
Using Hardware Features for Increased Debugging
Transparency

Fengwei Zhang1, Kevin Leach2, Angelos Stavrou1, Haining Wang3, and Kun Sun1

1George Mason University, {fzhang4,astavrou,ksun3}@gmu.edu
2University of Virginia, kjl2y@virginia.edu

3University of Delaware, hnw@udel.edu

Abstract—With the rapid proliferation of malware attacks on
the Internet, understanding these malicious behaviors plays a
critical role in crafting effective defense. Advanced malware
analysis relies on virtualization or emulation technology to run
samples in a confined environment, and to analyze malicious
activities by instrumenting code execution. However, virtual ma-
chines and emulators inevitably create artifacts in the execution
environment, making these approaches vulnerable to detection or
subversion. In this paper, we present MALT, a debugging frame-
work that employs System Management Mode, a CPU mode in
the x86 architecture, to transparently study armored malware.
MALT does not depend on virtualization or emulation and thus
is immune to threats targeting such environments. Our approach
reduces the attack surface at the software level, and advances
state-of-the-art debugging transparency. MALT embodies various
debugging functions, including register/memory accesses, break-
points, and four stepping modes. We implemented a prototype of
MALT on two physical machines, and we conducted experiments
by testing an array of existing anti-virtualization, anti-emulation,
and packing techniques against MALT. The experimental results
show that our prototype remains transparent and undetected
against the samples. Furthermore, our prototype of MALT
introduces moderate but manageable overheads on both Windows
and Linux platforms.

Keywords-malware debugging; transparency; SMM

I. INTRODUCTION

The proliferation of malware has increased dramatically and

caused serious damage for Internet users in the past few years.

McAfee reported that the presence of malware has been greatly

increasing during the first quarter in 2014, seeing more than

30 million new malware samples [1]. In the last year alone,

Kaspersky Lab products detected almost 3 billion malware

attacks on user computers, and 1.8 million malicious programs

were found in these attacks [2]. Symantec blocked an average

of 568,000 web attacks per day in 2013, a 23% increase over

the previous year [3]. As such, malware analysis is critical

to understanding new infection techniques and maintaining a

strong defense.

Traditional malware analysis employs virtualization [4],

[5], [6] and emulation [7], [8], [9] technologies to dissect

malware behavior at runtime. This approach runs the malware

in a Virtual Machine (VM) or emulator and uses an analysis

program to introspect the malware from the outside so that

the malware cannot infect the analysis program. Unfortunately,

malware writers can easily escape this analysis mechanism by

using a variety of anti-debugging, anti-virtualization, and anti-

emulation techniques [10], [11], [12], [13], [14], [15]. Malware

can easily detect the presence of a VM or emulator and alter its

behavior to hide itself. Chen et al. [10] executed 6,900 malware

samples and found that more than 40% of them reduced

malicious behavior under a VM or with a debugger attached.

Branco et al. [11] showed that 88% and 81% of 4 mil-

lion analyzed malware samples had anti-reverse engineering

and anti-virtualization techniques, respectively. Furthermore,

Garfinkel et al. [16] concluded that virtualization transparency

is fundamentally infeasible and impractical. To address this

problem, security researchers have proposed analyzing mal-

ware on bare metal [17], [18]. This approach makes anti-VM

malware expose its malicious behavior, and it does not require

any virtualization or emulation technology. However, malware

analysis on bare metal runs an analysis program within the

Operating System (OS), and ring 0 malware can easily detect

its presence. Thus, stealthy malware detection and analysis

still remains an open research problem.

In this paper, we present MALT, a novel approach that

progresses towards stealthy debugging by leveraging System

Management Mode (SMM) to transparently debug software

on bare-metal. Our system is motivated by the intuition that

malware debugging needs to be transparent, and it should not

leave artifacts introduced by the debugging functions. SMM is

a special-purpose CPU mode in all x86 platforms. The main

benefit of SMM is to provide a distinct and easily isolated

processor environment that is transparent to the OS or running

applications. With the help of SMM, we are able to achieve a

high level of transparency, which enables a strong threat model

for malware debugging. We briefly describe its basic workflow

as follows. We run malware on one physical target machine

and employ SMM to communicate with the debugging client

on another physical machine. While SMM executes, Protected

Mode is essentially paused. The OS and hypervisor, therefore,

are unaware of code executing in SMM. Because we run

debugging code in SMM, we expose far fewer artifacts to the

malware, enabling a more transparent execution environment

for the debugging code than existing approaches.

The debugging client communicates with the target server

using a GDB-like protocol with serial messages. We im-

plement the basic debugging commands (e.g., breakpoints

and memory/register examination) in the current prototype of

2015 IEEE Symposium on Security and Privacy

© 2015, Fengwei Zhang. Under license to IEEE.

DOI 10.1109/SP.2015.11

55

2015 IEEE Symposium on Security and Privacy

© 2015, Fengwei Zhang. Under license to IEEE.

DOI 10.1109/SP.2015.11

55

MALT. Furthermore, we implement four techniques to provide

step-by-step debugging: (1) instruction-level, (2) branch-level,

(3) far control transfer level, and (4) near return transfer

level. We also design a user-friendly interface for MALT to

easily work with several popular debugging clients, such as

IDAPro [19] and GDB.

MALT runs the debugging code in SMM without using

a hypervisor. Thus, it has a smaller Trusted Code Base

(TCB) than hypervisor-based debugging systems [4], [7], [8],

[9], which significantly reduces the attack surface of MALT.

Moreover, MALT is OS-agnostic and immune to hypervisor

attacks (e.g., VM-escape attacks [20], [21]). Compared to

existing bare-metal malware analysis [17], [18], SMM has

the same privilege level as hardware. Thus, MALT is capable

of debugging and analyzing kernel and hypervisor rookits as

well [22], [23].

We develop a prototype of MALT on two physical ma-

chines connected by a serial cable. To demonstrate the ef-

ficiency and transparency of our approach, we test MALT

with popular packing, anti-debugging, anti-virtualization, and

anti-emulation techniques. The experimental results show that

MALT remains transparent against these techniques. Addition-

ally, our experiments demonstrate that MALT is able to debug

crashed kernels/hypervisors. MALT introduces a reasonable

overhead: It takes about 12 microseconds on average to

execute the debugging code without command communication.

Moreover, we use popular benchmarks to measure the perfor-

mance overhead for the four types of step-by-step execution

on Windows and Linux platforms. The overhead ranges from

2 to 973 times slowdown on the target system, depending on

the user’s selected instrumentation method.

The main contributions of this work are:

• We provide a bare-metal debugging tool called MALT

that leverages SMM for malware analysis. It leaves a

minimal footprint on the target machine and provides a

more transparent execution environment for the debugger

than existing approaches.

• We introduce a hardware-assisted malware analysis ap-

proach that does not use the hypervisor and OS code.

MALT is OS-agnostic and is capable of conducting

hypervisor rootkit analysis and kernel debugging.

• We implement various debugging functions, including

breakpoints and step-by-step debugging. Our experiments

demonstrate that MALT induces moderate but manage-

able overhead on Windows and Linux environments.

• Through testing MALT against popular packers, anti-

debugging, anti-virtualization, and anti-emulation tech-

niques, we demonstrate that MALT remains transparent

and undetected.

The remainder of this paper is organized as follows. Sec-

tion II provides background on SMM and BIOS. Section III

surveys related work. Section IV discusses our threat model

and assumptions. Section V presents the architecture of MALT.

Section VI details the implementation of MALT. Section VII

analyzes the transparency of MALT. Section VIII shows the

TABLE I
SUMMARY OF SMM FEATURES

SMM Entry Asserting an SMI
SMM Exit Running an RSM instruction
Memory Access SMRAM is inaccessible from other CPU modes
Memory Addressing Physical memory addressing without paging
Interrupts & Exceptions Disabled upon entering SMM
Privilege Highest privilege access to all memory & devices

performance evaluation of our prototype. Section IX discusses

the limitations of MALT. Section X concludes the paper and

discusses future directions.

II. BACKGROUND

A. System Management Mode

System Management Mode (SMM) [24] is a mode of

execution similar to Real and Protected modes available on

x86 platforms. It provides a transparent mechanism for im-

plementing platform-specific system control functions such as

power management. It is initialized by the Basic Input/Output

System (BIOS).

SMM is triggered by asserting the System Management

Interrupt (SMI) pin on the CPU. This pin can be asserted

in a variety of ways, which include writing to a hardware

port or generating Message Signaled Interrupts with a PCI

device. Next, the CPU saves its state to a special region of

memory called System Management RAM (SMRAM). Then,

it atomically executes the SMI handler stored in SMRAM.

SMRAM cannot be addressed by the other modes of execution.

The requests for addresses in SMRAM are instead forwarded

to video memory by default. This caveat therefore allows

SMRAM to be used as secure storage. The SMI handler is

loaded into SMRAM by the BIOS at boot time. The SMI

handler has unrestricted access to the physical address space

and can run any instructions requiring any privilege level1. The

RSM instruction forces the CPU to exit from SMM and resume

execution in the previous mode. Table I shows a summary of

SMM features.

B. BIOS and Coreboot

The BIOS is an integral part of a computer. It initializes

hardware and loads the operating system. The BIOS code is

stored on non-volatile memory on the motherboard. In particu-

lar, we make use of an open-source BIOS called Coreboot [25].

Coreboot performs some hardware initialization and then

executes a payload (e.g., UEFI). MALT uses SeaBIOS [25]

as the payload. Coreboot is written mostly in C and allows us

to edit the SMI handler very easily. This makes MALT much

more portable as Coreboot abstracts away the heterogeneity of

specific hardware configurations.

1For this reason, SMM is often referred to as ring -2.

