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Abstract—Cryptography plays an important role in comput-
er and communication security. In practical implementations of
cryptosystems, the cryptographic keys are usually loaded into
the memory as plaintext, and then used in the cryptographic
algorithms. Therefore, the private keys are subject to memory
disclosure attacks that read unauthorized data from RAM.
Such attacks could be performed through software methods
(e.g., OpenSSL Heartbleed) even when the integrity of the
victim system’s executable binaries is maintained. They could
also be performed through physical methods (e.g., cold-boot
attacks on RAM chips) even when the system is free of
software vulnerabilities. In this paper, we propose Mimosa that
protects RSA private keys against the above software-based and
physical memory attacks. When the Mimosa service is in idle,
private keys are encrypted and reside in memory as ciphertext.
During the cryptographic computing, Mimosa uses hardware
transactional memory (HTM) to ensure that (a) whenever a
malicious process other than Mimosa attempts to read the
plaintext private key, the transaction aborts and all sensitive
data are automatically cleared with hardware mechanisms, due
to the strong atomicity guarantee of HTM; and (b) all sensitive
data, including private keys and intermediate states, appear as
plaintext only within CPU-bound caches, and are never loaded
to RAM chips.
To the best of our knowledge, Mimosa is the first solution

to use transactional memory to protect sensitive data against
memory disclosure attacks. We have implemented Mimosa on a
commodity machine with Intel Core i7 Haswell CPUs. Through
extensive experiments, we show that Mimosa effectively pro-
tects cryptographic keys against various attacks that attempt
to read sensitive data from memory, and it only introduces a
small performance overhead.

I. INTRODUCTION

Cryptosystems play an important role in computer and

communication security, and the cryptographic keys shall

be protected with the highest level of security in computer

systems. However, in signing or decryption operations, the

private keys are usually loaded into memory as plaintext, and

thus become vulnerable to memory disclosure attacks that
read sensitive data in memory. Firstly, such attacks could be

launched through software exploitations. For instance, the

OpenSSL Heartbleed vulnerability allows remote attackers
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without any privileges to steal sensitive data in memory [58].

Malicious unprivileged processes can exploit other different

vulnerabilities [31, 50, 57, 59] to obtain unauthorized mem-

ory data. According to the statistics of Linux vulnerabilities

[24], 16.2% of the vulnerabilities can be exploited to read

unauthorized data from the memory space of operating

system (OS) kernel or user processes. These memory dis-

closure attacks can be launched successfully, even when

the integrity of the victim system’s executable binaries is

maintained at all times. Hence, existing solutions such as

buffer-overflow guards [22, 23, 83] and kernel integrity

protections [38, 47, 63, 70], are ineffective against these

“silent” memory attacks. Finally, attackers with physical

access to the computer are capable of bypassing all the OS

protections to directly read data from RAM chips, even when

the system is free of the vulnerabilities mentioned above.

For example, the cold-boot attacks [32] “freeze” the RAM

chips of a running victim computer, place them into another

machine controlled by the attacker, and then read the RAM

contents.

In this paper, we present Mimosa, which uses hardware
transactional memory (HTM) to protect private keys against
software and physical memory disclosure attacks described

above. In particular, we use Intel Transactional Synchro-

nization eXtensions (TSX) [40], a commodity implementa-

tion of HTM in commercial-off-the-shelf (COTS) platforms.

Transactional memory is originally proposed as a speculative

memory access mechanism to boost the performance of

multi-threaded applications [37]. However, we find that the

strong atomicity guarantee provided by HTM can be utilized

to defeat illegal concurrent accesses to the memory space

that contains sensitive data. Moreover, TSX and most HTM

are physically implemented on top of CPU caches, so that

cryptographic computing using TSX can be constrained

entirely in the CPU, effectively preventing cold-boot attacks

on RAM chips.

In Mimosa, each private-key computation is performed as

an atomic transaction. During the transaction, the encrypted

private key is first decrypted into plaintext, and then used to

decrypt or sign messages. If the transaction is interrupted due
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to any reason (e.g., attack attempt, interrupt, exception, or

fault), a hardware-enabled abort handler clears all updated
but uncommitted data in the transaction, which guarantees

that the sensitive private key (and all intermediate states)

cannot be accessed by concurrent malicious processes. Note

that the abort processing is non-maskable, and is triggered
by HTM automatically. Before committing the computation

result, all sensitive data are carefully cleared. Hence, in

Mimosa, a software-based memory disclosure attack only

obtains cleared data, even if it successfully reads from the

memory addresses for the cryptographic keys or other sensi-

tive data.1 Meanwhile, with the Intel TSX implementation,

the transaction is performed entirely within CPU caches and

the updated but uncommitted contents (i.e., the plaintext

private keys) are never loaded to the RAM chips. Therefore,

Mimosa is also immune to cold-boot attacks.

When the private keys are at-rest (i.e., there is no signing

or decryption request), they always remain encrypted by an

AES key-encryption key. Mimosa integrates TRESOR [56],

a register-based AES cryptographic engine, to protect the

AES master key in debug registers that are only accessible

with ring 0 privileges. If Mimosa is triggered for a sign-

ing/decryption task, the private key is decrypted by the AES

master key, and then used for signing/decryption; the whole

process is implemented as a transaction as introduced above.

We have implemented the prototype system with Intel

TSX, but the Mimosa design is applicable to other existing

HTM implementations using on-chip caches [45, 82] or store

buffers [2, 27, 33]. When the private-key computation is

executed as a transaction protected by HTM and the private

key is decrypted (i.e., the data are updated) on-the-fly in

the transactional execution, any attack attempt to access the

private key would result in data conflicts that would abort the

transaction. Because these HTM solutions are CPU-bound,

they are also effective in preventing cold-boot attacks.

Performing the computationally expensive private-key op-

eration as a transaction with Intel TSX is much more

challenging than it seems to be. Because transaction memory

is originally proposed for speculatively running critical sec-

tions, a transaction with Intel TSX is typically lightweight,

such as setting or unsetting a shared flag variable. To

support RSA private-key operations, the Mimosa computing

task needs to address many problems, including unfriendly

instructions, data sharing intrinsic in OS functions, local

interrupts, kernel preemption, and other unexpected aborts;

otherwise, the transactional execution would never commit.

Mimosa is implemented as a kernel module in Linux and

exported as an OpenSSL cryptographic engine. We have

successfully evaluated the Mimosa prototype on an Intel

Core i7 4770S Haswell CPU with TSX. Experimental results

1Our solution reactively clears the memory to protect sensitive data
whenever an attack attempt is detected. Hence, we name it Mimosa, as
it is similar to the plant Mimosa pudica, which protects itself by folding
its leaves when touched or shaken.

show that Mimosa only introduces a small overhead to

provide the security guarantees. Its performance is very close

to popular RSA implementations without additional security

protections. Through extensive validations, we confirm that

no private key is disclosed under various memory disclosure

attacks.

Our contributions are three-fold. (1) We are the first in
the literature to utilize transactional memory to ensure the

confidentiality of sensitive information, especially private

keys, against software and physical memory disclosure at-

tacks. (2) We have implemented the Mimosa prototype on

a commodity implementation of HTM (i.e., Intel TSX), and

the experimental evaluation showed that it is immune to

the memory disclosure attacks with a small overhead. And

(3) we develop an empirical guideline to perform heavy

computations in an Intel TSX transaction, which suggests

the possibility to extend the applications of HTM.

The rest of the paper is organized as follows. The back-

ground and preliminaries are introduced in Section II. We

then present the Mimosa’s design and implementation details

in Sections III and IV, respectively. Experimental results are

shown in Section V, and the security analysis is in Section

VI. We summarize related works in Section VII and finally

conclude the paper.

