.

obtaining a server’s long-term secrets does not leak any

information about the data that was previously exchanged

and encrypted under these keys. However, the guarantees

with respect to the initial keys are weaker because, for

them, forward secrecy holds only if the server does not get

corrupted during the time period when the scfg that was

used to derive those keys is valid. This is because, in QUIC,

servers use the same scfg to derive initial keys with all

clients for the duration of that scfg’s validity.

Unlike in previous models used to study TLS, we also

impose some additional restrictions on the adversary that

prevent it from revealing the initial key and corrupting the

server during the same time period as its encryption queries.

This restriction is imposed on the adversary because initial

keys are not forward secure, as they could be derived using

semi-permanent values stored by the server in its corre-

sponding scfg, which is changed only once per time period,

during which it could be used for all client connection

requests in that period. Thus, to account for this weakness, it

is important that the adversary does not learn of any semi-

permanent state captured in the server’s scfg that could

be used for establishing initial keys during its lifetime. This

weakness may also be relevant to TLS variants that allow

for stateless connection resumption [14].

ON RE-ORDERING ATTACKS. As we mentioned before,

strong security for secure channel, in addition to data privacy

and authenticity, must guarantee security against re-ordering

attacks. In the ACCE model for TLS [8], [9] this is captured

by requiring the authenticated encryption scheme satisfy the

notion of stateful decryption [31]. That definition requires

each ciphertext delivered out of order to be rejected.

This notion is not suitable for QUIC analysis. In TLS,

if the adversary tampers with the packet order at the TCP

level, all re-ordered packets will be rejected as the receiver

will detect re-ordering by comparing the order with the one

indicated by the TLS-layer sequence numbers. Hence, the

notion of stateful decryption can be met. In QUIC, this is

impossible, because it does not run on top of TCP. The

receiver gets all information about the packet order from

the sequence numbers. The receiver in QUIC cannot reject

any packet, even if it “looks” out of order, until the end,

when the messages could be sorted and the proper order

could be determined. Thus, re-ordering the existing packets

is prevented in TLS but cannot be prevented in QUIC. Yet,

the final order of the messages should still be correctly

determined by the receiver in QUIC. This difference calls

for different treatment in the security model.

For simplicity, we chose to capture re-ordering attacks

somewhat implicitly. Note that for any protocol which

authenticates the sequence numbers (in QUIC the sequence

number is part of the authenticated header H), re-ordering

is enforced by the authentication security which is part of

encryption breach security. Namely, changing the legitimate

order of the packets will require the adversary to create

a valid ciphertext with a new sequence number, and this

constitutes a “forgery” of encryption in the current security

definition. It is possible to treat re-ordering attacks more

explicitly, but this would require making the model less

general and more involved as we will have to fit the sequence

numbers into the syntax and security definition.

ON IP SPOOFING. Since it may not be possible to au-

thenticate a client, attacks where the adversary initiates

multiple connections to a server on behalf of honest clients

by spoofing its IP address are possible. Such DoS attacks

can lead to exhaustion of a server’s resources resulting from

prohibitively high rates of superfluous derivations of session

keys. Because TCP provides protection against such attacks

with its three-way handshake, they are not considered when

analyzing protocols that rely on TCP, such as TLS. However,

such attacks must be addressed for protocols that do not run

on top of TCP, such as QUIC, and the third goal in our

security model captures them. In the IP spoofing goal, the

adversary wins if it can trick the server into establishing a

session key with a client that did not request it.

VII. QUIC SECURITY ANALYSIS

We state our main result about the security of QUIC.

Theorem 7.1: Consider the cryptographic core of

QUIC, as defined in Section V, associated with the

base signature scheme SS = (Kgs, Sign,Ver), and an

authenticated-encryption with associated-data scheme

AEAD = ({0, 1}λ, {0, 1}n, E ,D). Then QUIC is QACCE

if SS is suf-cma and AEAD is ind-cpa- and auth-secure and

the SCDH problem is hard, in the random oracle model.

REMARK. We treat HMAC as the random oracle. This is a

very common assumption for security analyses. While it may

not be appropriate in every case, as cautioned in [32], the

standard use of HMAC with fixed keys for the key derivation

function here seems fine. There are two uses of HMAC in the

key derivation function, and it is important for the analysis

that the first occurrence is the random oracle. The second one

may satisfy a weaker notion, but we treat it as the random

oracle for simplicity. It does not seem possible to get rid of

the reliance on the random oracle in the first case though.