5656

TABLE II
COMPARISON WITH OTHER DEBUGGERS

MALT BareBox [17] V2E [7] Anubis [8] Virt-ICE [9] Ether [4] VAMPiRE [26] SPIDER [5] IDAPro [19]
No VM/emulator � � � �

Debug ring0 malware � � � � � �
Trusted code base BIOS OS KVM+QEMU QEMU QEMU Xen OS KVM OS

SLOC of TCB (K) 1.5 16,281 13,397 786 786 509 16,281 12,593 16,281

III. RELATED WORKS

A. Malware Debugging and Analysis

VAMPiRE [26] is a software breakpoint framework running

within the operating system. Since it has the same privilege

level as the operating system kernel, it can only debug ring

3 malware. Rootkits can gain kernel-level privileges to cir-

cumvent VAMPiRE. However, as MALT does not rely on the

operating system, it can debug rootkits safely.

Ether [4] is a malware analysis framework based on hard-

ware virtualization extensions (e.g., Intel VT). It runs outside

of the guest operating systems by relying on underlying

hardware features. BitBlaze [27] and Anubis [8] are QEMU-

based malware analysis systems. They focus on understanding

malware behaviors, instead of achieving better transparency.

V2E [7] combines both hardware virtualization and software

emulation. HyperDbg [6] uses the hardware virtualization that

allows the late launching of VMX modes to install a virtual

machine monitor and run the analysis code in the VMX root

mode. SPIDER [5] uses Extended Page Tables to implement

invisible breakpoints and hardware virtualization to hide its

side effects. Compared to our system, Ether, BitBlaze, Anubis,

V2E, HyperDbg, and SPIDER all rely on easily detected

emulation or virtualization technology [10], [13], [15], [28]

and make the assumption that virtualization or emulation is

transparent from guest-OSes. In contrast, MALT relies on the

BIOS code to analyze malware on the bare metal. Additionally,

nEther [29] has demonstrated that malware running in the

guest OS can detect the presence of Ether using CPUID bits,

while MALT remains transparent. In terms of transparency, as

it relates to the attack surface, MALT has a smaller trusted

computing base than hypervisor-based malware analysis sys-

tems. Table II shows the trusted computing base of various

malware analysis systems. We can see that MALT has a much

smaller attack surface than those hypervisor-based systems.

BareBox [17] is a malware analysis framework based on

a bare-metal machine without any virtualization or emula-

tion technologies. However, it only targets the analysis of

user-mode malware, while MALT is capable of debugging

hypervisor rootkits and kernel-mode device drivers. Willems

et al. [18] used branch tracing to record all the branches

taken by a program execution. As pointed out in the paper,

the data obtainable by branch tracing is rather coarse, and

this approach still suffers from a CPU register attack against

branch tracing settings. However, MALT provides fine-grained

debugging methods and can defend against mutation of CPU

registers. BareCloud [30] is a recent armored malware detec-

tion system; it executes malware on a bare-metal system and

compares disk- and network-activities of the malware with

other emulation and virtualization-based analysis systems for

evasive malware detection, while MALT is used for malware

debugging.

Virt-ICE [9] is a remote debugging framework similar to

MALT. It leverages emulation technology to debug malware

in a VM and communicates with a debugging client over a

TCP connection. As it debugs the system outside of the VM,

it is capable of analyzing rootkits and other ring 0 malware

transparently. However, since it uses a VM, a malware may

refuse to unpack itself in the VM. MALT relies on the BIOS

integrity and does not employ any virtualization. Thus, we are

capable of achieving higher transparency while debugging and

analyzing code.

There is a vast array of popular debugging tools. For

instance, IDA Pro [19] and OllyDbg [31] are popular debug-

gers running within the operating system focusing on ring 3

malware. DynamoRIO [32] is a process virtualization system

implemented using software code cache techniques. It executes

on top of the OS and allows users to build customized dynamic

instrumentation tools. Similar to MALT, WinDbg [33] uses a

remote machine to connect to the target machine using serial

or network communications. However, these options require

special booting configuration or software running within the

operating system, which is easily detected by malware. Table II

summarizes the differences between MALT and other malware

debugging and analysis systems. The source lines of code

(SLOC) are obtained from [34], and we use the Linux kernel

as the OS in Table II.

B. SMM-based Systems

In recent years, SMM-based research has appeared in the

security literature. For instance, SMM can be used to check

the integrity of higher level software (e.g., hypervisor and OS).

HyperGuard [35], HyperCheck [36], and HyperSentry [37] are

integrity monitoring systems based on SMM. SPECTRE [38]

uses SMM to introspect the live memory of a system for

malware detection. Another use of SMM is to reliably acquire

system physical memory for forensic analysis [39], [40].

However, MALT differs from previous SMM-based systems

in these aspects: (1) MALT is the first system that uses

SMM for debugging, and its intended usage involves with

human interaction; (2) it addresses the debugging transparency

problem by mitigating its side effects, while previous systems

do not consider this challenging problem; (3) it uses a variety

of methods to trigger SMIs, and the triggering frequency can

be instruction-level. In addition, other security researchers

have proposed using SMM to implement attacks. In 2004,

5757

Duflot [41] demonstrated the first SMM-based attack to bypass

the protection mechanism in OpenBSD. Other SMM-based

attacks focus on achieving stealthy rootkits [42], [43]. For

instance, the National Security Agency (NSA) uses SMM to

build an array of rootkits including DEITYBOUNCE for Dell

and IRONCHEF for HP Proliant servers [44]. However, these

attacks require bypassing or unlocking SMRAM protection.

MALT locks the SMRAM in the BIOS code. We will discuss

bypassing SMRAM protection in Section IX.

IV. THREAT MODEL AND ASSUMPTIONS

A. Threat Model

MALT is intended to transparently analyze a variety of

code that is capable of detecting or disabling typical malware

analysis or detection tools. We consider two types of powerful

malware in our threat model: armored malware and rootkits.

1) Armored Malware: Armored malware or evasive mal-

ware [30] is a piece of code that employs anti-debugging

techniques. Malicious code can be made to alter its be-

havior if it detects the presence of a debugger. There are

many different detection techniques employed by current

malware [12]. For example, IsDebuggerPresent() and

CheckRemoteDebuggerPresent() are Windows API

methods in the kernel32 library returning values based upon

the presence of a debugger. Legitimate software developers

can take advantage of such API calls to ease the debugging

process in their own software. However, malware can use these

methods to determine if it is being debugged to change or hide

its malicious behavior from analysis.

Malware can also determine if it is running in a virtual

machine or emulator [10], [14], [15]. For instance, Red

Pill [28] can efficiently detect the presence of a VM. It

executes a non-privileged (ring 3) instruction, SIDT, which

reads the value stored in the Interrupt Descriptor Table (IDT)

register. The base address of the IDT will be different in

a VM than on a bare-metal machine because there is only

one IDT register shared by both host-OS and guest-OS.

Additionally, QEMU can be detected by accessing a reserved

Model Specific Register (MSR) [7]. This invalid access causes

a General Protection (GP) exception on a bare-metal machine,

but QEMU does not.

2) Rootkits: Rootkits are a type of stealthy malicious

software. Specifically, they hide certain process information to

avoid detection while maintaining continued privileged access

to a system. There are a few types of rootkits ranging from user

mode to firmware level. For example, kernel mode rootkits run

in the operating system kernel (in ring 0) by modifying the

kernel code or kernel data structures (e.g., Direct Kernel Ob-

ject Modification). Hypervisor-level rootkits run in ring -1 and

host the target operating system as a virtual machine. These

rootkits intercept all of the operations including hardware calls

in the target OS, as shown in Subvirt [22] and BluePill [23].

Since MALT runs in SMM with ring -2 privilege, it is capable

of debugging user mode, kernel mode, and hypervisor-level

rootkits. As no virtualization is used, MALT is immune to

hypervisor attacks (e.g., VM escape [20], [21]). However, for

firmware rootkits run in ring -2, MALT cannot detect these

kind of rootkits.

B. Assumptions
As our trusted code (SMI handler) is stored in the BIOS,

we assume the BIOS will not be compromised. We assume

the Core Root of Trust for Measurement (CRTM) is trusted so

that we can use Static Root of Trust for Measurement (SRTM)

to perform the self-measurement of the BIOS and secure the

boot process [45]. We also assume the firmware is trusted,

although we can use SMM to check its integrity [46]. After

booting, we lock the SMRAM to ensure the SMI handler code

is trusted. We discuss attacks against SMM in Section IX.

We assume the debugging client and remote machine are

trusted. Furthermore, we consider an attacker that can have

unlimited computational resources on our machine. We assume

the attacker launches a single vulnerable application that can

compromise the OS upon completing its first instruction.

Lastly, we assume the attacker does not have physical access

to the machines. Malicious hardware (e.g., hardware trojans)

is also out of scope.

V. SYSTEM ARCHITECTURE

Figure 1 shows the architecture of the MALT system.

The debugging client is equipped with a simple GDB-like

debugger. The user inputs basic debugging commands (e.g.,

list registers), and then the target machine executes the com-

mand and replies to the client as required. When a command

is entered, the client sends a message via a serial cable

to the debugging server. This message contains the actual

command. While in SMM, the debugging server transmits

a response message containing the information requested by

the command. Since the target machine executes the actual

debugging command within the SMI handler, its operation

remains transparent to the target application and underlying

operating system.
As shown in Figure 1, the debugging client first sends an

SMI triggering message to the debugging server; we reroute

a serial interrupt to generate an SMI when the message is

received. Secondly, once the debugging server enters SMM,

the debugging client starts to send debugging commands to

the SMI handler on the server. Thirdly, the SMI handler trans-

parently executes the requested commands (e.g., list registers

and set breakpoints) and sends a response message back to the

client.
The SMI handler on the debugging server inspects the

debugged application at runtime. If the debugged application

hits a breakpoint, the SMI handler sends a breakpoint hit mes-

sage to the debugging client and stays in SMM until further

debugging commands are received. Once SMM has control

of the system, we configure the next SMI via performance

counters on the CPU. Next, we will detail each component of

the MALT system.