II. BACKGROUND AND PRELIMINARIES

This section first summarizes the software and physical

attacks that steal sensitive data in memory. We then discuss

the CPU-bound solutions against cold-boot attacks. Finally,

we introduce transactional memory and one of its hardware

implementations, Intel TSX, which is used in Mimosa.

A. Memory Disclosure Attacks on Sensitive Data

Memory disclosure attacks are roughly classified into two

categories: software-based and hardware (or physical) at-

tacks. Software attacks usually exploit system vulnerabilities

to read unauthorized addresses in the memory space, while

hardware-based attacks require physical access to the victim

machine to read from RAM chips.

Software Memory Disclosure Attack. Various software

vulnerabilities allows adversaries to read unauthorized data

from the memory space of OS kernel or user processes

without modifying kernel binaries. That is, even when the

integrity of the victim system is ensured, memory disclosure

attacks can be launched successfully.

These memory vulnerabilities result from unverified in-

puts, isolation defects, memory dump, memory reuse or

cross-use, and uncleared buffers. For example, the OpenSSL

Heartbleed vulnerability [58] allows remote attackers to re-

ceive sensitive data by manipulating abnormal SSL heartbeat

requests; or attackers can exploit the vulnerability reported

in [31] to read memory at a random location. The un-

initialization error [57] and the ALSA bug [59] leads to
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sensitive information leakage from kernel memory. As a

result of unintended software design and implementation

issues, such as swap, core dump, hibernation and crash

reports, memory content could be swapped to disks [17],

which may be accessible to attackers. For example, cryp-

tographic keys are recovered from Linux memory dump

files [65]. Some FTP and Email servers dump core files to a

directory accessible to adversaries [48, 74, 79, 80], leaking

the passwords that were kept in memory. Finally, uncleared

data buffers in memory are subject to reuse or cross-

use [77, 78]. By exploiting the Linux ext2 implementation

vulnerability, private keys of OpenSSH and HTTPS can be

exposed from uncleared buffers [35].

Cold-Boot Attack. This typical and powerful physical

memory attack results from the remanence effect of semi-

conductor devices; that is, the contents of dynamic RAM

(DRAM) chips gradually fade away. At low temperatures the

fading speed slows down significantly. Hence, adversaries

can retrieve the remained data by cold-booting the running
target computer and loading a malicious OS [32]. The cold-

boot attacks are launched by resetting the computer and

loading a malicious OS from an external storage, or alter-

natively by placing the DRAM chips into another machine

controlled by the attacker. The cold-boot attack requires no

account or credential information on the target machine, and

can be launched even if the victim system is free of the

vulnerabilities that can otherwise be exploited by software

memory disclosure attacks.

B. CPU-Bound Solutions against Cold-Boot Attacks

While there are different solutions against software mem-

ory disclosure attacks [14, 28, 35, 61], the countermeasure

against cold-boot attacks is to bound the operations in

CPUs. The idea of CPU-bound solutions is to avoid loading

sensitive data (e.g., AES keys) into RAM chips, so that

cold-boot attacks would fail. Register-based cryptographic

engines [55, 56, 73] have implemented the AES algorithm

entirely within the processor. In particular, TRESOR [56]

stores the AES keys in debug registers and Amnesia [73]

uses model-specific registers. These register-based engines

also prevent software memory disclosure attacks, because

the keys and sensitive intermediate states never appear in

memory. Note that atomicity must be ensured in a block

encryption/decryption to avoid swapping register states to

memory, including general purpose registers that store in-

termediate values.

PRIME [29] and Copker [30] extends the CPU-bound

solutions to asymmetric algorithms. The AES key protected

by TRESOR is used as a master key (i.e., the key-encryption

key) to encrypt RSA private keys. In PRIME [29], the private

key is first decrypted into AVX registers and the RSA com-

putations are performed within these registers. The perfor-

mance is only about 10% of the traditional implementations,

due to the limited size of registers. Meanwhile, Copker [30]

employs CPU caches to perform RSA decryption/signing,

which results in better performance. However, Copker de-

pends on a trustworthy OS kernel to avoid illegal memory

read operations to keep the sensitive keys in caches. That

is, Copker is not immune to software memory disclosure

attacks.

C. Transactional Memory and Intel TSX

Transactional memory is a memory access mechanism of

CPUs, originally designed to improve the performance of

concurrent threads and reduce programming efforts [37].

Programmers can accomplish fine-grained locking with

coarse-grained locks. The key idea is to run critical sections

speculatively and serialize them only in the case of data

conflicts, which happen when several threads concurrently

access the same memory location and at least one of them

attempts to update the content. If the entire transaction is

executed without any conflict, all modified data are commit-

ted atomically and made visible to other threads; otherwise,

all updates are discarded and the thread is rolled back to

the automatically-saved checkpoint. Transactional memory

can be implemented in software [16, 34] or supported by

hardware [40, 45, 82].

Intel TSX [40], first shipped in the 4th-generation Core

CPUs (i.e., Haswell), provides transactional memory support

that is completely hardware-enabled. Programmers only

need to specify critical sections for transactional execution,

the processor transparently performs conflict detection, com-

mit and roll-back operations. To detect data conflicts, Intel

TSX keeps all updated but uncommitted data in the first-

level data (L1D) cache, and tracks a read-set (addresses that

have been read from) and a write-set (addresses that have

been written to) in the transaction.

Data conflicts are detected on top of the cache-coherence

protocol, at the granularity of cache lines. A data conflict

is detected if another core either (a) reads from a memory

location that is in the transaction’s write-set, or (b) writes to a
location in the write-set or read-set. If no conflict is detected,

all write operations within the transaction are committed

and become visible to other cores atomically. Otherwise,

all updated data are discarded and the thread is rolled back

to the saved checkpoint, as if the transaction never started.

However, except for data conflicts, several other events

can cause an Intel TSX transaction to abort. This includes

unfriendly instructions such as cache-control instructions

(e.g., CLFLUSH and WBINVD), operations on the X87 and
MMX architecture states, background system activities such

as interrupt and exception, and executing self-modifying

codes. There are also other micro-architectural implemen-

tation dependent reasons. For a detailed list of events that

may abort a transaction, see the Intel TSX specification [40].

Intel TSX provides two programming interfaces with

different abort handling mechanisms. First, Hardware Lock
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Elision (HLE) is compatible with legacy instructions, and

works with two new instruction prefixes (i.e., XACQUIRE
and XRELEASE). The prefixes give hints to processors that
execution is about to enter or exit the critical section. On

aborts, after rolling back to the original state, the processor

automatically restarts the execution in a legacy manner; that

is, locks are acquired before entering the critical section.

The second TSX programming interface called Restricted

Transactional Memory (RTM), provides three new instruc-

tions (i.e., XBEGIN, XEND and XABORT) to start, commit,
and abort transactional execution. In RTM, programmers

specify a fallback function as the operand of XBEGIN.
Aborted execution jumps to the specified address of the

fallback function, so the programmers can implement cus-

tomized codes to handle the situation; for instance, to retry

or explicitly acquire a lock.

III. SYSTEM DESIGN

In this section, we first present the assumptions and

security goals of Mimosa. We then introduce the general

system architecture, and some important details in the design

of Mimosa.

A. Assumptions and Security Goals

Assumptions. We assume the correct hardware implemen-
tation of HTM (i.e., Intel TSX in our prototype system or

others in the future). This assumption is expected to be

guaranteed in COTS platforms. We also assume a secure

initialization phase during the OS boot process; that is, the

system is clean and not attacked during this small time

window.