The Theorem follows from the following three lemmas.

Let 
 be the number of servers (and clients), let d be

the maximum number of oracles corresponding to any party
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(i.e. the maximum number of connection sessions a party

can initiate), let T be the number of time periods and let Q

be the maximum number of decryption queries the adversary

does in ExpQACCEΠ .

Lemma 7.2: For any efficient adversary A there exist

efficient adversaries B,C,D,E such that

Adv
ch-corr
QUIC (A) ≤ 
Adv

suf
SS (B) + 2d
2TAdvSCDH(C)

+ 4
dTQAdvauth
AEAD(D)

+ 4
dTAdv
ind-cpa
AEAD (E) .

Lemma 7.3: For any efficient adversary A there exist

efficient adversaries B,C,D such that

Adv
s-imp

QUIC(A) ≤ 
AdvsufSS (B) + 2d
2TAdvSCDH(C)

+ 7
dTQAdvauth
AEAD(D) .

Lemma 7.4: For any efficient adversary A there exists

an efficient adversary B such that

Adv
ips

QUIC(A) ≤ 
Advauth
AEAD(B) .

The detailed proofs of the Lemmas can be found in the

full version [16].

VIII. PERFORMANCE ISSUES AND MALICE

In this section we discuss how simple attacks on QUIC

packets during the handshake can introduce latencies, essen-

tially countering one of the primary goals of the protocol: 0-

RTT connection establishment. Persistent failure to establish

a QUIC session could further result in a fall-back to TCP,

defeating QUIC’s purpose of minimizing latency while se-

curing the transport layer. We discuss two types of attacks:

the first exploits public, cachable information from either the

server or client side, the second exploits unprotected fields

on packets exchanged during the handshake protocol.

A. Replay Attacks

Once at least one client establishes a session with a par-

ticular server, an adversary could learn the public values of

that server’s scfg as well as the source-address token value

stk corresponding to that client during their respective

validity periods. The adversary could then replay the server’s

scfg to the client and the source-address token stk to the

server, misleading in either case the other party. To launch

both attacks an adversary would have to have access to the

communication channel.

Server Config Replay Attack. An attacker can replay

a server’s public scfg to any other clients sending initial

connection requests to that server while keeping the server

unaware of such requests from clients. Thus, these clients

establish an initial key without the server’s knowledge, and

when they attempt to communicate with the server, the

server would not be able to recognize them and would reject

their packets. While data confidentiality is not affected,

the clients would experience additional latencies and waste

computational resources deriving an initial key.

Source-Address Token Replay Attack. An attacker can

replay the source-address token stk of a client to the

server that issued that token on behalf of the client many

times to establish additional connections. This action would

cause the server to establish initial keys and even final

forward-secure keys for each connection without the client’s

knowledge. Any further steps in the handshake would fail,

but an adversary could create a DoS attack on the server

by creating many connections on behalf of a many different

clients and possibly exhausting the server’s computational

and memory resources.

Ironically, these attacks stem from parameters whose

main purpose was to minimize latency. These attacks are

more subtle than simply dropping QUIC handshake packets

because they mislead at least one party into “believing” that

everything is going well while causing it to waste time and

resources deriving an initial key.

Resolving these types of attacks seems to be infeasible

without reducing scfg and stk parameters to one-time

use, because as long as these parameters persist for more

than just a single connection, they could be used by the

adversary to fake multiple connections while they remain

valid. However, such restriction would prohibit QUIC from

ever achieving 0-RTT connection establishment.

B. Packet Manipulation Attacks

Not all fields of QUIC packets are protected against

adversarial manipulation. An attacker with access to the

communication channel used by a client to establish a

session with a particular server could flip bits of the un-

protected parameters such as the connection id cid and

the source-address token stk and lead the server and client

to derive different initial keys which would ultimately lead

connection establishment to fail. For a successful attack, the

adversary has to make sure that all parameters modified in

this way seem consistent across all sent and received packets

with respect to any single party but inconsistent from the

perspective of both parties participating in the handshake.