A. Debugging Client
The client can ideally implement a variety of popular

debugging options. For example, we could use the SMI handler

5858

Debugging Client

GDB-like

Debugger

Debugging Server

SMI

handler

Debugged

application

1) Trigger SMI

2) Debug command

3) Response message

Inspect
applicationBreakpoint

Fig. 1. Architecture of MALT

to implement the GDB protocol so that it would properly inter-

face with a regular GDB client. Similarly, we might implement

the necessary plugin for IDAPro to correctly interact with

our system. Section X discusses the prospect of combining

MALT with GDB and IDAPro. However, this would require

implementing a complex protocol within the SMI handler,

which we leave for our future work. Instead, we implement

a custom protocol with which to communicate between the

debugging client and the SMI handler. MALT implements a

small GDB-like client to simplify our implementation.

B. Debugging Server

The debugging server consists of two parts — the SMI

handler and the debugging target application. The SMI handler

implements the critical debugging features (e.g., breakpoints

and state reports), thus restricting the execution of debugging

code to System Management Mode (SMM). The debugging

target executes in Protected Mode as usual. Since the CPU

state is saved within SMRAM when switching to SMM,

we can reconstruct useful information and perform typical

debugging operations each time an SMI is triggered.

SMRAM contains architectural state information of the

thread that was running when the SMI was triggered. Since the

SMIs are produced regardless of the running thread, SMRAM

often contains a state unrelated to the debugging target. In

order to find the relevant state information, we must solve the

well-known semantic gap problem. By bridging the semantic

gap within the SMI handler, we can ascertain the state of

the thread executing in Protected Mode. This is similar to

Virtual Machine Introspection (VMI) systems [47]. We need to

continue our analysis in the SMI handler only if the SMRAM

state belongs to a thread we are interested in debugging.

Otherwise, we can exit the SMI handler immediately. Note

that MALT does not require Protected Mode; SMM can be

initialized from other x86 modes (e.g., Real Mode), but the

semantics of the code would be different.

C. Communication

In order to implement remote debugging in our system, we

define a simple communication protocol used by the client

and server hosts. Table III shows the communication protocol

commands. These commands are derived from basic GDB

stubs, which are intended for debugging embedded software.

The commands cover the basic debugging operations upon

which the client can expand. The small number of commands

greatly simplifies the process of communication within the

SMI handler.

VI. DESIGN AND IMPLEMENTATION

The MALT system is composed of two main parts: (1) the

debugging client used by the malware analyst and (2) the

debugging server, which contains the SMI handler code and

the target debugging application. In this section, we describe

how these two parts are implemented and used.

A. Debugging Client

The client machine consists of a simple command line

application. A user can direct the debugger to perform useful

tasks, such as setting breakpoints. For example, the user

writes simple commands such as b 0xdeadbeef to set a

breakpoint at address 0xdeadbeef. The specific commands

are described in Table III. We did not implement features

such as symbols; such advanced features pose an engineering

challenge that we will address in our future work. The client

machine uses serial messages to communicate with the server.

B. Debugging Server

The target machine consists of a computer with a custom

Coreboot-based BIOS. We changed the SMI handler in the

Coreboot code to implement a simple debugging server. This

custom SMI handler is responsible for all typical debugging

functions found in other debuggers such as GDB. We im-

plemented remote debugging functions via the serial protocol

to achieve common debugging functions such as breakpoints,

step-by-step execution, and state inspection and mutation.

C. Semantic Gap Reconstruction

As with VMI systems [48], SMM-based systems encounter

the well-known semantic gap problem. In brief, SMM cannot

understand the semantics of raw memory. The CPU state saved

by SMM only belongs to the thread that was running when the

SMI was triggered. If we use step-by-step execution, there is

a chance that another application is executing when the SMI

occurs. Thus, we must be able to identify the target application

so that we do not interfere with the execution of unrelated

applications. This requires reconstructing OS semantics. Note

that MALT has the same assumptions as traditional VMI

systems [47].

In Windows, we start with the Kernel Processor Control

Region (KPCR) structure associated with the CPU, which has a

static linear address, 0xffdff000. At offset 0x34 of KPCR, there

is a pointer to another structure called KdVersionBlock,

which contains a pointer to PsActiveProcessHead. The

PsActiveProcessHead serves as the head of a doubly

and circularly linked list of Executive Process (EProcess)

structures. The EProcess structure is a process descriptor

containing critical information for bridging the semantic gap

in Windows NT kernels. Figure 2 illustrates this procedure.

In particular, the Executive Process contains the value of the

CR3 register associated with the process. The value of the CR3

register contains the physical address of the base of the page

5959

TABLE III
COMMUNICATION PROTOCOL COMMANDS

Message format Description

R A single byte, R is sent to request that all
registers be read. This includes all the x86 reg-
isters. The order in which they are transmitted
corresponds with the Windows trap frame. The
response is a byte, r, followed by the registers
r1r2r3r4...rn.

mAAAALLLL The byte m is sent to request a particular
memory address for a given length. The ad-
dress, A, is a 32-bit little-endian virtual address
indicating the address to be read. The value L
represents the number of bytes to be read.

Wr1r2r3...rn The byte W is sent to request that the SMI
handler write all of the registers. Each value
ri contains the value of a particular register.
The response byte, + is sent to indicate that it
has finished.

SAAAALLLLV... The command, S, is sent when the debugger
wants to write a particular address. A is the
32-bit, little-endian virtual address to write, L
represents the length of the data to be written,
and V is the memory to be written, byte-by-
byte. The response is a byte, +, indicating that
the operation has finished, or a - if it fails.

BAAAA The B command indicates a new breakpoint
at the 32-bit little-endian virtual address A.
The response is + if successful, or - if it
fails (e.g., trying to break at an already-broken
address). If the SMI handler is triggered by a
breakpoint (e.g., the program is in breakpoint
debugging status), it will send a status packet
with the single character, B, to indicate that the
program has reached a breakpoint and is ready
for further debugging. The SMI handler will
wait for commands from the client until the
Continue command is received, whereupon it
will exit from SMM.

C The C command continues execution after a
breakpoint. The SMI handler will send a packet
with single character, +.

X The X command clears all breakpoints and
indicates the start of a new debugging session.

KAAAA The K command removes the specified break-
point if it was set previously. The 4-byte value
A specifies the virtual address of the requested
breakpoint. It responds with a single + byte if
the breakpoint is removed successfully. If the
breakpoint does not exist, it responds with a
single -.

SI, SB, SF, SN The SI command indicates stepping the sys-
tem instruction by instruction. The SB com-
mand indicates stepping the system by taken
branches. The SF command indicates stepping
the system by control transfers including far
call/jmp/ret. The SN command indicates step-
ping the system by near return instructions. The
SMI handler replies with single character, +.

Static VA of KPCR

0xffdff000 KPCR KdVersionBlock
+34h

PsActiveProcessHead

prev

next
+78h

Executive Process
e.g., “System”

CR3

prev

next

Executive Process
e.g., “explorer.exe”

CR3

prev

next

Executive Process
e.g., “malware.exe”

CR3

prev

next

Other

Executive

Processes

Fig. 2. Finding a Target Application in Windows

table of that process. We use the name field in the EProcess
or task_struct to identify the CR3 value of the target

application when it executes first instruction. Since malware

may change the name field, we only compare the saved CR3

with the current CR3 to identify the target process for further

debugging. Alternatively, we can compare the EIP value with

the target application’s entry point. This method is simpler but

less reliable since multiple applications may have the same

entry point. Filling the semantic gap in Linux is a similar

procedure, but there are fewer structures and thus fewer steps.

Previous works [38], [49] describe the method, which MALT

uses to debug applications on the Linux platform. Note that

malware with ring 0 privilege can manipulate the kernel data

structures to confuse the reconstruction process, and current

semantic gap solutions suffer from this limitation [47]. As with

VMI systems, MALT does not consider the attacks that mutate

kernel structures.

D. Triggering an SMI

The system depends upon reliable assertions of System

Management Interrupts (SMIs). Because the debugging code

is placed in the SMI handler, it will not work unless the CPU

can stealthily enter SMM.

In general, we can assert an SMI via software or hardware.

The software method writes to an Advanced Configuration and

Power Interface (ACPI) port to trigger an SMI, and we can

use this method to implement software breakpoints. We can

place an out instruction in the malware code so that when

the malware’s control flow reaches that point, SMM begins

execution, and the malware can be analyzed. The assembly

instructions are:

mov $0x52f, %dx;
out %ax, (%dx);
The first instruction moves the SMI software interrupt port

number (0x2b on Intel, and 0x52f in our chipset [50]) into

the dx register, and the second instruction writes the contents

stored in ax to that SMI software interrupt port. (The value

stored in ax is inconsequential). In total, these two instructions

take six bytes: 66 BA 2F 05 66 EE. While this method

is straightforward, it is similar to traditional debuggers using

INT3 instructions to insert arbitrary breakpoints. The alter-

6060

native methods described below are harder to detect by self-

checking malware.

In MALT, we use two hardware-based methods to trigger

SMIs. The first uses a serial port to trigger an SMI to start

a debugging session. In order for the debugging client to

interact with the debugging server and start a session, we

reroute a serial interrupt to generate an SMI by configuring

the redirection table in I/O Advanced Programmable Interrupt

Controller (APIC). We use serial port COM1 on the debugging

server, and its Interrupt Request (IRQ) number is 4. We

configure the redirection table entry of IRQ 4 at offset 0x18
in I/O APIC and change the Delivery Mode (DM) to be SMI.