The attackers are assumed to be able to launch various

memory disclosure attacks on the protected system. The

attackers can stealthily read data in memory with root

privileges by exploiting software vulnerabilities [31, 50, 57–

59], or launch cold-boot attacks [32] on the system. They

can also eavesdrop the communication between the CPU and

RAM chips on the bus. Mimosa is designed to defend against

the “silent” memory disclosure attacks that read sensitive

data from memory without breaking the integrity of the

systems’ executable binaries. For instance, the attacks that

exploit various Linux kernel vulnerabilities [24] to access

unauthorized data. We do not consider the multi-step attacks

that compromise OS kernel – the attacks that first write

malicious binary codes into the victim machine’s kernel,

and then access sensitive data via the injected codes. That

is, Mimosa assumes that the integrity of OS kernel is not

compromised.

Different from the existing security mechanisms which

attempt to detect or prevent software attacks (e.g., kernel

integrity protections [38, 47, 63, 70] and buffer-overflow

guards [22, 23, 83]), Mimosa follows a different philosophy

– it tries to “dance” with attacks. That is, even when an

attacker exploits memory disclosure vulnerabilities (e.g.,

OpenSSL Heartbleed [58]) to successfully circumvent these

protections and read data from memory, Mimosa ensures

that the attacker still cannot obtain the private keys that were

originally stored at the memory address.

Last, since Mimosa employs TRESOR [56] to protect

the AES master key, it also inherits the assumptions made

by TRESOR. In particular, TRESOR (and similar solutions

[29, 30, 73]) assumes an OS without any interface or

vulnerability that allows attackers to access the privileged

debug registers. As analyzed in [29, 30, 56, 73], the access to

the privileged debug registers can be blocked by patching the

ptrace system call (the only interface to debug registers

from user space applications), disabling loadable kernel

modules (LKMs) and kmem, and removing JTAG ports (as

done in COTS products).

Security Goal. Based on the above assumptions, we design
Mimosa with the following goals:

1) During each signing/decryption computation, no pro-

cess other than the Mimosa computing task can access

the sensitive data in memory, including the AES mas-

ter key, the plaintext RSA private key and intermediate

states.

2) Either successfully completed or accidentally inter-

rupted, each Mimosa computing task is ensured to

immediately clear all sensitive data, so it cannot be

suspended to dump these sensitive data.

3) The sensitive data never appear on the RAM chips.

The first goal thwarts direct software-based memory dis-

closure attacks, and the second prevents the sensitive data

from being propagated to other vulnerable places. The third

goal makes a successful cold-boot attack only get encrypted

copies of private keys.

B. The Mimosa Architecture

Mimosa adopts the common key-encryption-key structure.

The AES master key is generated early during the OS boot

process and is stored in debug registers since then. The

RSA context is dynamically constructed, used and finally

destroyed within a transactional execution, when Mimosa

serves signing/decryption requests. When the Mimosa ser-

vice is in idle, the private keys always remain encrypted by

the AES key.

The operation of Mimosa consists of two phases as shown

in Figure 1: an initialization phase and a protected com-
puting phase. The initialization phase is executed only once
when the system boots. It initializes the AES master key and

sets up necessary resources. The protected computing phase

is executed on each RSA private-key computation request.

This phase performs the requested RSA computations. All

memory accesses during the protected computing phase

are tracked and examined to achieve the security goals of

Mimosa.
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Figure 1: Mimosa Overview

Initialization Phase. This phase contains two steps. Init.1
resembles TRESOR [56] and executes completely in kernel

space when the system boots. First, a command line prompt

is set up for the user to enter a password. Then, the AES

master key is derived from the password, and copied to the

debug registers of every CPU core. All intermediate states

of this derivation are carefully erased. Moreover, the user is

required to type in 4096 more characters to overwrite input

buffers. We assume that there is no software or physical

memory disclosure attack during this step, and the password

is strong enough to resist brute-force attacks.

In Init.2, a file containing an array of ciphertext private
keys is loaded from hard disks or other non-volatile storages

into memory. These private keys are securely generated and

encrypted by the AES master key into the file in a secure

environment, e.g., another off-line trustworthy machine.

Protected Computing Phase. When Mimosa receives a

private-key computation request from users, it uses the

corresponding private key to perform the computation, and

then returns the result to users. In this phase, Mimosa pre-

pares the transactional execution, performs the private-key

computation, erases all sensitive data, and finally terminates

the transaction to commit the result. In particular, it includes

the following steps:

• Prepare: HTM starts to track memory accesses in the

read-set and the write-set in the L1D cache.

• PrCmpt.1: The ciphertext private key is loaded from
the RAM to the cache.

• PrCmpt.2: The master key is loaded from the debug

registers to the cache.

• PrCmpt.3: With the master key and ciphertext private
key, the private key context is constructed.

• PrCmpt.4: With the plaintext private key, the requested

decryption/signing operation is performed.

• PrCmpt.5: All the sensitive variables in caches and

registers are erased, except the result.

• Commit: Finish the transaction and make the result

available.

All memory accesses during the protected computing

phase are strictly monitored by hardware. In particular,

we declare a transactional region. During the transactional
execution, all memory operations that might break Mimosa’s

security principles are detected by hardware: (1) any attempt

to access the modified memory locations, i.e., the plaintext

private key and any intermediate states generated in the

transactional execution; and (2) cache eviction or replace-

ment that synchronizes data in caches to the RAM.

If no such memory exception is detected, the transaction

commits and the result is returned to users. Otherwise,

the hardware-enabled abort processing handler is triggered
automatically to discard all modified data. Then, it executes

the program-specified fallback function (not shown in Fig-
ure 1) to process the exceptional situation; in the fallback

function, we can choose to retry immediately or take other

supplementary actions before retrying (see Section IV-C).

To take full advantage of multi-core processors, Mimosa is

designed to support multiple private-key computation tasks

in parallel. Each core is configured with its own resources

for Mimosa. A block of memory space is reserved for each

core in the transactional region (i.e, the protected computing

phase). This space is mainly used for the dynamic memory

allocation in RSA computations. The reserved space is

separated properly for each core to avoid data conflict that

would lead to aborts (see Section IV-C for details).

Finally, we would like to emphasize that the design of the

Mimosa architecture is based on the general properties of
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hardware transactional memory. That is, Mimosa does not

rely on any specific HTM implementation. It is expected

that this architecture could be adopted with any COTS

HTM product. In the rest of the paper, we will describe

the implementation and evaluation of Mimosa with a COTS

HTM product, i.e., Intel TSX.

IV. IMPLEMENTATION

Mimosa is implemented as a kernel module patched to

Linux kernel v3.13.1. It provides RSA private-key compu-

tation services to the user space through the ioctl system

call. In addition, the ioctl interface is further encapsu-

lated into an OpenSSL engine, facilitating the integration

of Mimosa into other applications. The Mimosa prototype

supports 1024/2048/3072/4096-bit RSA algorithms.

In this section, we firstly describe the RTM interface of

Intel TSX, and then a naı̈ve implementation of Mimosa.

However, in this implementation, the transactional execution

rarely commits, resulting in unacceptable performance. Next,

we identify the abort reasons, and eliminate them one by

one. The final implementation offers efficiency comparable

to conventional RSA implementations without such protec-

tions. The performance tuning steps produce an empirical

guideline to perform heavy cryptographic computations with

Intel TSX. We also briefly describe the utility issues of

Mimosa, including private key generation and the user-space

API. Finally, we discuss the applicability of Mimosa design,

i.e., how to apply the Mimosa architecture to other HTM

solutions.

A. RTM Programming Interface

In the protected computing phase, the computation is

constrained in a transaction. Mimosa utilizes Intel TSX as

the underlying transactional memory primitive. In particular,

we choose RTM as the HTM programming interface. With

this flexible interface, we have control over the fallback path,

in which Mimosa can define the policy to handle aborts.