As shown in Section VII this type of attack does not

raise concerns over the confidentiality and authenticity of

communication that is encrypted and authenticated under

the initial key, because even though the initial keys are

different, they are not known by the adversary. Note also

that if parties do not agree on an initial key, they cannot

establish a session key in QUIC because the final server

hello packet is encrypted and authenticated under the initial

key. Therefore, these attacks also do not compromise the

confidentiality and authenticity of communication encrypted

and authenticated under the final key.

These packet manipulation attacks are smarter than just

dropping QUIC handshake packets because the client and

server progress through the handshake while having a
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mismatched conversation, resulting in the establishment of

inconsistent keys. This causes both parties to waste time

and resources deriving keys and other connection state. In

particular, the server performs all the processing required for

a successful connection, unlike in attacks that simply drop

QUIC handshake packets.

A simple strategy for mitigating this type of attack would

be to have the server sign all such modifiable fields in its

s reject and s hello packets (cid is unencrypted). However,

this would incur the cost of computing a digital signature

over all such modifiable parameters, which would in turn

open another opportunity for a DoS attack in which the ad-

versary, with IP spoofing, could send many initial connection

requests on behalf of as many clients as it desires.

IX. ATTACK RESULTS

In this section we discuss our implementations of the

attacks we identified against QUIC in Section VIII. We target

the Chromium implementation of QUIC5 in our attacks,

as this is the canonical implementation. Our attacks were

developed in python using the scapy library.6 We summarize

our attacks, their properties, and impacts in Table I.

REPLAY ATTACKS.

Server Config Replay Attack. To conduct this attack, an

attacker must first collect a copy of the target server’s scfg.

This can be done either by actively establishing a connection

to the server or by passively listening for a client to attempt a

connection. In either case, the server’s scfg can be readily

collected from a full, 1-RTT QUIC connection handshake.

Once the attacker has scfg, he waits for the target client

to attempt to start a connection. When the attacker sees

a c hello message from the client, he can respond with

a spoofed s reject message using the collected scfg and

randomly generated stk and sno values. Similar s reject

messages are the proper response to a client that either does

not have a cached copy of the server’s scfg or has a

copy that is no longer valid. We assume that the attacker

is closer to the client than the server is so that the s reject

message reaches the client prior to the response from the

legitimate server. When the client receives this spoofed

s reject message, it promptly sends a new c hello message

using these new scfg, stk, and sno values.

When the real server receives this new c hello message, it

will attempt to validate it. However, the stk and sno values

were randomly generated by the attacker and so are almost

certain to fail the validation. In response to this failure, the

server generates a new s reject message containing scfg

and new stk and sno values.

This new s reject message provides the client with valid

stk and sno values so another c hello message could

5https://chromium.googlesource.com/chromium/src.git. We tested git
revision 50a133b51fa9c6a3dc2b82ce9fedcf074859cd13 from
October 1, 2014.

6http://www.secdev.org/projects/scapy/

correctly complete the connection. However, when testing

this attack, we found two further issues, the combination

of which will always result in the connection terminating

abnormally. The first issue is that each QUIC packet includes

an entropy bit in its header and QUIC acknowledgment

frames include a hash of these bits along with a list of unseen

packets. The goal of this mechanism is to prevent Optimistic

Ack attacks [2]. In our case, an acknowledgment frame

will typically be included with the client’s second c hello

message acknowledging the spoofed s reject message. If the

entropy bit in the attacker’s spoofed s reject message does

not match the entropy bit in the server’s real response, then

the entropy hash in this acknowledgement will not validate

and the server will abruptly terminate the connection.

The second issue is that a single QUIC connection

provides multiple byte-streams for data transfer, and the

QUIC handshake takes place within a special byte-stream

reserved for connection establishment. This implies that

all the c hello, s reject, and s hello messages we have

mentioned so far occur within the context of this byte-

stream and have offset and length attributes. As a result,

if the attacker’s s reject is not exactly the same size as the

server’s response, then this byte-stream is effectively broken.

Any further messages from the server will be at offsets either

above or below the client’s position in the byte-stream. These

messages will either be dropped or buffered forever. After

ten seconds the client will abruptly terminate the connection

because it is unable to complete the handshake.

In our tests, the combination of these two issues com-

pletely prevented the establishment of any QUIC connec-

tions. Connection attempts always terminated after either

half a second, in the case of an entropy bit mismatch, or

ten seconds, if the entropy bits matched, but the byte-stream

was corrupted. Our python implementation requires that the

attacker be about 20ms closer to the client than the server

is, in order to create an s reject message and have it reach

the client before the server’s legitimate response. However,

with an optimized C implementation, this requirement could

be significantly reduced.