Therefore, an SMI is generated when a serial message arrives.

The debugging client sends a triggering message, causing the

target machine to enter SMM. Once in SMM, the debugging

client sends further debugging commands to which the target

responds. In MALT, we use this method to trigger the first SMI

and start a debugging session on the debugging server. The

time of triggering the first SMI is right before each debugging

session after reboot, because MALT assumes that the first

instruction of malware can compromise the system.

The second hardware-based method uses performance coun-

ters to trigger an SMI. This method leverages two archi-

tectural components of the CPU: performance monitoring

counters and Local Advanced Programmable Interrupt Con-

troller (LAPIC) [51]. First, we configure the Performance

Counter Event Selection (PerfEvtSel0) register to select the

counting event. There is an array of events from which to

select; we use different events to implement various debugging

functionalities. For example, we use the Retired Instructions

Event (C0h) to single-step the whole system. Next, we set the

corresponding performance counter (PerfCtr0) register to the

maximum value. In this case, if the selected event happens,

it overflows the performance counter. Lastly, we configure the

Local Vector Table Entry (LVTE) in LAPIC to deliver SMIs

when an overflow occurs. Similar methods [37], [52] are used

to switch from a guest VM to the hypervisor VMX root mode.

E. Breakpoints

Breakpoints are generally software- or hardware-based.

Software breakpoints allow for unlimited breakpoints, but they

must modify a program’s code, typically placing a single

interrupt or trap instruction at the breakpoint. Self-checking

malware can easily detect or interfere with such changes. On

the other hand, hardware breakpoints do not modify code, but

there can only be a limited number of hardware breakpoints as

restricted by the CPU hardware. Stealthy breakpoint insertion

is an open problem [26].

In MALT, we emulate the behavior of software breakpoints

simply by modifying the target’s code to trigger SMIs. An SMI

is triggered on our testbed by writing a value to the hardware

port, 0x52f. In total, this takes six bytes. We thus save six

bytes from the requested breakpoint address and replace them

with the SMI triggering code. Thus, when execution reaches

this point, the CPU enters SMM. We store the breakpoint

in SMRAM, represented as 4 bytes for the address, 6 bytes

for the original instruction, and one byte for a validity flag.

Thus, each breakpoint occupies 11 bytes in SMRAM. When

the application’s control reaches the breakpoint, it generates

an SMI. In the SMI handler, we write the saved binary code

back to the application text and revert the Extended Instruction

Pointer (EIP) register so that it will resume execution at that

same instruction. Then, we wait in the SMI handler until

the client sends a continue command. In order to remove an

inserted breakpoint, the client can send a remove-breakpoint

command and the SMI handler will disable that breakpoint by

setting the enable flag to 0. However, this software breakpoint

solution still makes changes to the application memory, which

is visible to malware. Thus, MALT does not use software

breakpoints.

1) Breakpoints in MALT: We implement a new hardware

breakpoint technique in MALT. It relies on performance

counters to generate SMIs. Essentially, we compare the EIP of

the currently executing instruction with the stored breakpoint

address during each cycle. We use 4 bytes to store the

breakpoint address and 1 byte for a validity flag. In contrast

to the software breakpoint method described above, we do

not need to store instructions because we do not change

any application memory. Thus, we need only 5 bytes to

store such hardware breakpoints. For each Protected Mode

instruction, the SMI handler takes the following steps: (1)

Check if the target application is the running thread when the

SMI is triggered; (2) check if the current EIP equals a stored

breakpoint address; (3) start to count retired instructions in the

performance counter, and set the corresponding performance

counter to the maximum value; (4) configure LAPIC so that

the performance counter overflow generates an SMI.

Breakpoint addresses are stored in SMRAM, and thus the

number of active breakpoints we can have is limited by the

size of SMRAM. In our system, we reserve a 512-byte region

from SMM BASE+0xFC00 to SMM BASE+0xFE00. Since

each hardware breakpoint takes 5 bytes, we can store a total

102 breakpoints in this region. If necessary, we can expand

the total region of SMRAM by taking advantage of a region

called TSeg, which is configurable via the SMM MASK

register [51]. In contrast to the limited number of hardware

breakpoints on the x86 platform, MALT is capable of storing

more breakpoints in a more transparent manner.

F. Step-by-Step Execution Debugging

As discussed above, we break the execution of a program

by using different performance counters. For instance, by

monitoring the Retired Instruction event, we can achieve

instruction-level stepping in the system. Table IV summarizes

the performance counters we used in our prototype. First, we

assign the event to the PerfEvtSel0 register to indicate that the

event of interest will be monitored. Next, we set the value of

the counter to the maximum value (i.e., a 48-bit register is

assigned 248 − 2). Thus, the next event to increase the value

will cause an overflow, triggering an SMI. Note that the -2

term is used because the Retired Instruction event also counts

interrupts. In our case, the SMI itself will cause the counter to

6161

TABLE IV
STEPPING METHODS IN MALT

Performance Counter Events Description [51]
Retired instructions Counts retired instructions, plus exceptions and interrupts (each count as one instruction)
Retired taken branches Includes all types of architectural control flow changes, including exceptions and interrupts
Retired far control transfers Includes far calls/jumps/returns, IRET, SYSCALL and SYSRET, exceptions and interrupts
Retired near returns Counts near return instructions (RET or RET Iw) retired

increase as well, so we account for that change accordingly.

The system becomes deadlocked if the value is not chosen

correctly.

Vogl and Eckert [52] also proposed the use of performance

counters for instruction-level monitoring. It delivers a Non-

Maskable Interrupt (NMI) to force a VM Exit when a perfor-

mance counter overflows. However, the work is implemented

on a hypervisor. MALT leverages SMM and does not employ

any virtualization, which provides a more transparent execu-

tion environment. In addition, their work [52] incurs a time gap

between the occurrence of a performance event and the NMI

delivery, while MALT does not encounter this problem. Note

that the SMI has priority over an NMI and a maskable interrupt

as well. Among these four stepping methods, instruction-by-

instruction stepping achieves fine-grained tracing, but at the

cost of a significant performance overhead. Using the Retired

Near Returns event causes low system overhead, but it only

provides coarse-gained debugging.

VII. TRANSPARENCY ANALYSIS

In terms of transparency, it heavily depends on its subjects.

In this paper, we consider the transparency of four subjects.

They are (1) virtualization, (2) emulation, (3) SMM, and (4)

debuggers. Next, we discuss the transparency of these subjects

one by one.

Virtualization: The transparency of virtualization is dif-

ficult to achieve. For instance, Red Pill [28] uses an un-

privileged instruction SIDT to read the interrupt descriptor

(IDT) register to determine the presence of a virtual machine.

To work on multi-processor system, Red Pill needs to use

SetThreadAffinityMask() Windows API call to limit

thread execution to one processor [13]. nEther [29] detects

hardware virtualization using CPU design defects. Further-

more, there are many footprints introduced by virtualiza-

tion such as well-known strings in memory [10], magic I/O

ports [17], and invalid instruction behaviors [14]. Moreover,

Garfinkel et al. [16] argued that building a transparent virtual

machine is impractical.

Emulation: Researchers have used emulation to debug

malware. QEMU simulates all the hardware devices including

CPU, and malware runs on top of the emulated software.

Because of the emulated environment, malware can detect it.

For example, accessing a reserved or unimplemented MSR

register causes a general protection exception, while QEMU

does not raise an exception [15]. Table V shows more anti-

emulation techniques. Although some of these defects could

be fixed, determining perfect emulation is an undecidable

problem [4].

SMM: As explained in Section II, SMM is a hardware fea-

ture existing in all x86 machines. Regarding its transparency,

the Intel manual [24] specifies the following mechanisms

that make SMM transparent to the application programs and

operating systems: (1) the only way to enter SMM is by

means of an SMI; (2) the processor executes SMM code

in a separate address space (SMRAM) that is inaccessible

from the other operating modes; (3) upon entering SMM, the

processor saves the context of the interrupted program or task;

(4) all interrupts normally handled by the operating system are

disabled upon entry into SMM; and (5) the RSM instruction can

be executed only in SMM. Note that SMM steals CPU time

from the running program, which is a side effect of SMM. For

instance, malware can detect SMM based on the time delay.

Even so, SMM is still more transparent than virtualization and

emulation.

Debuggers: An array of debuggers have been proposed

for transparent debugging. These include in-guest [19], [26],

emulation-based [8], [27], and virtualization-based [4], [5]

approaches. MALT is an SMM-based system. As to the

transparency, we only consider the artifacts introduced by de-

buggers themselves, not the environments (e.g., hypervisor or

SMM). Ether [4] proposes five formal requirements for achiev-

ing transparency, including (1) high privilege, (2) no non-

privileged side effects, (3) identical basic instruction execution

semantics, (4) transparent exception handling, and (5) identical

measurement of time. MALT satisfies the first requirement by

running the analysis code in SMM with ring -2. We enumerate

all the side effects introduced by MALT in Section VII-A and

attempt to meet the second requirement in our system. Since

MALT runs on bare metal, it immediately meets the third and

fourth requirements. Lastly, MALT partially satisfies the fifth

requirement by adjusting the local timers in the SMI handler.

We further discuss the timing attacks below.

A. Side Effects Introduced by MALT

MALT aims to transparently analyze malware with mini-

mum footprints. Here we enumerate the side effects introduced

by MALT and show how we mitigate them. Note that achiev-

ing the highest level of transparency requires MALT to run in

single-stepping mode.