RTM consists of three new instructions (XBEGIN, XEND
and XABORT) to start, commit and abort a transactional exe-
cution. XBEGIN consists of a two-byte opcode 0xC7 0xF8
and an immediate operand. The operand is a relative offset

to the EIP register, which is used to calculate the address

of the program-specified fallback function. On aborts, TSX
immediately breaks the transaction and restores architectural

states by the hardware-enabled abort handler. Then, the

execution resumes at the fallback function. At the same

time, the reason of abort is marked in the corresponding

bit(s) of the EAX register. The reason code in EAX is used

for quick decisions (in the fallback function) at runtime; for

example, the third bit indicates a data conflict, and the fourth

bit indicates that the cache is full. However, this returned

code does not precisely reflect every event that leads to the

abort [40]. For instance, aborts due to unfriendly instruction

or interrupt will not set any bit: the codes for them are both

0. With this code, we cannot determine the exact reason

for aborts at runtime. In fact, Intel suggests performance

monitoring for deep analysis (see the remainder of this

section for details) when programming with TSX, before

releasing the software. In addition, Intel provides the XTEST
instruction to test whether the CPU core is in a transaction

region.

We encapsulate the above instructions into C functions

in kernel. At the time of Mimosa implementation, we did

not find any official support for RTM in the main Linux

kernel branch. Although Intel Compiler, Microsoft Visual

Studio, and GCC have developed supports for RTM in

user programming, they cannot be readily used for kernel

programming. Therefore, we refer to Intel Architectures

Optimization Reference Manual [39] to emulate RTM in-

trinsics using inline assembler equivalents. We show the

implementation of _xbegin() to start the transactional

execution of RTM as follows:

static __attribute__((__always_inline__)) inline
int _xbegin(void){

int ret = _XBEGIN_STARTED;
asm volatile(".byte 0xC7,0xF8; .long 0" :

"+a" (ret) :: "memory");
return ret;

}

The default return value is set to _XBEGIN_STARTED,
which denotes that the transactional execution starts success-

fully. Next, the transaction starts when XBEGIN is executed
(“.byte 0xC7,0xF8”). The operand “.long 0” sets

the relative offset of the fallback function address to 0, i.e.,

the next instruction “return ret”. If the transaction starts
successfully, the return value is unchanged and returned to

callers. Then, the program continues transactional execution

until commits successfully. If the transaction is aborted, the

program goes to the fallback address (i.e., “return ret”),
with the micro-architectural state restored, except that the

execution is no longer in transaction and the return value

(i.e. the abort status in the EAX register) is set properly.

Program can decide whether to retry transactional execution

again based on the abort status returned in ret.

B. The Naı̈ve Implementation

We adopt PolarSSL v1.2.10 as the base of our AES

and RSA modules. PolarSSL is a modular and efficient

cryptographic library with a very small memory footprint,

which is the feature we expect. A smaller work-set means

adequate cache resources to complete the transaction. Mean-

while, PolarSSL speeds up the RSA algorithm by employing

Chinese remainder theorem (CRT), Montgomery modular

exponentiation, and sliding-window exponentiation tech-

niques. It has been adopted by many projects (e.g., LinkSYS,

NGINX and OpenVPN) and governmental agencies (e.g.,

Government of the Netherlands). The AES module is a

conventional S-box-based implementation, but we improve
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it with the AES-NI extension [41].2 This has three benefits.

First, memory footprint is reduced without S-box. Second,

performance is boosted with hardware acceleration. More

importantly, timing and cache-based [1, 8, 13] side channels

of AES implementations are eliminated by running in data-

independent time.

In the long-integer module of PolarSSL, a piece of assem-

bly code uses MMX registers to accelerate the computation.

It is explicitly marked as unfriendly instructions with Intel

TSX [40]. Our solution is to replace MMX registers with XMM
registers. This needs only a little modification because both

operands are supported in the SSE2 extension.

We implement the steps from PrCmpt.1 to PrCmpt.5
described in Section III-B, as a C-language function

mimosa_protected_compute(keyid, in, out).
It appears to be straightforward to integrate the code in

transactional region using the RTM interface: put it after

_xbegin(), and commit the transaction using _xend()
that simply invokes XEND. As aborts may occur, we invoke
_xbegin() in an infinite loop, and the execution makes

progress if and only if the transaction commits successfully.

while (1){
int status;
status = _xbegin();
if (status == _XBEGIN_STARTED)

break;
}
mimosa_protected_compute(keyid, in, out);
_xend();

As mentioned in Section III-B, PrCmpt.5 erases all

sensitive data carefully before committing the transaction,

i.e., in mimosa_protected_compute(). The sensitive
data appear in the following places:

• Allocation buffer: The long-integer module requires

dynamically allocated memory.

• Stack of mimosa_protected_compute(): The
AES round keys and decrypted private keys are stored

in the stack of mimosa_protected_compute().
• Register: General purpose registers are involved in

computations, and XMM registers are used in AES and

long-integer modules.

When we test this naı̈ve implementation, the execution

never commits successfully. It is somewhat expected: there

are so many restrictions on the execution environment for

Intel TSX. In the following, we will demonstrate various

causes that lead to aborts and our optimizations. We used

the perf profiling tool [67] and Intel Software Develop-

ment Emulator (SDE) version 6.12 [3] for the purpose of

discovering abort reasons and performance tuning.

The perf profiling tool works with the Intel perfor-

mance monitoring facility. It supports the precise-event-

based sampling (PEBS) function that records the processor

2Newer versions of PolarSSL also support AES-NI. We develop it
independently to avoid using shared memories.

state once a particular event happens. In particular, we

use the RTM_RETIRED.ABORTED event to capture TSX

aborts. This event occurs every time a RTM execution is

aborted. Based on the dumped processor state, we are able

to locate the abort reason and the eventing IP that causes

the abort. SDE is the Intel official software emulator for

new instruction set extensions. It detects the instructions

that are requested to be emulated, and then skips over those

instructions and branches to the emulation routines.

C. Performance Tuning

Avoiding Data Conflicts. Both perf and SDE reported

plenty of data conflicts at first. We found that the modular

exponentiation in the naı̈ve implementation used the OS-

provided memory allocation library which shares maintained

meta data (e.g., free list) for all the threads. As a result,

plenty of data conflicts happen when many threads request

for new memory simultaneously in multiple cores.

Our solution is that each Mimosa thread monopolizes its

own allocation context when in the transactional region. We

reserve a static memory buffer as this context for each core.

When a Mimosa thread enters the transactional region, it

uses the designated context for that core.

We define a global array of allocation contexts. A context

is defined for each core as follows:

typedef struct{
unsigned char buffer[MAX_ALLOCATION_SIZE]

__attribute__((aligned(64)));
size_t len;
size_t current_alloc_size;
memory_header *first_free;
...
/* other meta data */

} ALLOCATION_CONTEXT;

In the transaction, when the memory allocation function

is called, the thread first gets its core ID and uses it to

locate its allocation context. Then it performs actual memory

allocation in this context as follows.

void *mimosa_malloc(size_t len){
ALLOCATION_CONTEXT *context;
int id;
id = smp_processor_id();
context = allocation_context + id;
...
/* Actual allocation in the context */

}

The first member in ALLOCATION_CONTEXT is aligned
on a 64-byte boundary (cache line size), which is the gran-

ularity to track the read/write-set addresses. This prevents

false sharing between continuous contexts. False sharing

happens when two threads access their distinct memory

locations in the same cache line, thus would cause data

conflict unexpectedly.
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With this tuning, Mimosa can work very well on SDE.3

We configured the CPU parameters in SDE so that the cache

size is identical to Intel Core i7 4770S (our target CPU),

and 8 Mimosa threads run without abort during extensive

experiments on SDE. This proves that our implementation

is fully compatible with the Intel TSX specification and no

data conflict is caused by Mimosa itself.