Source-Address Token Replay Attack. The stk token

is supposed to prevent packet spoofing by ensuring that a

connection request originates at the IP address claimed. The

stk is created by the server as part of the s reject message.

It contains the client’s IP address and the current time, both

encrypted. A client must present a valid stk in its c hello

message in order to perform a 0-RTT connection. However,

the stk token must be presented prior to encryption being

established. This means that any attacker who can sniff

network traffic can collect stk tokens that can be used to

spoof connection requests from a specific host for a limited

period of time, by default 24 hours.

This attack operates by sniffing the network for s reject

messages from the target server. Each s reject message

contains a new stk being sent to some client. For each
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Table I
DISCOVERED ATTACKS AND THEIR PROPERTIES

Attack Name Type On-Path Traffic Sniffing IP Spoofing Impact

Server Config Replay Attack Replay No Yes Yes Connection Failure

Source-Address Token Replay Attack Replay No Yes Yes Server DoS

Connection ID Manipulation Attack Manipulation Yes No No Connection Failure; server load

Source-Address Token Manipulation Attack Manipulation Yes No No Connection Failure; server load

Crypto Stream Offset Attack Other No Yes Yes Connection Failure

new stk seen, our attacker grabs the stk, the scfg, and

the client’s IP address and starts repeatedly spoofing 0-RTT

connection attempts with random cids from this client.

When the target server receives these requests, they appear

to be legitimate 0-RTT connection requests. The stk will

validate because the stk is replayed from a legitimate

connection with an actual client at the spoofed IP address.

As a result, the server will create a new connection for

this request. This includes creating initial and forward-

secure encryption keys and sending an s hello message. At

this point, the server believes it has completed connection

establishment with the spoofed client.

In our tests, we used separate virtual machines for the

attacker and server. We found that a single attacker starting

with a single stk and sending packets at 200KB/sec was

able to completely overwhelm our test server. The 2.4 GHz

Intel(R) Xeon(R) CPU dedicated to our server was pegged at

100% utilization, and the operating system’s out-of-memory

killer eventually killed the server process after it exhausted

the 3GB of memory allocated to the server’s virtual machine.

It seems apparent that the QUIC server implementation in

Chromium has no limitation on the number of connections

that can be established from a single IP address. While we

do not believe that this is the server implementation that

Google uses in production, it is the only open-source QUIC

server available. Additionally, much of the QUIC code is a

library that we expect would be used by any production

QUIC server. Note, however, that even if a limit on the

number of connections from a single IP were added, this

attack can inflate the number of connections to the server

by this maximum number for every observed QUIC client.

MANIPULATION ATTACKS. Manipulation attacks subvert

key agreement by causing the client and server to agree on

different keys. This is done by modifying unprotected packet

fields that are used as input to the key derivation process,

in particular, the connection id cid or source-address token

stk. We develop attacks against both of these parameters.

Connection ID Manipulation Attack. In this attack, the

attacker is positioned on the path between the client and the

server and re-writes the cid such that the client and server

see different values. The handshake proceeds as normal, with

the client requesting the scfg, if it does not have a cached

copy, and then sending a c hello message. This c hello is

processed by the server and an s hello message sent in

response. At this point, the server believes the connection

has been successfully established. However, when the client

receives the s hello message sent by the server, it will fail to

decrypt. This is because the cid is an input to the encryption

key derivation process. Since the attacker changes the cid,

the client and server will compute different encryption keys.

Unfortunately, decryption failure is not a sign of catas-

trophic handshake failure because it can be caused by

reordering. In particular, packets encrypted with the forward-

secure key will fail to decrypt prior to the reception of the

s hello message, which may be delayed due to reordering.

As a result, packets failing decryption are buffered until

the handshake completes. With the bad s hello message

buffered, the client will eventually timeout and retransmit its

c hello message. This process will repeat until the client’s

10 second timer on connection establishment expires. At that

point the connection will be terminated.

An error message will be sent to the server when the

connection is terminated. However, this message will be

encrypted with the initial encryption key, and thus the server

will fail to decrypt it and will queue it for later decryption.

Since it cannot decrypt the error message, the server will

retain the connection state until the idle connection timeout

expires. This timeout defaults to 10 minutes.