CPU: We implement MALT in SMM, another CPU mode in

the x86 architecture, which provides an isolated environment

for executing code. After recognizing the SMI assertion, the

processor saves almost the entirety of its state to SMRAM. As

previously discussed, we rely on the performance monitoring

registers and LAPIC to generate SMIs. Although these regis-

ters are inaccessible from user-level malware, attackers with

6262

ring 0 privilege can read and modify them. LAPIC registers in

the CPU are memory-mapped, and its base address is normally

at 0xFEE00000. In MALT, we relocate LAPIC registers

to another physical address by modifying the value in the

24-bit base address field of the IA32 APIC BASE Model

Specific Register (MSR) [24]. To find the LAPIC registers,

attackers need to read IA32 APIC BASE MSR first that

we can intercept. Performance monitoring registers are also

MSRs. RDMSR, RDPMC, and WRMSR are the only instructions

that can access the performance counters [51] or MSRs. To

mitigate the footprints of these MSRs, we run MALT in the

instruction-by-instruction mode and adjust the return values

seen by these instructions before resuming Protected Mode.

If we find a WRMSR to modify the performance counters, the

debugger client will be notified.

Memory and Cache: MALT uses an isolated memory re-

gion (SMRAM) from normal memory in Protected Mode. Any

access to this memory in other CPU modes will be redirected

to VGA memory. Note that this memory redirection occurs

in all x86 machines, even without MALT; this is not unique

to our system. Intel recently introduced System Management

Range Registers (SMRR) [24] that limits cache references of

addresses in SMRAM to code running in SMM. This is the

vendor’s response to the cache poisoning attack [53]; MALT

does not flush the cache when entering and exiting SMM to

avoid cache-based side-channel detection.

IO Configurations and BIOS: MALT reroutes a serial

interrupt to generate an SMI to initialize a debugging session,

and the modified redirection table entry in I/O APIC can

be read by malware with ring 0 privilege. We change the

redirection table entry back to its original value to remove this

footprint in the first generated SMI handler. Once SMM has

control of the system, the SMIs are triggered by configuring

performance counters. MALT uses a custom BIOS, Coreboot,

to program the SMM code. An attacker with ring 0 privilege

can check the hash value of the BIOS to detect the presence

of our system. To avoid this fingerprint, we flash the BIOS

with the original image before the debugging process using

the tool Flashrom [54], and it takes about 28 seconds to flash

the Coreboot with the original AMI BIOS. At that time, the

SMI handler, including the MALT code, has been loaded into

SMRAM and locked. Note that we also need to reflash the

Coreboot image for the next system restart.

Timing: There are many timers and counters on the moth-

erboard and chipsets, such as the Real Time Clock (RTC),

the Programmable Interval Timer (8253/8254 chip), the High

Precision Event Timer (HPET), the ACPI Power Management

Timer, the APIC Timer, and the Time Stamp Counter (TSC).

Malware can read a timer and calculate its running time. If

the time exceeds a certain threshold, malware can conclude

that a debugger is present. For the configurable timers, we

record their values after switching into SMM. When SMM

exits, we set the values back using the recorded values minus

the SMM switching time. Thus, malware is unaware of the

time spent in the SMI handler. However, some of the timers

and counters cannot be changed, even in SMM. To address

this problem, we adjust the return values of these timers in

the instruction-level stepping mode. For example, the RDTSC
instruction reads the TSC register and writes the value to the

EAX and EDX registers. While debugging, we can check if the

current instruction is RDTSC and adjust the values of EAX and

EDX before leaving the SMI handler.

Unfortunately, MALT cannot defend against timing attacks

involving an external timer. For instance, malware can send a

packet to a remote server to get correct timing information

(e.g., NTP service). In this case, malware can detect the

presence of our system and alter its behavior accordingly. One

potential solution to address this problem is to intercept the

instruction that reaches out for timing information and prepare

a fake time for the OS. Naturally, this would not be foolproof

as an attacker could retrieve an encrypted time from a remote

location. Such attacks are difficult to contend with because

we cannot always know when a particular packet contains

timing information. To the best of our knowledge, all existing

debugging systems with any measurable performance slow-

down suffer from this attack. As stated in Ether [4], defending

against external timing attacks for malware analysis systems is

Turing undecidable. However, external timing attacks require

network communications and thus dramatically increase the

probability that the malware will be flagged. We believe that

malware will avoid using external timing attacks precisely

because it wants to minimize its footprint on the victim’s

computer, including using spin loops. We can also analyze

portions of the malware separately and amortize the analysis

time.

B. Analysis of Anti-debugging, -VM, and -emulation Tech-
niques

To analyze the transparency of MALT system, we employ

anti-debugging, anti-virtualization and anti-emulation tech-

niques from [10], [12], [13], [14], [15] to verify our sys-

tem. Since MALT runs on a bare-metal machine, these anti-

virtualization techniques will no longer work on it. Addi-

tionally, MALT does not change any code or the running

environments of operating systems and applications so that

normal anti-debugging techniques cannot work against it. For

example, the debug flag in the PEB structure on Windows

will not be set while MALT is running. Table V summarizes

popular anti-debugging, anti-virtualization, and anti-emulation

techniques, and we have verified that MALT can evade all

these detection techniques.

C. Testing with Packers

Packing is used to obfuscate the binary code of a program.

It is typically used to protect the executable from reverse-

engineering. Nowadays, malware writers also use packing

tools to obfuscate their malware. Packed malware is more

difficult for security researchers to reverse-engineer the binary

code. In addition, many packers contain anti-debugging and

anti-VM features, further increasing the challenge of reverse-

engineering packed malware.

6363

TABLE V
SUMMARY OF ANTI-DEBUGGING, ANTI-VM, AND ANTI-EMULATION TECHNIQUES

Anti-debugging [11], [12]
API Call Kernel32!IsDebuggerPresent returns 1 if a target process is being debugged

ntdll!NtQueryInformationProcess: ProcessInformation field set to -1 if the process is being debugged
kernel32!CheckRemoteDebuggerPresent returns 1 in debugger process
NtSetInformationThread with ThreadInformationClass set to 0x11 will detach some debuggers
kernel32!DebugActiveProcess to prevent other debuggers from attaching to a process

PEB Field PEB!IsDebugged is set by the system when a process is debugged
PEB!NtGlobalFlags is set if the process was created by a debugger

Detection ForceFlag field in heap header (+0x10) can be used to detect some debuggers
UnhandledExceptionFilter calls a user-defined filter function, but terminates in a debugging process
TEB of a debugged process contains a NULL pointer if no debugger is attached; valid pointer if some
debuggers are attached
Ctrl-C raises an exception in a debugged process, but the signal handler is called without debugging
Inserting a Rogue INT3 opcode can masquerade as breakpoints
Trap flag register manipulation to thwart tracers
If entryPoint RVA is set to 0, the magic MZ value in PE files is erased
ZwClose system call with invalid parameters can raise an exception in an attached debugger
Direct context modification to confuse a debugger
0x2D interrupt causes debugged program to stop raising exceptions
Some In-circuit Emulators (ICEs) can be detected by observing the behavior of the undocumented 0xF1
instruction
Searching for 0xCC instructions in program memory to detect software breakpoints
TLS-callback to perform checks

Anti-virtualization
VMWare Virtualized device identifiers contain well-known strings [10]

checkvm software [55] can search for VMWare hooks in memory
Well-known locations/strings associated with VMWare tools

Xen Checking the VMX bit by executing CPUID with EAX as 1 [29]
CPU errata: AH4 erratum [29]

Other LDTR register [13]
IDTR register (Red Pill [28])
Magic I/O port (0x5658, ‘VX’) [17]
Invalid instruction behavior [14]
Using memory deduplication to detect various hypervisors including VMware ESX server, Xen, and Linux
KVM [56]

Anti-emulation
Bochs Visible debug port [10]
QEMU cpuid returns less specific information [7]

Accessing reserved MSR registers raises a General Protection (GP) exception in real hardware; QEMU does
not [15]
Attempting to execute an instruction longer than 15 bytes raises a GP exception in real hardware; QEMU
does not [15]
Undocumented icebp instruction hangs in QEMU [7], while real hardware raises an exception
Unaligned memory references raise exceptions in real hardware; unsupported by QEMU [15]
Bit 3 of FPU Control World register is always 1 in real hardware, while QEMU contains a 0 [7]

Other Using CPU bugs or errata to create CPU fingerprints via public chipset documentation [15]

TABLE VI
RUNNING PACKED NOTEPAD.EXE UNDER DIFFERENT ENVIRONMENTS

Packing Tool MALT OllyDbg V1.10 DynamoRIO V4.2.0-3 VMware Fusion V6.0.2
UPX V3.08 OK OK OK OK
Obsidium V1.4 OK Access violation at 0x00000000 Segmentation fault OK
ASPack V2.29 OK OK OK OK
Armadillo V2.01 OK Access violation at 0x42434847 Crash Crash
Themida V2.2.3.0 OK Privileged instruction exception Exception at 0x10a65d7 Message: cannot run under a VM
RLPack V1.21 OK OK OK OK
PELock V1.0694 OK Display message and terminate Segmentation fault OK
VMProtect V2.13.5 OK Message: a debugger was found OK Crash
eXPressor V1.8.0.1 OK Message: unknown executable format Segmentation fault Crash
PECompact V3.02.2 OK Access violation at 0x00000000 OK OK

6464

To demonstrate the transparency of MALT, we use pop-

ular packing tools to pack the Notepad.exe application

in a Windows environment and run this packed application

in MALT with near return stepping mode, OllyDbg [31],

DynamoRIO [57], and a Windows virtual machine, respec-

tively. Ten packing tools are used, including UPX, Obsidium,

ASPack, Armadillo, Themida, RLPack, PELock, VMProtect,

eXPressor, and PECompact. All these packing tools enable

the settings for anti-debugging and anti-VM functions if they

have them. After running the packed Notepad.exe, if the

Notepad window appears, we know that it has launched suc-

cessfully. Table VI lists the results. All the packing tools except

UPX, ASPack, and RLPack can detect OllyDbg. Obsidium,

Armadillo, Themida, PELock, and eXPressor are able to detect

DynamoRIO, and the VM can be detected by Armadillo,

Themida, VMProtect, and eXpressor. In contrast, MALT re-

mains transparent to all these packing tools as we expected.