Disabling Interrupts and Preemption. However, SDE does
not simulate real-time interrupts to support multi-tasking.

The private key computation is time-consuming. Therefore,

it is very likely that transactional execution is interrupted by

task scheduling on real hardware, which definitely causes

aborts. Other interrupts may also cause aborts. To give

Mimosa enough time to complete computations, interrupts

and kernel preemption are temporarily disabled when in

transactional region. All CPU-bound encryptions including

TRESOR [56], PRIME [29] and Copker [30], require dis-

abling interrupts to ensure atomicity, while Mimosa requires
it for efficiency because Intel TSX itself ensures atomicity

already.

Delay after Continuous Aborts. At this point, the abort
cycle ratio4 is relatively high, resulting in bad performance.
The perf profiling tool is unable to provide obvious

information about abort reasons. The eventing IPs recorded

by PEBS spread across the transactional region. Meanwhile,

most of reported reason codes are ABORTED_MISC5, which
has a very ambiguous description by Intel. We list the abort

reason descriptions as follows.

• ABORTED_MISC1: Memory events, e.g., read/write

capacity and conflicts.

• ABORTED_MISC2: Uncommon conditions.
• ABORTED_MISC3: Unfriendly instructions.
• ABORTED_MISC4: Incompatible memory type.
• ABORTED_MISC5: Others, none of the previous four
categories, e.g., interrupts.

At first, we suspect that the aborts would be caused by

non-maskable interrupt (NMI); however, this explanation is

immediately ruled out after examining the NMI counter

through the /proc/interrupts interface. We have con-
tacted Intel for support.5 As stated before, Intel provides

no guarantees as to whether transactional execution will

successfully commit and there are numerous implementation

specific reasons that may cause aborts [40].

We notice that Intel recommends a delay before retrying

if the abort was caused by data conflict [39]. Although

we encounter a different cause, we still modify Mimosa to

force a short delay after several failed transactions. As a

result, the success rate is significantly improved. The number

3Mimosa is modified slightly to conform to SDE that runs in the user
space.

4The number of CPU cycles in the aborted transactions divided by the
total number of CPU cycles in all transactions.

5Until the submission of this manuscript, we have not received any reply.

while(!success){
int times = 0;
/* Disable interrupts and preemption */
get_cpu();
local_irq_save(flags);

#ifdef TSX_ENABLE /* Switch of Mimosa_NO_TSX */
while(1){

int status;
if(++times == MAX_TRIES)

goto delay;
status = _xbegin();
if(status == _XBEGIN_STARTED)

break;
}

#endif
mimosa_protected_compute(keyid, in, out);
success = 1;

#ifdef TSX_ENABLE
_xend();

#endif
delay:

/* Enable interrupts and preemption */
local_irq_restore(flags);
put_cpu();
if(!success){

/* Delay after several aborts */
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(10);

}
}

Figure 2: Code Snippet in Mimosa

of tries before a delay is 5, which is an empirical value

suggested in [84] and also verified in our experiments. After

extensive experiments balancing the throughput under the

single-threaded and the multi-threaded scenarios, we have

identified 10 clock ticks as an optimized value for this

delay.6

After these tunings, almost all the remaining aborts occur

at the very beginning of the transactions. Therefore, although

we are unable to identify the exact reason(s) of the remaining

aborts, or to avoid all aborts, they only waste a very small

number of CPU cycles. The abort cycle ratio is low, as

more than 95% of the CPU cycles are used in successful

transactions. Figure 2 shows the final code snippet.

We would like to point out that the significant perfor-

mance improvement is the result of all the tuning ap-

proaches. It might appear that the abort issue is solved by

the last attempt (i.e., adding delays); however, it wouldn’t

be successful if we skip any of the previous steps. Our

perception is that we may not be able to completely avoid all

the aborts eventually: (1) the simulation results have shown

that our implementation is correct; (2) the Intel official tools

6For the HTM feature in zEC12 systems, IBM also suggests a random
delay before retrying a transaction on aborts [45]; and the optimal delay
depends on the particular abort reason, the CPU design and configuration.
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are unable to identify or provide the details of the aborts;

and (3) Intel TSX and the speculative nature of transactional

memory do not guarantee all correctly implemented transac-

tions to commit, e.g., cache coherence traffic may at times

appear as conflicting requests and may cause aborts.

D. Utility Issues

Based on the design described in Section III, Mimosa

needs an off-line machine to securely generate an encrypted

RSA private key file, and a to-be-protected machine that

runs the Mimosa service. The preparation utility in the off-

line machine generates RSA key pairs and encrypts them by

an AES master key derived from the same user password.

The encrypted key file is then copied to the to-be-protected

machine.

Mimosa provides private-key computation services to

user space through the ioctl system call. Based on the

command code and key ID, Mimosa outputs the pub-

lic key of the corresponding key pair, or performs a

private-key operation on the input data and outputs the

result. In addition, the ioctl interface is encapsulated

into an OpenSSL engine. A RSA key is selected via

ENGINE_load_private_key() and then can be used

in an OpenSSL-compatible way. We use this API to integrate

Mimosa into the Apache HTTPS server in the evaluation.

E. Applicability

Although the Mimosa prototype is implemented on Intel

Haswell CPUs using the RTM interface of TSX,7 our

solution is applicable to other platforms. Firstly, it can

be implemented using the HLE interface. In particular, if

the protected computing is executed as a transaction using

HLE, XTEST will be used to determine whether it is in

transactional execution or not. If it is in normal execution

(i.e., the transaction aborts for some reasons), the protected

computing will not continue and the transactional execution

will be retried.

Most HTM solutions share a similar programming inter-

face. We will show that, in other HTM implementations,

the counterparts of the Intel TSX XBEGIN and XEND
instructions can be easily identified, and the abort process-

ing conforms to the Mimosa design. For example, in the

HTM facility of IBM zEC12 systems [45], transactions are

defined by the instructions TBEGIN and TEND. On abort,

the PC register is restored to the instruction immediately

after TBEGIN, and a condition code is set to a non-zero

value. Typically, a program tests the condition code after

TBEGIN to either start the transaction execution if CC=0
or branch to the program-specified fallback function (i.e.,

7In August 2014, Intel announced a bug in the released TSX implemen-
tation, and suggested disabling TSX on the affected CPUs via a microcode
update [42]. During our experiments, the Mimosa prototype works well as
described in Section V. Note that TSX is still supported in newer CPUs,
e.g., Intel Core M-5Y71 CPU launched in Q4 2014 [43].
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Figure 3: Local Performance

retry or delay in Mimosa) if CC!=0. AMD has proposed

its own HTM extension since 2009, called Advanced Syn-

chronization Facility (ASF), but currently the products are

not ready. Based on the public specifications [2], ASF

provides similar instructions to specify a transactional region

(i.e., SPECULATE and COMMIT) and also tracks memory

accesses in CPU caches. The transaction starts after the

execution of SPECULATE and commits at COMMIT. An
instruction following SPECULATE checks the status code

and jumps to the program-specified fallback handler if it is

not zero. ASF has a slightly different programming interface

in that all the to-be-tracked memories for atomic access must

be explicitly specified using declarator instructions (i.e., the

LOCK prefix).

Finally, most existing HTM implementations use on-chip

caches or store buffers [2, 27, 33, 45, 82] for the transaction

execution, so they can also work with Mimosa to prevent

cold-boot attacks.