Source-Address Token Manipulation Attack. The goal

of this attack is to prevent a client from establishing a

connection, either denying access to the desired application

or forcing the client to fall back to TCP/TLS. It requires an

attacker positioned on the path between the client and the

server who re-writes the stk such that the client and server

see different values. It is important that the server always see

the value it initially sent because it will validate stk later.

To the client, however, stk is simply an opaque byte-string.

Any attempted connection request will proceed as normal,

except that the attacker silently changes the stk values seen

by client and server. The client requests the scfg from the

server, which replies with the current scfg and an stk

value. The client then sends a full c hello to initiate the

connection. The server receives and processes this c hello

and sends an s hello message in response.

When the client receives this s hello message sent by the

server, it will fail to decrypt. This is because stk is an input

into the encryption key derivation process, and the attacker

has changed the stk value seen at the client. As a result,
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the client and server will compute different encryption keys.

However, as mentioned previously, a decryption failure

is not a sign of catastrophic handshake failure because this

could happen due to reordering, if packets encrypted with

the forward-secure key were received before the s hello

message. Hence, the client buffers the bad s hello message

for later decryption. Eventually the client times out and re-

transmits the c hello message. This process will repeat until

the client’s 10 second timer on connection establishment

expires. At that point the connection will be terminated.

The client will notify the server that it terminated the con-

nection, but, unfortunately, this message will be transmitted

encrypted with the initial encryption key. Hence, the server

will be unable to process it and will continue to retain the

connection state. This state will only be removed when the

idle connection timeout expires, by default after 10 minutes.

We found that this attack effectively prevented all targeted

QUIC connections. Further, all targeted connections experi-

enced a 10 second delay before timing out.

OTHER ATTACKS While developing and testing the Server

Config Replay Attack, we discovered an additional attack

against QUIC. This attack results from QUIC treating hand-

shake messages as part of a logical byte-stream, a detail

abstracted out of the provable security analysis.

Crypto Stream Offset Attack. Recall that handshake

messages are part of a logical byte-stream in QUIC. As a

result, by injecting data into this byte stream an attacker is

able to break the byte-stream and prevent the processing of

further handshake messages. The attack results in preventing

a client from establishing a connection using QUIC, either

denying access to the desired application or forcing the client

to fall back to TCP/TLS.

We create the attack by injecting a four character string

into this handshake message stream. This injection is suffi-

cient to prevent connection establishment. Our attacker lis-

tens for c hello messages and responds with a spoofed reply

containing the string “REJ\0” in the handshake message

stream. As observed before, this breaks connection estab-

lishment because any messages from the server will now

start at the wrong offset in the handshake message stream.

Hence, they will be discarded or buffered indefinitely.

A connection that is attacked in this manner will either be

terminated by the server because of an entropy bit mismatch

or be timed out by the client after 10 seconds.

Note that an attacker requires very little information

to launch this attack. No information is needed from the

client’s c hello message, QUIC packet sequence numbers

always start from 1, and the cid can be omitted from any

packet other than the client’s c hello. As a result, all an

attacker needs to launch this attack is knowledge of when

a connection attempt will occur and the 4-tuple (server IP,

client IP, server port, client port) involved. Of this 4-tuple,

three items are already known: the server’s IP, the client’s

IP, and the server’s UDP port. If an attacker can guess

the client’s UDP port and when it will make a connection

attempt, he can launch this attack completely blind.

In our tests, the ephemeral UDP port range was still

too large to brute force within an RTT, at least with our

python attacker. However, if the attacker can narrow the port

range sufficiently, then an optimized C implementation could

probably conduct this attack completely blind.

A. Attack Discussion

In this section we discuss how the attacks we found

against QUIC relate to prior attacks on TCP and TLS. We

find that attacking QUIC is not easier than TCP and TLS.

Source-Address Token Replay Attack. This QUIC at-

tack is similar to the TCP SYN Flood attack where the

attacker sends numerous spoofed TCP SYN packets to a

server to overwhelm it and cause DoS [33]. The QUIC attack

does almost the same thing, but the attacker is limited in the

IP addresses he can use for spoofed packets. However, the

impact of each spoofed packet is larger because QUIC needs

to create encryption keys after receiving the initial packet.