D. Transparency of MALT

Functions and Code Added by MALT: Section VII-B

and VII-C show that existing anti-debugging, anti-VM, anti-

emulation, and packing techniques cannot detect the presence

of MALT. This is because the current techniques are not

targeting MALT’s functions or code, so it is possible that

future malware could detect MALT due to the ever-present

cat-and-mouse game between attackers and defenders. As

for ‘tomorrow’s malware,’ we enumerate and mitigate the

side effects introduced by MALT in Section VII-A. Note

that mitigating all footprints requires stepping instructions

granularity. As with other debugging systems, MALT cannot

defend against external timing attacks.

Running Environment Used by MALT: MALT is built

on SMM so that the transparency of MALT depends on the

implications of SMM usage. Since SMM is not intended for

debugging, the hardware and software on the system may not

expect this usage, which may introduce side-channel footprints

for attackers to detect MALT (e.g., performance slowdown and

frequent switching). However, we believe using SMM is more

transparent than using virtualization or emulation as done in

previous systems due to its minimal TCB and attack surface.

Towards True Transparency: Debugging transparency is

a challenging and recently active problem in the security

community. Unlike previous solutions that use virtualization

or emulation, MALT isolates the execution in the CPU, which

provides a novel idea of addressing the transparency problem.

Although MALT is not fully transparent, we would like to

draw the attention of the community to this hardware-based

approach because the running environment of the debugger

is more transparent than those of previous systems (i.e.,

virtualization and emulation). Moreover, we further argue

hardware support for truly transparent debugging. For instance,

there could be a dedicated and well-designed CPU mode for

debugging, perhaps with performance counters that are inac-

cessible from other CPU modes, which provides a transparent

switching method between CPU modes.

VIII. EVALUATION

A. Testbed Specification and Code Size

We evaluate MALT on two physical machines. The target

server used an ASUS M2V-MX SE motherboard with an

AMD K8 northbridge and a VIA VT8237r southbridge. It has

a 2.2 GHz AMD LE-1250 CPU and 2GB Kingston DDR2

RAM. The target machine uses Windows XP SP3, CentOS 5.5

with kernel 2.6.24, and Xen 3.1.2 with CentOS 5.5 as domain

0. To simplify the installation, they are installed on three

separate hard disks, and the SeaBIOS manages the booting.

The debugging client is a Dell Inspiron 15R laptop with

Ubuntu 12.04 LTS. It uses a 2.4GHz Intel Core i5-2430M

CPU and 6 GB DDR3 RAM. We use a USB-to-serial cable

to connect two machines.

We use cloc [58] to compute the number of lines of source

code. Coreboot and its SeaBIOS payload contain 248,421

lines. MALT adds about 1,500 lines of C code in the SMI

hander. After compiling the Coreboot code, the size of the

image is 1MB, and the SMI hander contains 3,098 bytes. The

debugger client contains 494 lines of C code.

B. Debugging with Kernels and Hypervisors

To demonstrate that MALT is capable of debugging kernels

and hypervsiors, we intentionally crash the OS kernels and do-

main 0 of a Xen hypervisor and then use MALT to debug them.

For the Linux kernel and domain 0 of the Xen hypervisor, we

simply run the command echo c > /proc/sysrq-trigger, which

performs a system crash by a NULL pointer dereference.

To force a Blue Screen of Death (BSOD) in Windows, we

create a new value named CrashOnCtrlScroll in the registry

key HKEY LOCAL MACHINE\System\CurrentControlSet
\Services\i8042prt\Parameters and set it equal to a

REG DWORD value of 0x01. Then, the BSOD can be

initiated by holding the Ctrl key and pressing the Scroll

Lock key twice. After a system crashes, MALT can start a

debugging session by sending an SMI triggering message.

In our experiments, MALT is able to examine all the CPU

registers and the physical memory of the crashed systems.

C. Breakdown of Operations in MalT

In order to understand the performance of our debugging

system, we measure the time elapsed during particular oper-

ations in the SMI handler. We use the Time Stamp Counter

(TSC) to measure the number of CPU cycles elapsed during

each operation; we multiplied the clock frequency by the delta

in TSCs.

After a performance counter triggers an SMI, the system

hardware automatically saves the current architectural state

into SMRAM and begins executing the SMI handler. The first

operation in the SMI handler is to identify the last running

process in the CPU. If the last running process is not the target

malware, we only need to configure the performance counter

register for the next SMI and exit from SMM. Otherwise, we

perform several checks. First, we check for newly received

messages and whether a breakpoint has been reached. If there

are no new commands and no breakpoints to evaluate, we

6565

TABLE VII
BREAKDOWN OF SMI HANDLER (TIME: μs)

Operations Mean STD 95% CI
SMM switching 3.29 0.08 [3.27,3.32]
Command and BP checking 2.19 0.09 [2.15,2.22]
Next SMI configuration 1.66 0.06 [1.64,1.69]
SMM resume 4.58 0.10 [4.55,4.61]
Total 11.72

reconfigure the performance counter registers for the next

SMI. Table VII shows a breakdown of the operations in

the SMI handler if the last running process is the target

malware in the instruction-by-instruction stepping mode. This

experiment shows the mean, standard deviation, and 95%

confidence interval of 25 runs. The SMM switching time takes

about 3.29 microseconds. Command checking and breakpoint

checking take about 2.19 microseconds in total. Configuring

performance monitoring registers and SMI status registers for

subsequent SMI generation takes about 1.66 microseconds.

Lastly, SMM resume takes 4.58 microseconds. Thus, MALT

takes about 12 microseconds to execute an instruction without

debugging command communication.

D. Step-by-Step Debugging Overhead

In order to demonstrate the efficiency of our system,

we measure the performance overhead of the four stepping

methods on both Windows and Linux platforms. We use a

popular benchmark program, SuperPI [59] version 1.8, on

Windows and version 2.0 on Linux. SuperPI is a single-

threaded benchmark that calculates the value of π to a

specific number of digits and outputs the calculation time.

This tightly written, arithmetic-intensive benchmark is suitable

for evaluating CPU performance. Additionally, we use four

popular Linux commands, ls, ps, pwd, and tar, to measure

the overhead. ls is executed with the root directory; pwd
is executed under the home directory; and tar is used to

compress a hello-world program with 7 lines of C code. We

install Cygwin on Windows to execute these commands. First,

we run the programs and record their runtimes. Next we enable

each of the four stepping methods separately and record the

runtimes. SuperPI calculates 16K digits of π, and we use shell

scripts to calculate the runtimes of the Linux commands.

Table VIII shows the performance slowdown introduced by

the step-by-step debugging. The first column specifies four

different stepping methods; the following five columns show

the slowdown on Windows, which is calculated by dividing

the current running time by the base running time; and the

last five columns show the slowdown on Linux. It is evident

that far control transfer (e.g., call instruction) stepping only

introduces a 2x slowdown on Windows and Linux, which

facilitates coarse-grained tracing for malware debugging. As

expected, fine-grained stepping methods introduce more over-

head. The instruction-by-instruction debugging causes about

973x slowdown on Windows for running SuperPI, which

demonstrates the worst-case performance degradation in our

four debugging methods. This high runtime overhead is due

to the 12-microsecond cost of every instruction (as shown

in Table VII) in the instruction-stepping mode. One way

to improve the performance is to reduce the time used for

SMM switching and resume operations by cooperating with

hardware vendors. Note that MALT is three times as fast as

Ether [4], [7] in the single-stepping mode.

Despite a three order-of-magnitude slowdown on Windows,

the debugging target machine is still usable and responsive

to user interaction. In particular, the instruction-by-instruction

debugging is intended for use by a human operator from

the client machine, and we argue that the user would not

notice this overhead while entering the debugging commands

(e.g., Read Register) on the client machine. We believe

that achieving high transparency at the cost of performance

degradation is necessary for certain types of malware analysis.

Note that the overhead in Windows is larger than that in

Linux. This is because (1) the semantic gap problem is solved

differently in each platform, and (2) the implementations of

the benchmark programs are different.

IX. DISCUSSION AND LIMITATIONS

Restoring a system to a clean state after each debugging

session is critical to the safety of malware analysis on bare

metal. In general, there are two approaches to restore a system:

reboot and bootless. The rebooting approach only needs to

reimage the non-volatile devices (e.g., hard disk or BIOS),

but it is slow. The bootless approach must manually reinitialize

the system state, including memory and disks, but takes less

time. BareBox [17] used a rebootless approach to restore the

memory and disk of the analysis machine; BareCloud [30]

used LVM-based copy-on-write to restore a remote storage

disk. For the rebootless approach, besides memory and disk

restoration, hardware devices also need to be restored. Modern

I/O devices now have their own processors and memory (e.g.,

GPU and NIC); quickly and efficiently reinitializing these

hardware devices is a challenging problem. MALT simply

reboots the analysis machine and reimages the disk and BIOS

by copying and reflashing. Additionally, the focus of MALT

is to address the debugging transparency problem, while fast

restoration (i.e., bootless approach) of a system increases the

efficiency of malware analysis. We leave this for future work.