V. PERFORMANCE EVALUATION

This section presents the experimental results by measur-

ing the performance of Mimosa. We carried out experiments

on a machine with an Intel Core i7 4770S CPU (4 cores),

running a patched Linux Kernel version 3.13.1. In these

experiments, we compared Mimosa with: (1) the official

PolarSSL version 1.2.10 with default configurations, (2)

Mimosa No TSX, which is the same as Mimosa but not

in transactional execution, by turning off the TSX_ENABLE
switch (see Figure 2), and (3) Copker8 [30]. We used 2048-

bit RSA keys in the first three experiments.

A. Local Performance

First, Mimosa ran as a local RSA decryption service,

and we measured the maximum number of decryption op-

erations per second. We evaluated Mimosa’s performance

at different concurrency levels, and compared it with other

approaches, as introduced above. As shown in Figure 3, all

8The authors of Copker provided us with their source code, and we
revised it slightly to work for Intel Core i7 4770S CPU.
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the approaches exhibit similar performance except Copker,

which can use only one core due to a shared L3 cache in this

Intel Core i7 4770S processor: the Copker core works in the

write-back cache-filling mode, and forces all other cores
to the no-fill mode. With a shared L3 cache, only one

Copker task works, while all other tasks have to wait. Under

all concurrency levels, the abort cycle ratio of Mimosa is

always under 5%. Mimosa and Mimosa No TSX performs

even better than PolarSSL. It is probably because PolarSSL

is subject to task scheduling, while kernel preemption is

disabled in Mimosa and Mimosa No TSX.

B. HTTPS Throughput and Latency

We evaluated Mimosa in a more practical setting. In

this experiment, Mimosa, Mimosa No TSX and PolarSSL

served as the RSA decryption module in the Apache HTTPS

server, respectively, and then we measured the throughput

and latency. The web page used in the experiment was 4

KBytes in size. The server and the client were located in an

isolated Gigabit Ethernet.

The client ran an ApacheBench process that issued 10,000

requests at different concurrence levels, and the number of

HTTPS requests handled per second was shown in Figure 4.

For Mimosa, the maximum throughput loses 17.6% of its

local capacity. Mimosa No TSX loses 13.5%, and PolarSSL

loses 6.5%. From the results, we can estimate that the

first 6.5% loss (for all approaches) should be attributed to

the unavoidable overhead of SSL and network transmis-

sion. Disabling kernel preemption has a negative impact on

concurrent tasks, so Mimosa perform worse than the user-

space PolarSSL; but Mimosa No TSX performs still a little

better than PolarSSL after the number of concurrent requests

reaches 80. The additional loss of capacity in Mimosa shall

be caused by aborted cycles.

We measured the HTTPS latency using curl (one client,

disabling the keep-alive option). The average SSL handshake

times were 9.98ms, 9.04ms and 10.94ms, when PolarSSL,

Mimosa No TSX and Mimosa served in the HTTPS server,

respectively. We also stressed the HTTPS server with differ-

ent loads to measure its 95th percentile using ApacheBench.
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The total issued HTTPS request is 10,000. As shown in

Figure 5, the negative impact of disabling kernel preemption

and aborted cycles in Mimosa is acceptable under medium

loads. The 95th percentile latency of Mimosa is about 1.6

times that of PolarSSL.

C. Impact on Concurrent Processes

We used the Geekbench 3 benchmark [66] to evalu-

ate how Mimosa influenced other concurrent applications.

Running concurrently with the RSA computations by each

evaluated solution, Geekbench 3 measures the machine’s

integer, floating point and memory performance, i.e., the

computation capacity remained for concurrent processes.

The Geekbench 3 scores for both the single-core mode and

the multi-core mode are shown in Figure 6. The baseline

score was measured in a clean environment without any

process except Geekbench 3, indicating the machine’s full

capacity. Others were measured when the benchmark was

running concurrently with the Apache HTTPS service at the

workload of 80 requests per second. Note that we would

like to ensure that all the evaluated approaches worked at

the same RSA computation workload. Since the maximum

throughput of Copker is around 100 HTTPS requests per

second (Figure 4), we pick 80 requests per second in this

experiment.

In Figure 6, the integer, floating point and

memory scores denote the integer instruction performance,

floating point instruction performance and memory band-

width, respectively. Overall, the single-core scores of Po-

larSSL, Mimosa and Mimosa No TSX are very close,

except Copker. When Geekbench 3 occupies more cores,

the overhead for handling the HTTPS requests becomes

nontrivial – there is a clear gap between the baseline scores

and others. User-space approaches (i.e., PolarSSL) introduce

a little less impact on concurrent processes than kernel space

approaches (i.e., Mimosa and Mimosa No TSX) where

kernel preemption is disabled. In Figure 3, we find that

preemption-disabled approaches are more efficient because

more resources are occupied by them. However, this also

means that concurrent processes cannot be served in time,
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as shown in Figure 6. Meanwhile, Mimosa No TSX intro-

duces less overhead than Mimosa, because Mimosa has to

waste some aborted cycles. Last, we see a significant drop

in Copker for both the single-core mode and the multi-core

mode, because all other CPU cores are forced to enter the

no-fill cache-filling mode when Copker is running. That
is, the benchmark runs without caches at times.

D. Scalability

Finally, we evaluated the performance of Mimosa with

growing RSA key lengths, to prove its potential applicability

to other cryptographic algorithms requiring more memory

and heavier computation. In this experiment, Mimosa ran

locally to accomplish the maximum performance (decryption

operations per second). We can see from Table I that as the

key length grows, the performance of Mimosa decreases at

a similar pace with Mimosa No TSX. This indicates that

the size of L1D caches has not become the bottleneck to

support stronger keys for up to 4096-bit RSA.

We measured the size of dynamically allocated memory

in a transaction which approximates the whole work set for

4096-bit RSA computations. It turned out that the allocated

memory size was about 9.3 KBytes, which is far less than

the supported write-set size of Intel TSX evaluated in [52],

26 KBytes. This proves that there is still great potential for

supporting other memory-hungry algorithms.

VI. SECURITY ANALYSIS

The security goals presented in Section III-A are achieved

with Intel TSX as follows. Any attack that attempts to access

the private keys and sensitive intermediate states during

the protected computing phase automatically triggers the

hardware abort handler, clearing all sensitive information.
If it commits successfully, the transactional execution is

guaranteed to be performed within L1D caches and always

ends with clearing all sensitive data.

In this section, we introduce experimental validations to

verify that Mimosa has achieved these goals. Then, the

remaining attack surfaces are discussed, and we compare

Table I: Local Performance for Different Key Lengths

Key Length (bits) 1024 2048 3072 4096

Mimosa (decryptions/sec) 3726 596 199 76
Mimosa No TSX (decryptions/sec) 3798 646 214 95
#(Mimosa)/#(Mimosa No TSX) 98% 92% 93% 80%

Mimosa with other defenses against cold-boot attacks (and

also other memory disclosure attacks) on private keys.

A. Validation

To validate that software memory disclosure attacks can-

not obtain the sensitive information of Mimosa, we im-

plemented a privileged “attack” program (the validator),

which actively reads the memory addresses used in Mimosa

through the /dev/mem interface. These memory locations

are fixed once Mimosa has been loaded. /dev/mem is

a virtual device that provides an interface to access the

system’s physical memory, if kernel is configured with

CONFIG_STRICT_DEVMEM disabled. Specifically, every

second, the validator read the global array that stores the

plaintext private keys in Mimosa. We kept the validator

running for more than 5 hours (approximately 20,000 reads),

while there were 256 threads repeatedly calling the Mimosa

services at the full speed. Throughout the experiment, the

validator returned cleared data only. That is, the attacks are

unable to read any sensitive information in Mimosa. Note

that our “attack” program is much more powerful than the

real-world software memory disclosure attacks, because this

program runs with the root privilege and knows the exact

memory address for sensitive data. As a comparison, when

we disabled the TSX protection (i.e., Mimosa No TSX),

almost every access obtained the plaintext private keys.