The classic mitigation to SYN Flood is SYN Cookies,

opaque tokens passed to the client by the server in the

SYN-ACK and returned by the client on the final handshake

ACK [33]. A SYN-Cookie encodes enough information so

that the server does not need to keep state between the SYN

and the final ACK and can serve as a proof that the client

resides at its claimed IP address. The server creates the

connection state structures only after the cookie is returned

by the client, making it more difficult to overwhelm the

server with spoofed connection requests.

An stk serves a similar purpose in preventing spoofed

packets, with the difference being that its goal is to avoid

the RTT incurred for a handshake. SYN-Cookies cannot be

replayed because they are single use [33]. Because QUIC

wants to support 0-RTT connections, it cannot make stks

single use, instead it limits their time and IP address validity.

This allows an attacker to replay them.

QUIC Manipulation Attacks. These QUIC attacks are

similar to the SSL Downgrade attack against a modern TLS

implementation. In both cases, a Man-In-The-Middle at-

tacker modifies packet fields and the attack is not discovered

until the end of the handshake, after key generation and

multiple RTTs.

SSL Downgrade works against SSL connections where

both endpoints have SSL versions less than SSL 3.0 enabled.

The goal is to downgrade the connection to an older, less

secure version of SSL [34]. Basically, the attacker rewrites

the connection request to indicate that the client only sup-

ports an older version of SSL, often version 2.0. The server

and client then establish an SSL 2.0 connection, which the

attacker can presumably compromise.

SSL 3.0 adds protection against this attack by adding a

keyed hash of all the handshake messages to the Finished

message and requiring the receiver to verify this hash [34].
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This defense is effective, but the attack will only be detected

at the end of the handshake.

Our QUIC Manipulation Attacks have similar outcome

where the attack only becomes apparent at the end of the

handshake when the keys generated by client and server do

not match. Thus, the connection fails after a timeout, and the

client may fall back to TCP/TLS. Since QUIC is designed

to provide much lower latency for connection initiation than

TCP/TLS, this compromises one of QUIC’s main goals.

As discussed in section VIII-B, one simple mitigation

would be to sign all modifiable fields in the server’s s reject

and s hello messages. However, this introduces signature

computation overhead and a possible DoS attack.

QUIC Crypto Stream Offset Attack. This attack is

similar to the TCP ACK Storm attack in that both result in

the inability to transfer any more data over the target byte-

stream and are caused by an attacker inserting data into the

byte-stream.

The TCP ACK Storm attack [35] requires an attacker who

can observe a TCP ACK packet of the target connection and

then spoof data-bearing packets to both the client and the

server. This data will be received and processed by the client

and server and both will increase their ACK numbers as a

result. Unfortunately, when an ACK is eventually sent by

either client or server, it will appear to acknowledge data that

the other side has not yet sent. TCP will drop such packets

and send a duplicate ACK. At this point, the TCP byte-

stream is effectively broken; no more data can be transferred

because all packets will have invalid ACK numbers.

In much the same way, injection of data into a QUIC

handshake stream disrupts the stream offsets and prevents

any further handshake negotiation. This eventually results in

connection timeout. Although a byte-stream is a convenient

abstraction, it does not appear to be a good fit for handshake

data. A message-stream, or sequence of messages, would be

less prone to disruption in this manner.

X. CONCLUSIONS AND FUTURE WORK

In this paper we provide the provable-security treatment of

QUIC and assess its performance guarantees in the presence

of adversaries. We provide a formal definition of a Quick

Connections (QC) protocol, formally define a novel security

model Quick ACCE (QACCE) appropriate for QC protocols,

and show that QUIC satisfies QACCE under reasonable

assumptions on its underlying building blocks.

Our analysis also reveals, however, that in the presence

of attackers, QUIC may be unable to attain one of its main

goals: 0-RTT connections. The adversary can make QUIC

fall-back to TCP/TLS or cause the client and server to have

an inconsistent view of their handshake which could lead

to inconsistent states and more latency. Furthermore, such

simple attacks could also be used to mount DoS attacks.

Our security definition is general and we plan to use

our models to analyze other performance-driven security

protocols, such as TLS version 1.3. Our work provides

insights into the pitfalls of designing performance-driven

secure protocols. In the future, we hope to explore method-

ologies for addressing the weaknesses of the QUIC protocol,

which we have presented in this paper, and which may also

be relevant to other protocols in this domain.
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