MALT uses SMM as the foundation to implement various

debugging functions. Before 2006, computers did not lock

their SMRAM in the BIOS [42], and researchers used this flaw

to implement SMM-based rootkits [41], [42], [43]. Modern

computers lock the SMRAM in the BIOS so that SMRAM

is inaccessible from any other CPU modes after booting. Wo-

jtczuk and Rutkowska demonstrated bypassing the SMRAM

lock through memory reclaiming [35] or cache poisoning [53].

The memory reclaiming attack can be addressed by locking the

remapping registers and Top of Low Usable DRAM (TOLUD)

register. The cache poisoning attack forces the CPU to execute

instructions from the cache instead of SMRAM by manipu-

lating the Memory Type Range Register (MTRR). Duflot also

independently discovered this architectural vulnerability [60],

but it has been fixed by Intel adding SMRR [24]. Furthermore,

6666

TABLE VIII
STEPPING OVERHEAD ON WINDOWS AND LINUX (UNIT: TIMES OF SLOWDOWN)

Stepping Methods Windows Linux
π ls ps pwd tar π ls ps pwd tar

Retired far control transfers 2 2 2 3 2 2 3 2 2 2
Retired near returns 30 21 22 28 29 26 41 28 10 15
Retired taken branches 565 476 527 384 245 192 595 483 134 159
Retired instructions 973 880 897 859 704 349 699 515 201 232

TABLE IX
SUMMARY OF SMM ATTACKS AND SOLUTIONS

SMM Attacks Solutions
Unlocked SMRAM [41], [42], [43] Set D LCK bit
SMRAM reclaiming [35] Lock remapping and TOLUD registers
Cache poisoning [53], [60] SMRR
Graphics aperture [61] Lock TOLUD
TSEG location [61] Lock TSEG base
Call/fetch outside of SMRAM [61], [63] No call/fetch outside of SMRAM

Duflot et al. [61] listed some design issues of SMM, but

they can be fixed by correct configurations in BIOS and

careful implementation of the SMI handler. Table IX shows

a summary of attacks against SMM and their corresponding

solutions. Wojtczuk and Kallenberg [62] recently presented

an SMM attack by manipulating UEFI boot script that allows

attackers to bypass the SMM lock and modify the SMI handler

with ring 0 privilege. The UEFI boot script is a data structure

interpreted by UEFI firmware during S3 resume. When the

boot script executes, system registers like BIOS NTL (SPI

flash write protection) or TSEG (SMM protection from DMA)

are not set so that attackers can force an S3 sleep to take

control of SMM. Fortunately, as stated in the paper [62], the

BIOS update around the end of 2014 fixed this vulnerability.

In MALT, we assume that SMM is trusted.

Butterworth et al. [64] demonstrated a buffer overflow

vulnerability in the BIOS updating process in SMM, but this

is not an architectural vulnerability and is specific to that

particular BIOS version. (Our SMM code does not contain

that vulnerable code). Since MALT adds 1,500 lines of C

code in the SMI handler, it is possible that our code has

bugs that could be exploited. Fortunately, SMM provides a

strong isolation from other CPU modes (i.e., it has its own

sealed memory). The only inputs from a user are through serial

messages, making it difficult for malicious code to be injected

into our system.

We implement MALT on a single-core processor for com-

patibility with Coreboot, but SMM also works on multi-core

systems [24]. Each core has its own set of MSR registers,

which define the SMRAM region. When an SMI is generated,

all the cores will enter into SMM with their own SMI handler.

One simple way is to let one core execute our debugging code

and spin the other cores until the first has finished. SMM-

based systems such as HyperSentry [37] and SICE [65] are

implemented on multi-core processors. In a multi-code system,

MALT can debug a process by pinning it to a specific core

while allowing the other cores to execute the rest of the system

normally. This will change thread scheduling for the debugged

Remote Debugger (“client”)

GDB

Server

IDAPro

Tool

GDB

Client

Debugging Target (“server”)

SMI

Handler

Debugged

application

Debug command

Response message

SMM PM

Generic Interaface

Fig. 3. Using MALT with Multiple Debugging Clients

process by effectively serializing its threads which may be

detectable by an adversary.

Recently, Intel introduced SMM-Transfer Monitor (STM),

which virtualizes the SMM code [24]. It is also the answer to

attacks against Trust Execution Technology (TXT) [66]. Un-

fortunately, the use of an STM involves blocking SMIs, which

potentially prevents our system from executing. However,

we can modify the STM code in SMRAM, which executes

in SMM, to provide the functionality without affecting our

system.

System Management Mode (SMM) exists in all current x86

devices. There is no indication that Intel will remove SMM

from the x86 architecture. Considering the popularity of SMM

in computing systems, we believe SMM-based research is

still important and valuable. Although SMM is not designed

for debugging, SMM-like capabilities could be leveraged to

aid transparent debugging. In fact, SMM is a mechanism

that essentially provides an isolated computing fabric and the

hardware support for meeting MALT’s needs. We would like

to emphasize this as an architectural principle for debugging.

Our prototype leverages the isolation principles currently

provided by SMM, but this does not mean that the MALT

architecture must use SMM; rather, it is merely a mechanism

that implements the required security policies for MALT. We

would further argue for desirability of architectural support in

aiding debugging transparency.

X. CONCLUSIONS AND FUTURE WORK

In this paper, we developed MALT, a bare-metal debugging

system that employs System Management Mode to trans-

parently analyze armored malware. As a hardware-assisted

debugging system, MALT does not require the level of trust

associated with hypervisors or operating systems. Thus, it is

immune to hypervisor attacks and is capable of analyzing and

debugging hypervisor-based rootkits and OS kernels. It also

introduces minimum artifacts while achieving transparency.

6767

Through extensive experiments, we have demonstrated that

MALT remains transparent in the presence of all tested

packers, anti-debugging, anti-virtualization, and anti-emulation

techniques. Moreover, MALT could work with multiple de-

bugging clients, such as IDAPro and GDB. MALT introduces

moderate but manageable overheads on Windows and Linux,

which range from 2 to 973 times slowdown, depending on the

stepping method.

We plan to combine MALT with the IDAPro or GDB

clients. Our goal is to provide a standard, generic interface for

multiple debugging clients to use MALT. First, we will run

a gdbserver instance along with IDAPro or GDB clients

on the remote client so that these debugging clients can use

standard protocols to connect to the gdbserver. Next, we

will modify the gdbserver to connect to the SMI handler on

the target server by using the protocol defined in Table III. This

approach moves the gdbserver from the target server to the

remote client, and the real GDB stubs will be implemented in

the SMI handler instead of the gdbserver. We will expand

our current protocol to fully support this method, and Figure 3

illustrates this particular usage of MALT.

XI. ACKNOWLEDGEMENTS

We would like to thank our shepherd, Niels Provos, and

the anonymous reviewers for their insightful comments that

improved the paper. This work is supported by the Na-

tional Science Foundation Grant No. CNS 1421747 and II-

NEW 1205453, Defense Advanced Research Projects Agency

Contract FA8650-11-C-7190, and ONR Grant N00014-13-1-

0088. Opinions, findings, conclusions and recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of the US Government or the

Navy.

REFERENCES

[1] McAfee, “Threats Report: First Quarter 2014,” http://www.mcafee.com/
us/resources/reports/rp-quarterly-threat-q1-2014-summary.pdf.

[2] Kaspersky Lab, “Kaspersky Security Bulletin 2013,” http://media.
kaspersky.com/pdf/KSB 2013 EN.pdf.

[3] Symantec, “Internet Security Threat Report, Vol. 19 Main Report,”
http://www.symantec.com/content/en/us/enterprise/other resources/
b-istr main report v19 21291018.en-us.pdf, 2014.

[4] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware Analysis
via Hardware Virtualization Extensions,” in Proceedings of the 15th
ACM Conference on Computer and Communications Security (CCS ’08),
2008.

[5] Z. Deng, X. Zhang, and D. Xu, “SPIDER: Stealthy Binary Program
Instrumentation and Debugging Via Hardware Virtualization,” in Pro-
ceedings of the Annual Computer Security Applications Conference
(ACSAC’13), 2013.

[6] A. Fattori, R. Paleari, L. Martignoni, and M. Monga, “Dynamic and
Transparent Analysis of Commodity Production Systems,” in Proceed-
ings of the IEEE/ACM International Conference on Automated Software
Engineering (ASE’10), 2010.

[7] L.-K. Yan, M. Jayachandra, M. Zhang, and H. Yin, “V2E:
Combining Hardware Virtualization and Software Emulation for
Transparent and Extensible Malware Analysis,” in Proceedings of
the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments (VEE’12), 2012. [Online]. Available: http://doi.acm.org/
10.1145/2151024.2151053

[8] Anubis, “Analyzing Unknown Binaries,” http://anubis.iseclab.org.
[9] N. A. Quynh and K. Suzaki, “Virt-ICE: Next-generation Debugger for

Malware Analysis,” in Black Hat USA, 2010.

[10] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario, “Towards
an Understanding of Anti-Virtualization and Anti-Debugging Behavior
in Modern Malware,” in Proceedings of the 38th Annual IEEE Inter-
national Conference on Dependable Systems and Networks (DSN ’08),
2008.

[11] R. R. Branco, G. N. Barbosa, and P. D. Neto, “Scientific but Not
Academical Overview of Malware Anti-Debugging, Anti-Disassembly
and Anti-VM Technologies,” in Black Hat, 2012.

[12] N. Falliere, “Windows Anti-Debug Reference,” http://www.symantec.
com/connect/articles/windows-anti-debug-reference, 2010.

[13] D. Quist and V. Val Smith, “Detecting the Presence of Virtual Machines
Using the Local Data Table,” http://www.offensivecomputing.net.

[14] E. Bachaalany, “Detect If Your Program is Running inside
a Virtual Machine,” http://www.codeproject.com/Articles/9823/
Detect-if-your-program-is-running-inside-a-Virtual.