We also used Kdump to dump the kernel memory to

find any suspicious occurrence of sensitive data. Kdump
allows a dump-capture kernel to take a dump of the system

kernel’s physical memory and the register state of other

cores when the system crashes. Note that this mechanism

sends non-maskable interprocessor interrupts (IPIs) to other
CPU cores to halt the system.9 We ran Mimosa inten-

sively. Meanwhile, we crashed the system by writing ‘c’

to /proc/sysrq-trigger. After dumping the system

kernel to the disk, we searched for the RSA private key

and the AES master key in the file. The AES key has two

forms: the original 128-bit key and 10 rounds key schedule.

First, for the AES key schedule, we used the AESKeyFinder

tool [36] to analyze the captured image. As a result, we

found no matching key schedule of the one used in Mimosa.

Meanwhile, for the original AES key and the RSA private

9NMIs destroy atomicity since only local interrupt is disabled. This is
the reason that CPU-bound solutions like Amnesia and Copker suggest
modifying NMI handlers to immediately clear all sensitive keys [30, 73].
Technically, TRESOR and PRIME are subject to similar attacks. However,
in Mimosa, the private key and intermediate states are automatically cleared
once NMIs happen, eliminating the need to modify NMI handlers.
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key, we used the bit string matching program bgrep to

search for (pieces of) the known keys. The image had no

matching of both the AES and RSA keys (including p, q,
d and other CRT elements). We have never found a binary

sequence that overlaps for more than 3 bytes with any key.

On the contrary, when the same experiment was conducted

on Mimosa No TSX, we got a great deal of copies of both

the AES master key and the private keys. They came from

three sources. First, Kdump dumped the register states of

all the cores when the system crashed. Second, interrupted

threads left the decrypted keys uncleared. Third, the process

control blocks of the threads contained the register states as

a result of context switching.

We did not launch a cold-boot attack or probe the bus

to validate that these is no data leakage to the RAM chips.

However, according to Intel Architectures Optimization Ref-

erence Manual [39] (Section 12.1.1), when cache eviction

in the write-set happens, transaction will abort immediately,

thus modified data are discarded inside L1D caches. Note

that the plaintext private keys and other sensitive interme-

diate states are in the write-set, because they are generated

only after the transaction starts. Therefore, sensitive data

would appear nowhere other than L1D caches. We would

also like to argue that this character is a necessary require-

ment to correctly implement Intel TSX. If a modified cache

line is evicted to some place outside the boundary of Intel

TSX, its value will be available to other components – an

obvious contradiction to the nature of transactional memory.

B. Remaining Attack Surface

Mimosa relies on Intel TSX to ensure the confidentiality

of the protected RSA private key in the protected computing

phases. However, the CPU cache which is the base of TSX

is constrained in size and shared among all cores. This

might lead to denial of service (DoS) attacks. Most Intel

CPUs implement 8-way set associative L1D cache, so 9

memory addresses in the write-set mapping to the same

cache set will abort the transaction. Moreover, Intel does

not guarantee all cache lines of a cache set can be attributed

to the transactional execution. Besides, a process with very

intensive memory accesses may halt the Mimosa service too,

because there is a big chance that this process will evict

the cache lines that Mimosa is occupying due to shared L3

caches.

We evaluated how seriously a memory-intensive program

would impact Mimosa, by launching the memory test of

the Geekbench 3 benchmark concurrently with Mimosa.

In this experiment, 4 kinds of STREAM workloads were

performed on all CPU cores, resulting in 10.3 GBytes

memory transferred per second. The machine (clean envi-

ronment) supports a maximum transfer rate of 13.7GB/s.

The average performance of Mimosa fell to 137 decryptions

per second. That is a degradation of 77.0%, compared with

the original result of 596 per second in Table I. Meanwhile,

performance of Mimosa No TSX degraded 42.0% in the

same experiment; and the degradation of original PolarSSL

is 44.8%. Therefore, only about 30% of the performance

degradation was caused by the use of TSX in Mimosa and

aborts due to intensive memory access, and about 40%

was by the resource occupation of STREAM. We also

measured the abort cycle ratio in Mimosa – it raised to

52% under the “DoS attacks”, compared with less than 5%

in normal settings (see Section V-A). We have tried other

different memory-intensive programs, and all of them have

less performance impact. Note that, even in this under-attack

case, Mimosa has performance advantage over the existing

CPU-bound solutions (PRIME and Copker, see Table II).

Attackers might attempt to exploit side channels to com-

promise private keys. Cache-based side channels [8, 13] do

not exist in Mimosa, because AES-NI is free of timing at-

tacks [41] and the RSA computations are performed entirely

in caches. Other timing attacks [6, 15] against PolarSSL used

in the current Mimosa implementation, can be prevented by

RSA-blinding [15], which will be in our future work.

Implemented as a kernel module, Mimosa needs to as-

sume the integrity of OS kernel, so integrity protections are

required to work complementarily. While the kernel integrity

solutions protect the Mimosa service binaries from being

modified, Mimosa prevents the memory disclosure attacks

that do not violate the integrity of executable binaries. Most

existing OS integrity solutions are based on virtualization

such as SecVisor [70], SBCFI [64], OSck [38] and Lares

[63], while kGuard [47] augments the kernel with inline

guards. Integrating Mimosa with these solutions will be also

included in our future work.

TRESOR-HUNT [11] exhibits an advanced DMA attack

that injects malicious codes into OS kernel (i.e., breaks

the integrity of kernel) and then accesses the AES key in

debug registers. Fortunately, this attack can be countered by

configuring IOMMU [76], monitoring bus activities [75],

or leveraging the system management mode (SMM) [85].

Laser scan, another physical memory disclosure attack, was

proposed to read information in power-on smart cards [68].

But this method needs to depackage the chip to remove metal

layers, and requires the chip be halted in the target state (i.e.,

no update operation during the scan). So it is not a threaten

of Mimosa.

C. Comparison

Currently, there are three implementations of asymmetric

cryptosystems that are resistant to cold-boot attacks, namely,

PRIME [29], Copker [30] and the proposed work. These

solutions adopt the same key-encryption-key structure, in

which an AES master key is stored in privileged CPU regis-

ters throughout the operation of the system. The private key

is decrypted on demand to perform RSA decryption or sign-

ing. Table II summaries the properties of three approaches in

terms of OS security assumption, efficiency and private-key
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Table II: Comparison of the RSA Implementations against Cold-boot Attacks

Solution OS Security Assumption Efficiency Private-Key Computation
Master Key Protection Private Key Protection Compared with PolarSSL Implementation Language

Mimosa X+D X Comparable C

PRIME X+D X+A Approximately 1/9† Assembly

Copker X+D X+A+R Approximately 1/4‡ C

X: The integrity of executable binary in kernel. D: No illegal access to debug registers.
A: Atomicity guarantee of private-key computations. R: No illegal memory read operation.
†: It is drawn directly from [29].
‡: It is about the number of separate cache sets divided by that of cores [30]. Intel Core i7 has 4 cores with shared L3 caches.

computation implementation. Hardware assumptions are not

shown in this Table, such as Intel TSX, cache-filling modes,

CPU privilege rings, etc.. Firstly, TRESOR [56] is used in

all three solutions to protect the AES master key, the security

of which depends on the integrity of the kernel executable

without interfaces to debug registers. However, the private

key protections are very different:

• PRIME uses AVX registers to store private keys, and

requires atomicity guarantee of private-key computa-

tions; otherwise, the unprivileged AVX registers may be

accessed by attackers who interrupts the computations.