[15] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting System Emulators,”
in Information Security. Springer Berlin Heidelberg, 2007.

[16] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin, “Compatibility is
not Transparency: VMM Detection Myths and Realities,” in Proceedings
of the 11th USENIX Workshop on Hot Topics in Operating Systems
(HotOS’07), 2007.

[17] D. Kirat, G. Vigna, and C. Kruegel, “BareBox: Efficient Malware
Analysis on Bare-metal,” in Proceedings of the 27th Annual Computer
Security Applications Conference (ACSAC’11), 2011.

[18] C. Willems, R. Hund, A. Fobian, D. Felsch, T. Holz, and A. Vasude-
van, “Down to the Bare Metal: Using Processor Features for Binary
Analysis,” in Proceedings of the Annual Computer Security Applications
Conference (ACSAC’12), 2012.

[19] IDA Pro, www.hex-rays.com/products/ida/.
[20] K. Kortchinsky, “CLOUDBURST: A VMware Guest to Host Escape

Story,” in Black Hat USA, 2009.
[21] R. Wojtczuk, J. Rutkowska, and A. Tereshkin, “Xen 0wning Trilogy,”

in Black Hat USA, 2008.
[22] S. T. King and P. M. Chen, “SubVirt: Implementing Malware with

Virtual Machines,” in Proceedings of the 27th IEEE Symposium on
Security and Privacy (S&P’06), May 2006.

[23] J. Rutkowska, “Blue Pill,” http://theinvisiblethings.blogspot.com/2006/
06/introducing-blue-pill.html, 2006.

[24] Intel, “64 and IA-32 Architectures Software Developer’s
Manual.” [Online]. Available: http://www.intel.com/content/www/us/
en/processors/architectures-software-developer-manuals.html

[25] Coreboot, “Open-Source BIOS,” http://www.coreboot.org/.
[26] A. Vasudevan and R. Yerraballi, “Stealth Breakpoints,” in Proceedings

of the 21st Annual Computer Security Applications Conference (AC-
SAC’05), 2005.

[27] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: A New
Approach to Computer Security via Binary Analysis,” in Proceedings
of the 4th International Conference on Information Systems Security
(ICISS’08), 2008.

[28] J. Rutkowska, “Red Pill,” http://www.ouah.org/Red Pill.html.
[29] G. Pek, B. Bencsath, and L. Buttyan, “nEther: In-guest Detection of Out-

of-the-guest Malware Analyzers,” in Proceedings of the 4th European
Workshop on System Security (EuroSec’11), 2011.

[30] D. Kirat, G. Vigna, and C. Kruegel, “BareCloud: Bare-metal Analysis-
based Evasive Malware Detection,” in Proceedings of the 23rd USENIX
Security Symposium, 2014.

[31] OllyDbg, www.ollydbg.de.
[32] D. Bruening, Q. Zhao, and S. Amarasinghe, “Transparent Dynamic

Instrumentation,” in Proceedings of the 8th ACM SIGPLAN/SIGOPS
Conference on Virtual Execution Environments (VEE’12), 2012.

[33] Windbg, www.windbg.org.
[34] Ohloh, “Black Duck Software, Inc,” http://www.ohloh.net, access time:

10/16/2014.
[35] J. Rutkowska and R. Wojtczuk, “Preventing and Detecting Xen Hyper-

visor Subversions,” http://www.invisiblethingslab.com/resources/bh08/
part2-full.pdf, 2008.

[36] F. Zhang, J. Wang, K. Sun, and A. Stavrou, “HyperCheck: A Hardware-
assisted Integrity Monitor,” in IEEE Transactions on Dependable and
Secure Computing (TDSC’14), 2014.

[37] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky,
“HyperSentry: Enabling Stealthy In-Context Measurement of Hypervisor
Integrity,” in Proceedings of the 17th ACM Conference on Computer and
Communications Security (CCS’10), 2010.

6868

[38] F. Zhang, K. Leach, K. Sun, and A. Stavrou, “SPECTRE: A De-
pendable Introspection Framework via System Management Mode,” in
Proceedings of the 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’13), 2013.

[39] J. Wang, F. Zhang, K. Sun, and A. Stavrou, “Firmware-assisted Memory
Acquisition and Analysis Tools for Digital Forensic,” in Proceedings of
the 6th International Workshop on Systematic Approaches to Digital
Forensic Engineering (SADFE ’11), 2011.

[40] A. Reina, A. Fattori, F. Pagani, L. Cavallaro, and D. Bruschi, “When
Hardware Meets Software: A Bulletproof Solution to Forensic Memory
Acquisition,” in Proceedings of the Annual Computer Security Applica-
tions Conference (ACSAC’12), 2012.

[41] L. Duflot, D. Etiemble, and O. Grumelard, “Using CPU System Man-
agement Mode to Circumvent Operating System Security Functions,” in
Proceedings of the 7th CanSecWest Conference (CanSecWest’04), 2004.

[42] S. Embleton, S. Sparks, and C. Zou, “SMM rootkits: A New Breed
of OS Independent Malware,” in Proceedings of the 4th International
Conference on Security and Privacy in Communication Networks (Se-
cureComm’08), 2008.

[43] BSDaemon, coideloko, and D0nAnd0n, “System Management Mode
Hack: Using SMM for ‘Other Purposes’,” Phrack Magazine, 2008.

[44] “NSA’s ANT Division Catalog of Exploits for Nearly Every Major
Software/Hardware/Firmware,” http://Leaksource.wordpress.com.

[45] Trusted Computing Group, “TCG PC Client Specific Implementation
Specification for Conventional BIOS, Specification Version 1.21,” http:
//www.trustedcomputinggroup.org, February 2012.

[46] F. Zhang, H. Wang, K. Leach, and A. Stavrou, “A Framework to
Secure Peripherals at Runtime,” in Proceedings of The 19th European
Symposium on Research in Computer Security (ESORICS’14)., 2014.

[47] B. Jain, M. B. Baig, D. Zhang, D. E. Porter, and R. Sion, “SoK:
Introspections on Trust and the Semantic Gap,” in Proceedings of the
35th IEEE Symposium on Security and Privacy (S&P’14), 2014.

[48] T. Garfinkel and M. Rosenblum, “A Virtual Machine Introspection Based
Architecture for Intrusion Detection,” in Proceedings of the 10th Annual
Network and Distributed Systems Security Symposium (NDSS’03), 2003.

[49] X. Jiang, X. Wang, and D. Xu, “Stealthy Malware Detection Through
VMM-based Out-of-the-box Semantic View Reconstruction,” in Pro-
ceedings of the 14th ACM Conference on Computer and Communica-
tions Security (CCS’07), 2007.

[50] VIA Technologies, Inc., “VT8237R South Bridge, Revision 2.06,”
December 2005.

[51] Advanced Micro Devices, Inc., “BIOS and Kernel Developer’s

Guide for AMD Athlon 64 and AMD Opteron Processors,”
http://support.amd.com/TechDocs/26094.PDF. [Online]. Available: http:
//support.amd.com/us/ProcessorTechDocs/26094.PDF

[52] S. Vogl and C. Eckert, “Using Hardware Performance Events for
Instruction-Level Monitoring on the x86 Architecture,” in Proceedings
of the 2012 European Workshop on System Security (EuroSec’12), 2012.

[53] R. Wojtczuk and J. Rutkowska, “Attacking SMM Memory via
Intel CPU Cache Poisoning,” 2009. [Online]. Available: http:
//invisiblethingslab.com/resources/misc09/smm cache fun.pdf

[54] Flashrom, “Firmware Flash Utility,” http://www.flashrom.org/.
[55] checkvm: Scoopy doo, http://www.trapkit.de/research/vmm/scoopydoo/

scoopy doo.htm.
[56] J. Xiao, Z. Xu, H. Huang, and H. Wang, “Security Implications of

Memory Deduplication in a Virtualized Environment,” in Proceedings
of the 43rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’13), 2013.

[57] DynamoRIO, “Dynamic Instrumentation Tool Platform,”
http://dynamorio.org/.

[58] CLOC, “Count lines of code,” http://cloc.sourceforge.net/.
[59] SuperPI, http://www.superpi.net/.
[60] L. Duflot, O. Levillain, B. Morin, and O. Grumelard, “Getting into the

SMRAM: SMM Reloaded,” in Proceedings of the 12th CanSecWest
Conference (CanSecWest’09), 2009.

[61] ——, “System Management Mode Design and Security Issues,” http:
//www.ssi.gouv.fr/IMG/pdf/IT Defense 2010 final.pdf.

[62] R. Wojtczuk and C. Kallenberg, “Attacking UEFI Boot
Script,” 31st Chaos Communication Congress (31C3),
http://events.ccc.de/congress/2014/Fahrplan/system/attachments/2566/
original/venamis whitepaper.pdf, 2014.

[63] R. Wojtczuk and A. Tereshkin, “Attacking Intel BIOS,”
https://www.blackhat.com/presentations/bh-usa-09/WOJTCZUK/
BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf.

[64] J. Butterworth, C. Kallenberg, and X. Kovah, “BIOS Chronomancy:
Fixing the Core Root of Trust for Measurement,” in Proceedings of
the 20th ACM Conference on Computer and Communications Security
(CCS’13), 2013.

[65] A. M. Azab, P. Ning, and X. Zhang, “SICE: A Hardware-level Strongly
Isolated Computing Environment for x86 Multi-core Platforms,” in
Proceedings of the 18th ACM Conference on Computer and Commu-
nications Security (CCS’11), 2011.

[66] R. Wojtczuk and J. Rutkowska, “Attacking Intel Trust Execution Tech-
nologies,” 2009.

6969