• Copker depends on both process isolation from OS

as well as atomicity guarantee of private-key compu-

tations, because illegal memory read operations will

synchronize the private key to RAM chips when it is

decrypting or signing messages.

• Mimosa only assumes the kernel integrity, and its

atomicity is guaranteed by hardware but not OS.

Secondly, with the hardware support from Intel TSX, Mi-

mosa significantly outperforms PRIME and Copker. Finally,

because the private-key computation is implemented in C-

language, it is easier for Mimosa and Copker to support

other asymmetric algorithms such as DSA and ECDSA.

VII. RELATED WORK

A. Attack and Defense on Cryptographic Keys

As verified by the experiments [35], more copies of cryp-

tographic keys in memory result in a greater leakage risk.

Several works have been done to minimize the occurrence

of sensitive data. Secure deallocation [18] erases data either

on deallocation or within a short and predictable period,

reducing the copies of sensitive data in unallocated memory.

Harrison et al. provide ways to keep only one copy of

cryptographic keys in allocated memory [35]. In [61], a

1024-bit RSA private key is scrambled and dispersed in

memory, but re-assembled in x86 SSE XMM registers when

computations are needed, to achieve no copy of private keys

in memory. To avoid sensitive data being leaked to disks,

Scrash [14] removes sensitive data from crash reports in the

case of program failures. Mimosa follows the same spirit

that the sensitive cryptographic keys shall appear in minimal

locations and minimal periods, and we employ HTM to

enforce this principle, ensuring that the private keys are

cleared after computations and appear only in CPU caches.

More importantly, Mimosa reactively clears the sensitive

data whenever an attack attempt is detected.
AESSE [55], TRESOR [56] and Amnesia [73] are pro-

posed to prevent the cold-boot attack [32] on full-disk

encryption, by storing AES keys in registers only. This

CPU-bound approach is extended to the asymmetric crypto-

graphic algorithms that require much more storages. Using

the AES key protected by TRESOR as a key-encryption

key, PRIME [29] implemented the RSA computations in

AVX registers while Copker [30] did it in caches. Mimosa

implements the RSA algorithm against cold-boot attacks, but

provides much better performance than PRIME and Copker.
The register-based AES implementations such as TRE-

SOR can also prevent read-only DMA attacks [7, 12, 76] that

passively read from memory. Advanced DMA attacks [11]

can exploit malicious firmware to actively write injected

codes into the memory space of OS kernel, and then

access the keys in registers. This advanced DMA attack

can be detected or restricted by configuring IOMMU [76],

monitoring bus activities [75], leveraging SMM [85], or the

timed challenge-response protocol [51].
PixelVault uses GPUs as the secure container for cryp-

tographic computing [81]. All sensitive data and executable

binaries are loaded into the caches and registers of GPUs

in the initialization phase, so (malicious) binaries on CPUs

cannot access these data and binaries on GPUs. Therefore,

it does not require the integrity of OS kernel except during

initialization. PixelVault requires GPUs dedicated for cryp-

tographic computing; however, Mimosa dynamically builds

secure containers within CPUs, and releases resources when

not in-use.
Intel Software Guard eXtensions (SGX) [44] plan to

provide a hardware-enabled secure container that is isolated

from other processes. Confidentiality and integrity of the

protected process will be maintained even in the presence

of privileged malware. Although SGX is not commercially

ready, it shows the same tendency and potential as TSX that

secure systems can be built on top of hardware features.
There are cryptographic methods that mitigate the attacks

on cryptographic keys. Threshold cryptography [26] splits

the key into multiple parts to withstand partial disclosure.
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Leakage-resilient cryptography [4, 5] is secure against mem-

ory attacks where the adversary measures a large fraction of

the bits of keys. However, these solutions become useless

if the attackers compromise all bits of the key step by

step. In order to prevent cross-VM side-channel attacks

[86], Hermes [62] applied threshold cryptography to build

a cryptographic system on several virtual machines in the

cloud, each of which hold a partition of the private key. The

key is re-shared periodically in Hermes to invalidate the

compromised partitions. White-box cryptography [19, 20]

plants a fixed key into the algorithm implementation. Even if

an attacker obtains the entire memory, he or she cannot find

out the key. However, white-box cryptography has efficiency

limits and is not applicable to asymmetric cryptographic

algorithm so far.

B. Transactional Memory Implementation

Various transactional memory solutions have been pro-

posed, from hardware-based solutions [2, 27, 33, 40, 45, 54,

82] to software transactional memory (STM) [16, 34, 60, 71]

and hybrid schemes [25, 49]. HTM pushes transactional

memory primitives into hardware, hence minimizes perfor-

mance overheads greatly.

HTM usually temporarily stores updated memory in CPU-

bound caches or store buffers [2, 27, 33, 45, 82] before

commit, and discards the modified data on aborts. Another

hardware solution, LogTM [54] updates memory directly

and saves the unmodified value in a per-thread memory log;

on aborts, state is restored by inspecting through the logs.

C. Transactional Memory Application

Transactional memory boosts thread-level parallelism, and

is applied in different services such as game servers [53, 87]

and database systems [46] to improve performance.

By maintaining security-relevant shared resources in the

read/write-sets of Haskell STM [34], TMI enforces autho-

rization policies whenever such a resource is accessed [9,

10]. TMI and Mimosa depend on transactional memory to

inspect all accesses to sensitive resources. TMI enforces

authorization on every access, while Mimosa ensures con-

fidentiality by clearing sensitive keys once any illegal read

operation occurs.

TxIntro [52] is another application of Intel TSX. It lever-

ages the strong atomicity of HTM to synchronize virtual

machine introspection (VMI) and guest OS execution, so

that VMI is performed more timely and consistently. TxIntro

and Mimosa use Intel TSX in very different ways. TxIntro

monitors the read-set to detect concurrent update operations

that cause inconsistence, while Mimosa monitors the write-

set to detect illegal concurrent read operations.

Transactional memory improves the multi-thread support

in dynamic binary translation to guarantee correct execution

of concurrent threads [21]. In addition, the abstraction of

transactional memory is extended to kernel extensions [69]

and code functions [72], and these transaction semantics are

used to recover a system from failures.

VIII. CONCLUSION

We present Mimosa, an implementation of the RSA cryp-

tosystem with substantially improved security guarantees on

the private keys. With the help of HTM, Mimosa ensures that

only Mimosa itself is able to access plaintext private keys

in a private-key computation transaction. Any unauthorized

access would automatically trigger a transaction abort, which

immediately clears all sensitive data and terminates the

cryptographic computations. This thwarts software memory

disclosure attacks that exploit vulnerabilities to stealthily

read sensitive data from memory without breaking the

integrity of executable binaries. Meanwhile, the whole pro-

tected computing environment is constrained in CPU caches,

so Mimosa is immune to cold-boot attacks on RAM chips.

We implemented the Mimosa prototype with Intel TSX.

We have simulated the most powerful software memory

disclosure “attacks” and validated that unauthorized access

to sensitive data could only obtain erased or encrypted copies

of private keys. Kernel dump when Mimosa is running fails

to capture any sensitive content, either. Moreover, perfor-

mance evaluation shows that Mimosa exhibits comparable

efficiency with conventional RSA implementations, which

do not provide the mentioned security guarantees. We also

demonstrate that Mimosa serves well in the real-world

applications, e.g., HTTPS service.
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